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We describe some computational algorithms for computing probability distribu- 
tions for sample configurations from the finite-sites models in population genetics. 
One particular interest is the development of computational methods for estimating 
substitution rates for DNA sequence data using likelihood techniques. The approach 
uses a recursion satisfied by the sampling probabilities to construct a Markov chain 
with a set of absorbing states in such a way that the required sampling distribution 
is the mean of a functional of the process up to the absorption time. This provides 
a conceptually simple framework for simulating the likelihood of the data for a set 
of parameter values. The method is particularly attractive in practice: it is simple 
to program and can be extended to cover other features of interest such as the 
infinitely-many-sites process, recombination, selection, and variable population size. 
0 1994 Academic Press, Inc. 

1. INTRODUCTION 

In this paper we describe some computational algorithms for computing 
probability distributions for sample configurations from the finite-sites 
models in population genetics. Our main interest is the development of 
computational methods for estimating substitution rates for DNA sequence 
data using maximum likelihood. In broad terms the method we propose has 
two main aspects: The first is the derivation of a recursion satisfied by the 
sampling distribution of the data-the distribution of the number of each 
allele observed in the sample. This uses the structure of the coalescent that 
describes the ancestral relationships among the individuals in the sample. 
The recursion is, typically, too large a system to solve by direct numerical 
methods. We adopt instead a simulation approach. This leads to the 
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second aspect, the construction of a Markov chain with a set of absorbing 
states in such a way that the required sampling distribution is the mean of 
a functional of the process up to the absorption time. This provides a 
conceptually simple framework for simulating the likelihood of the data for 
given parameter values, or, more generally, for a set of parameter values. 

The method is particularly attractive in practice: it is simple to program, 
and can be extended to cover other features of interest such as the infinitely- 
many-sites process, recombination, selection, and variable population size. 

The overview of this paper is as follows. In Section 2 we describe the 
coalescent model of neutral mutation and the basic recurrence relation for 
the sampling distribution. In Section 3 we construct the associated Markov 
process and show how it can be used to simulate observations from the 
recursion. Section 4 studies some examples for the K-allele model. For 
some of these models, explicit sampling formulas are known that may be 
used to calibrate and check the simulation algorithm. Some variance reduc- 
tion techniques are introduced too. In Section 5,  we specialize to the 
important case in which the alleles are DNA sequences. The primary 
emphasis is on the development of variance reduction techniques and par- 
simonious methods for speeding up the simulations. Among the theoretical 
results in this section is a study of the joint distribution of the sample and 
the number of mutations in the ancestral tree that led to the sample. These 
results, of interest in their own right, provide one approach to reducing 
simulation time, by aborting runs that have “too many” mutations. Section 
6 gives some examples of the simulation method for sequences. Section 7 
generalizes the basic simulation approach by describing a method for 
simulating a likelihood surface from a single Markov chain. This technique 
is very useful in the context of maximum likelihood estimation, as it avoids 
the simulation of a surface by independent realizations of a process at 
different parameter values. The simultaneous method is to be preferred if 
the cost of evaluating functionals is cheap compared to the cost of 
simulating the underlying Markov chain. This is indeed the case for 
sequence data. The methods are illustrated by some numerical examples. 
The concluding Section 8 discusses the computational aspects of the algo- 
rithm, examples of other areas in which the technique might be useful, and 
directions for future developments in the population genetics setting. 

A computer implementation of the algorithms in this paper is available 
from the authors on request. 

2. THE COALESCENT PROCESS 

The coalescent process introduced by Kingman (1982a, b) describes the 
ancestral tree of a sample of n genes. Review articles are provided by 
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Tavare (1984) and Hudson (1991). Ancestral lines backwards in time 
coalesce when two ancestors of the sample themselves share a common 
ancestor. A tree is then constructed with leaves representing the n sample 
genes and vertices where ancestral lines coalesce. The root of the tree is the 
common ancestor of the sample. The tree is binary in the time scale used. 
Let T,,, ..., T2 be the lengths of time that there are n, n - 1, ..., 2 distinct 
ancestors of the sample. These are mutually independent exponential 
random variables with rate parameters n(n - 1)/2, ..., 2(2 - 1)/2. The tree 
has j edges of length Ti, j = n, ..., 2. Measuring time backwards, the number 
of ancestors of the sample is a death process. The quadratic death 
rates imply that the process is well defined beginning at the entrance 
boundary n = 00, interpreted as the ancestral process of the entire popula- 
tion. The process can be derived as a limit from a Wright-Fisher model, 
with a population size of 2N genes, when time is measured in units of 2N 
generations and N + co. This time scaling is the one used in the diffusion 
process approximation of the Wright-Fisher model. 

Mutations occur in a Poisson process of rate 8/2 along the edges of the 
tree, mutations in different edges being conditionally independent given the 
length of the edges. A general mutation scheme is one where there are d 
possible allele types 1, ..., d and when mutation occurs a transition is made 
from type i to j according to the entry pii in a transition matrix P. It is 
convenient to let entries on the diagonal of P be possibly non-zero, thereby 
allowing for differing total rates away from different alleles. The mutation 
rates in the model are uniquely determined by the generator matrix 

e 
R = ( r v )  = -(P - I ) .  

2 

As a limit from the Wright-Fisher model, if the probability of an offspring 
of a type i parent being of type j is up,, i # j ,  then 8 = 4Nu is held constant 
as N +  CQ. 

The configuration of types in the sample is determined by the mutations 
in the tree from the root to the leaves. It will be assumed that P is a regular 
matrix with a stationary distribution I[. If the common ancestor is chosen 
from a stationary population, then her type has the distribution L. Here are 
some examples for the gene state space. 

(i) Two types, labelled 1 and 2. 

p = ( l - u  u 1 - 0  )> n = ( $ , k ) .  

(ii) Four types, labelled 1,2, 3, and 4, representing nucleotides 
A, C, G, Tin a DNA sequence. P is determined by whatever model for base 
changes is appropriate. 
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(iii) 43 = 64 types representing codons. P might be determined by a 
model which takes into account silent and non-silent sites in the codon, for 
example. 

(iv) K types, representing small regions of DNA for example. P is an 
arbitrary mutation matrix. 

(v) 4" types representing a DNA sequence of length s bases. We 
assume that mutations cause just a single base change, and that the sites 
are completely linked. The j t h  site has a transition matrix Pi, j =  1, ... s, 
with stationary distribution d, and the probabilities of where the change 
happens are h j , j =  1, 2, ..., s. Then 

S 

P= 1 hj I@IQ *. .  @P,Q ... @ I ,  (2) 
j =  I 

where @ denotes direct product, I is the identity matrix, and 

n = n l @  . . .@ n". 

Types are denoted by sequences (il,  ..., is) with entries in { 1,2, 3,4}. 
(vi) As in example (v), but with more general mutation structure, 

reflecting the fact that mutations might not produce just single base 
substitutions. 

Let q(n) be the probability that a sample of n genes has a type configura- 
tion of n = ( n l ,  ..., nd). A fundamental recursion is 

n-1 n.- 1 
(3) 

where { e i }  are the d unit vectors. Boundary conditions are required to 
determine the solution to (3). These have the form 

q(e i )=at ,  i = l ,  ..., d, (4) 

where a,? is the probability that the most recent common ancestor is of 
type i. It is common to assume that 

at = ai, i= 1, ..., d, ( 5 )  

where n = (al, ..., ad) is the stationary distribution of P. With this 
assumption, q(n) is the stationary sampling distribution. 

Equation (3) has been derived by a number of authors in various forms, 
among them Sawyer, et al. (1987), and Lundstrom (1990). Lundstrom et al. 
(1992b) use a coalescent approach and point out that there is a unique 
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solution to these equations. Recursion in (3) is on n, the sample size. 
Given {q(m);  m < n}, simultaneous equations for the (":d; ') unknown 
probabilities { q(m);  m = n} are non-singular, and in theory can be solved. 
In practice a numerical solution is difficult because of the large number of 
equations. 

To derive (3) consider the first event back in time that happened in the 
ancestral tree. Relative rates of mutation and coalescence for n genes are 
n8/2 : n(n - 1)/2, so the probability that the first event is a mutation is 
8/(n + 8 - 1). To obtain a configuration of n after mutation the configura- 
tion before must be either n, and a transition i + i  takes place for 
some i =  1, ..., d (the mutation resulted in no observable change), or 
n + ei - ej, i, j E { 1, ..., d } ,  nj > 0, i # j  and a transition i + j takes place. If a 
coalescence was the first event back in time, then to obtain a configuration 
n the configuration must be n - ej for some j E { 1, ..., d} with nj > 0 and the 
ancestral lines involved in the coalescence must be of typej. 

It is worth emphasizing that the probability q(n) satisfying (3) is deter- 
mined solely by the rate matrix R given in (1). Indeed, (3) can be written 
in the form 

The point here is that different combinations of 8 and P can give rise to the 
same R matrix. Nonetheless, we prefer to think of the model in terms of an 
overall rate 8 and a matrix of substitution probabilities P. In practice, we 
often assume that P is known, and the aim is then to estimate the single 
parameter 8, which reflects both the effective population size N and the 
mutation probability u. 

With initial distribution ( 5 ) ,  the quantity q(n) also has an interpretation 
as being the sampling distribution of a sample of n genes taken from a 
population with allele frequencies (X, , ..., X,) distributed according to 
the stationary distribution in a diffusion process with state space 
{ X E  [0, lid: Cyxi = l }  and generator 

That is, 
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It is straightforward to show that 

IE(LXY'. * X ? )  = 0 (9) 

leads to the recursion (3). 
The stationary distribution corresponding to L is known only when P 

has identical rows, p. Defining E = 8p, Wright (1949) showed that the 
stationary distribution is Dirichlet, with density 

on the set 0 < xl, ..., xd < 1, x1 + . + xd = 1, and 

where a(!, = a(a + 1 ) .  . . (a  + b - 1 )  for a non-negative integer b. If d =  2, the 
distribution q(n) can always be written in the form ( l l ) ,  possibly after 
rescaling P and 8. 

3. CALCULATING SAMPLE PROBABILITIES BY SIMULATION 

A straightforward way to simulate a stationary sample of n genes is the 
following method, developed in Ethier and Grifiiths (1987), Ethier and 
Kurtz (1992), and Griffiths (1989). 

(i) Begin with two genes of identical type chosen from the 
stationary distribution R. 

(ii) When there are m genes, 2 < m < n, in the intermediate simula- 
tion process choose one at random from the m. Then, with probability 
(m - l)/(m + 8 - 1 )  add another gene of the chosen type making m + 1 
genes, or with probability B / ( r n + @ - l ) ,  if the type chosen is i, make a 
transition of type j with probability p i j .  

(iii) Stop when there are n + 1 genes, and delete the last duplicated 
gene to form a sample of n. 

To simulate samples with an arbitrary type for the common ancestor, 
replace I[: in step (i) above with the appropriate initial distribution. The 
coalescent process in this form has been used to simulate the sampling 
distribution of sequence statistics. See Lundstrom (1990), Lundstrom et al. 
(1992a, b) for applications to the analysis of mitochondrial DNA sequence 
data. However, it is difficult to calculate the probability of a particular 
sample configuration in a multiple allele model by naive simulation of the 
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coalescent, primarily because of the large state space. Exact calculation is 
possible using the recursion ( 3 )  and Lundstrom (1990) gives a useful 
computational method for this. It is very computer intensive and again not 
practical for larger sample sizes or larger state spaces. 

The method presented here provides a new simulation technique for 
direct calculation of the probability of a sample configuration by simula- 
tion backwards along the sample paths of the coalescent. 

Scaling the transition probabilities for the coalescent process gives a 
representation for q(n) moving back along the tree. Let 

d e 
b(n) = 1 - nipii, n(n + 8 - 1 )  i= 

The recursive equations ( 3 )  for the distribution q(n) can now be written in 
the form 

q(n)=f(n)( c A,(n) q(n + ei - ej) 
i, j c  (1 ,  ..., d } ,  n, >O, i # j  

+ 1 pj(n)q(n-ej)), (13 )  
j s  (1, .... d } ,  n , r O  

for n 2 2, with boundary conditions (4 ) .  
In order to exploit this form of the recursion, we consider a Markov 

chain {N(k), k > O )  whose state space is S =  (0, 1 ,  ...}", and whose 
transition mechanism is determined by 

n + n + ei - ej, with probability &(n), i, j E { 1, ..., d } ,  nj > 0, i Zj ,  
n + n - ej, with probability pj(n), j~ { 1, ..., d } ,  nj > 0, (14 )  

when n 2. Note that by construction for all m E S 

n,(m)+ p j ( m ) = l .  
je {l, ..., d } ,  m, r O  

c 
i ,  j e  (1, ..., d } ,  m, 2 0 ,  i # j  
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Denoting the degree of m by Iml =Cy= mi, we see that { IN(k)l, k 2 0 }  
is non-increasing. For each m 2 1, define the set of states 

S,= { m E S :  Iml = m } .  

For any m 2 2, S ,  is finite. If at least one element in m E S ,  is greater than 
unity, then the probability of exit to SmP1 from m is non-zero. If at least 
two entries in m are unity, then because P is regular and S ,  finite, with 
probability one the process will hit a state in S,, m 2 2 with at least one 
entry greater than 1. It follows that from any state in S,, m 2 2 the process 
will exit into SmP1 with probability one. Thus the states {e,} are the only 
absorbing states. 

Let {N(O), ..., N ( z ) }  be the sample path of the process beginning at 
N ( 0 )  = n, until absorption in the set A = {e,} at the random time z. Then 

the expected value of the product along the sample path. In order to verify 
(15), we use the following elementary result about Markov chains. 

LEMMA 1. Let { xk; k 2 O }  be a Markov chain with state space S and 
transition matrix P. Let A be a set of states for which the hitting time 

q = q A  = inf{ k 2 0 : X ,  E A }  

is finite with probability one starting from any state x E T = S\ A. Let f 2 0 
be a function on S, and define 

for all X o  = x E S, so that 

Then for all x E T 

Prooj 
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=fb) E,( E,( k =  I!i 1 f(&))l&) 

=f(x) f(..))) (by the Markov property) 
k = l  

If ux(f) = co then both sides of (17) are infinite. 

The representation (15) follows from Lemma 1 by taking A = S1 = 
{m E S : Iml= 1 } and q = 7, the hitting time of S1. This representation 
provides an easy way to calculate an estimate 4(n) by simulating the 
process { N(k), k 2 0} repeatedly starting at N(0) = n and taking the 
estimate to be the average of nf= ,f(N(j)) over the realizations. 

In the context of (12)-(15), { X k ; k a O }  is the Markov chain 
{ N ( k ) ; k > O } ,  and P in the lemma is constructed from { { l , ( m ) } ,  
{p,(m)} : m E S}. The sum over absorbing states A in (17) only arises in 
(13) when n = 2e, for some j =  1, ..., d. Since f(ej) = q(ej), 

fi 

q(2ej)=f(2ej)( lv(2ej) q(ei+ej) +pji(2ej)f(ej) ) * 
i e {1 ,  ..., d ) , i # j  

The uniqueness of the solution to (3)  and so (13) implies that (15) is a 
correct representation with finite expectation. 

I 4. SOME K-ALLELE EXAMPLES 

To illustrate the simulation method, we begin by studying the simplest 
case, the so-called K-allele model. This section serves as motivation for the 
techniques developed in later sections. 

4.1. Variance Reduction 

It is well known that variance reduction techniques are an important 
aspect of any simulation study. One obvious method of variance reduction 
is to replace quantities that might be estimated by their exact values. This 
idea can be applied in the present context by simulation of the process 
{N(k); k 2 O }  until the hitting time q of S2= { n E S :  In1 =2} ,  and then 
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I 

by direct calculation of q ( N ( q ) ) .  Lemma 1 provides a representation 
equivalent to (15) in the form 

/ n - 1  \ 

An estimate d(n) is then found by averaging q ( N ( q ) )  nY:hf(N(j)) over 
repeated runs. The same idea can be used to stop at the earlier time q when 
S ,  is first visited. The cases r = 2 and r = 3 are particularly useful in practice. 

It remains to calculate the probabilities q(n) for small values of r = Inl. 
A numerical integration method for doing this when r = 2  or r = 3  is 
described in detail in Section 5.1. To illustrate the methods, the next section 
considers a particular example in which the appropriate values of q(n) are 
known explicitly from Wright's formula (1 1). 

4.2. A 4-Allele Model 
If P has identical rows (d - ' ,  ..., d- ' ) ,  the sampling distribution is known 

to be (11) with ei = O/d, i = 1, ..., d. Table I provides a comparison of exact 
and simulation results for the naive simulation method (corresponding to 
q = time to hit SI in (18)) for the case d = 4. The 95 % confidence intervals 
are based on the simulation variance, each estimate using 20,000 runs. 
Notice that all of the intervals include the true sample probability. 

The next simulations test the variance reduction approach described in 
the previous section. We apply the method by stopping the simulations at 
r = 2 and r = 3, and using the explicit formula (1 1) for the requisite values 
of q(n). The results are given in Tables I1 and 111, all runs being based 
on 20,000 replicates. The estimated standard errors are, by and large, 
decreasing as r increases. 

TABLE I 
Simulation for d = 4: Equal Mutation Rates 

0.5 (20, 15, 10, 5) 8.45 8.73 (7.78,9.67) 10-7 
0.5 (50, 30, 15, 5) 2.06 1.92 (1.75, 2.10) 10-7 

1.0 (50, 30, 15, 5) 9.14 8.96 (8.62,9.30) 10-7 

2.0 (20, 15, 10, 5) 1.54 1.57 (1.54, 1.59) 10-5 

5.0 (20, 15, 10, 5) 5.52 5.54 (5.41, 5.66) 10-5 

10.0 (20, 15, 10, 5) 9.61 9.64 (8.33, 10.94) 10-5 
10.0 (50,30, 15, 5) 4.92 4.67 (4.09,5.26) 10 -6 

1.0 (20, 15, 10, 5) 4.10 4.07 (3.93,4.21) 

2.0 (50, 30, 15, 5) 2.87 2.90 (2.85,2.96) 

5.0 (50, 30, 15, 5) 6.19 6.32 (6.17, 6.46) 
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TABLE I1 

Simulated Probabilities for Sample 
(20, 15, 10,5) 

q(n)  r $(n) SE. Scale 

0.5 8.45 1 8.31 
2 8.61 
3 8.14 

1.0 4.10 1 3.94 
2 4.09 
3 4.12 

2.0 1.54 1 1.55 
2 1.52 
3 1.53 

5.0 5.52 1 5.50 
2 5.56 
3 5.46 

10.0 9.61 1 9.68 
2 9.42 
3 9.52 

0.299 10-7 
0.315 
0.219 

0.062 
0.059 
0.059 

0.013 
0.010 
0.009 

0.064 
0.052 
0.041 

0.480 lo-’ 
0.351 
0.283 

TABLE 111 

Simulated Probabilities for Sample 
(50,30, 15,s) 

0 q(n) r d(n) SE Scale 

0.5 2.06 1 2.18 0.126 
2 1.85 0.067 
3 2.09 0.078 

1.0 9.14 1 8.81 0.178 
2 9.19 0.165 
3 8.93 0.149 

2.0 2.87 1 2.83 0.027 
2 2.90 0.022 
3 2.85 0.019 

5.0 6.19 1 6.43 0.075 
2 6.09 0.058 
3 6.26 0.050 

10.0 4.92 1 5.31 0.453 
2 5.67 0.777 
3 4.81 0.228 
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5 .  THE FINITE-SITES MODEL 

It is of particular importance to develop the simulation method for a 
sample of n sequences of length s, as in example (v) of Section 2. The large 
state space can cause problems with a long waiting time until absorption 
in SI for the process { N(k); k 2 O}. This section describes some techniques 
which can be used to provide variance reduction, and sometimes reduce 
simulation time as well. 

5.1. Variance Reduction 
Empirically, the waiting times in states satisfying IN(k)l = m increase as 

m decreases. As an illustration, we consider the case of a sample of two 
sequences. Suppose that the sites are homogeneous, there are two possible 
types at each site, and the transition matrix P for base changes has 
identical elements of 0.5. 

Let D ( k )  be the number of segregating sites between the two sequences 
at step k of the Markov process governed by the transition probabilities 
(12) ,  with the convention that when IN(k)J = 1, D ( k )  = A, a cemetery state. 

{ D ( k ) }  is a modified random walk with transitions d +  d +  1 ,  d + d -  1, 
( d 2  1) having respective probabilities, 1 - d/s, d/s, and transitions 0 -, 1 ,  
0 + A having respective probabilities 8/(2 + e), 2/ (2  + e). Let pd be the 
expected waiting time from D ( 0 )  = d until absorption into A. It follows that 
p,, = 82”-’ + 1, and for d 2  1 ,  

Clearly these expected waiting times are very long for reasonable values of 
the sequence length s. 

Long waiting times in S, = { n E S : In1 = r } can be avoided by simulation 
of the process {N(k); k 2 O }  until the hitting time q of S,., and then by 
direct calculation of q(N(q)), as described in Eq. (18).  For the sequence 
case, calculation of the probabilities q(n) for In1 = r is only practical for 
small r. For r = 2 ,  3 and initial conditions ( 5 ) ,  they may be calculated in 
the following way. 

Let X k ( t )  be the type of site k at time t, measured from the 
common ancestor of the n sequences in the coalescent tree. For 
k = 1 ,  ..., s, { X k ( f ) ,  t 2 0 }  is a Markov process with an infinitesimal matrix 
(8 /2)  hk(Pk - I )  in the notation of example (iv) of Section 2. Denote the 
transition probabilities of { X k ( t ) ,  t 2 0 }  by { p t . ( t ) } ,  and the stationary 
distribution by nk. The stationary distribution can be calculated from Pk. 

The mutation processes at the sites 1, ..., s are independent, conditional 
on the structure of the coalescent tree. This can be used to calculate the 
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probabilities q(n) for small In) by considering all possible trees. Suppose 
In1 = 2, and the two sequences are of types i = ( i l ,  ..., is) ,  j = ( j l ,  ..., j s ) .  By 
considering that the common ancestor of site k has type u with probability 
n:, and mixing over the time to coalescence, we obtain 

If.P,, ..., P, are reversible, (19) simplifies to 

The integrals in (19) and (20) can be evaluated by numerical integration. 
Similar formulae can be derived for JnJ = 3 for sequences of type i, j, m. 

The times while there are two and three ancestors of the sample are 
exponential with rates 1 and 3 respectively. Let r(i, j, m) be the probability 
of an ordered sample of the three sequences, where sequences j and m 
coalesce first. Then 

p t b  (2s + ') ptjk (l) p t m ,  ( t )  (22) 
b 

The probability of an unordered sample of the three sequences is then 

r(i, j, m) i = j = m  

4, j, j) + W ,  j, i )  i # j = m  (23 1 
2(r(i, j, m) + r(j, i, m) + r(m, j, i ) )  i # j # m. 

In practice, using the form (19) greatly reduces run times in the simula- 
tion, and also reduces the variance of the estimate 4(n), compared to not 
doing any calculation. Use of the form (21) also provides a useful variance 
reduction technique, but the time taken by the algorithm can be dramati- 
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cally longer due to the numerical integration required. Some examples are 
given in Section 6.1. 

The results in (19)  and (21)  have obvious analogs under the initial 
conditions (4) .  In particular, for a fixed ancestor of type ( u l ,  u2,  ..., us) ,  we 
have 

and 

These equations do not simplify with reversibility of the transition 
matrix P. 

With a fixed ancestral type, it is more efficient to simulate to a sample 
of size two and then calculate, since every run will then give an estimate 
from that ancestral type. 

5.2. The Number of Mutations in the Datu 
It is of interest to compute the probability ij(n, m )  that a sample of size 

n has configuration n and exactly m mutations that change the state of a 
gene in the line back to the common ancestor. The analog of Eq. ( 3 )  for e is the recursion 

ni+ 1 
piiij(n+ei-e,,m- 1 )  (26)  

e 
+ + n -  1 i,,: n, 2 7 -  > 0, i + j  

n - 1  n j -  1 + c -  ij(n - e j ,  m). e + n - l j : n , , o  n - 1  

The distribution 

b 

q(n, b ) =  q(n,m),  b=0,  1 ,... 
m = O  

satisfies the recursion (26),  with boundary conditions 

q(n, 0 )  = 0 unless n = nej for some j .  (27)  
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The initial conditions are (cf. ( 4 ) )  

q(e , ,b )= .n& k =  1, 2, ..., d; b=0, 1, ... 

It is elementary to prove from (26)  that 

145 

The recursion in (26) can be solved by constructing a new process 
{ (N(k), B(k) ) ,  k = 0, 1 ,  ...} which, recalling (14) ,  makes transitions as 
follows: 

(n, b )  + (n + ei - e j ,  b - I), with probability A,(n), 

1 < i, j <  d, nj >O, i # j ,  

(n, b )  + (n - e j ,  b ) ,  with probability p j ( n ) ,  1 < j < d, nj > 0, (29) 

when n 2 2, b 2 1 .  If y denotes the time taken to reach a state of the form 
( e i ,  a), a 2 0; (mej ,  0 )  for some j e  { 1,2,  ..., d }  and m 2 2; or (no, 0) ,  where 
no is not of the form mej and q(no, 0 )  = 0, then the appropriate functional 
to evaluate is given by 

where the f(n, rn) =f(n)  for all m. Fortunately, there is a simply way to 
avoid simulating this new process. Using the boundary conditions in (27) 
and (28), we have the equivalent representation 

q(n, b ) = ~ n  [ f i ~ ( ~ ( i ) ) ]  I { M < ~ ) ,  (31) 

where M is the number of times the process {N(k), k = 0 , 1 ,  ...} makes a 
move of the type n + n + ei - e j ,  i # j ,  and z is the time taken to hit SI. 

Aside from its intrinsic interest, this result also provides a way to reduce 
the simulation time required to estimate q(n) .  A technique to avoid the 
problem of long runs is to abort a run if the number M of mutation events 
exceeds a bound b, and return a value q(n, b )  = 0 for that run. The average 
over all runs, including the zeros, will then be an estimate of q(n, b). If b is 
of reasonable size, then the tail probability E,"= b + 4(n, m) = q(n)  - q(n, b )  
makes a negligible contribution to q(n) .  The probability of observing 
greater than b mutation events in a sample path of {N(k), k = 0, 1, ...} can 
be quite high, while q ( n )  - q(n, b), being the expected value of a functional 
on the sample paths, is negligible. 
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Ideally, we would like to choose b so that the relative error 

is small. If there are a huge number of segregating sites, then choosing a 
reasonable bound b may also be impossible. 

The simulation can also be modified by considering the number of birth- 
death events until IN(q)l = r ,  terminating runs when this number is too 
large, then calculating q ( N ( q ) )  for runs which are not aborted in a similar 
way to (18). 

6. TESTING THE SIMULATION METHOD FOR SEQUENCES 

6.1. A Variance Reduction Method 
Section 5.1 provides a method for combining simulation along a sample 

path with explicit evaluation of certain integrals. This example verifies 
that this does indeed provide a useful variance reduction technique. The 
10 sequences of length 10 were simulated from a model with 6=2.0  and 
transition matrix 

The sequences and their frequencies are: 

2 2 2 2 2 2 2 2 2 2  (2) 

2 2 2 1 2 2 2 1 2 2  (2) 
2 2 2 1 2 2 2 2 2 2  (6) 

TABLE IV 

Variance Reduction 

Method Estimated probability SE 

1" 7.447 x 1.058 x 
2b 7.386 x 8.274 x 
3' 7.041 x 6.592 x 10-7 

No integration. 
Numerical integration from two ancestors. 
Numerical integration from three ancestors. 
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In Table IV, we compare the effects of the explicit integration approach 
applied when there are two and three sequences remaining in the 
simulation, and the naive approach which simulates back to a single 
common ancestor. The simulations, each based on 20,000 replicates, 
confirm that the estimated variance is indeed reduced. The case r = 3 takes 
considerably longer than the cases r = 1 and 2 because of the time to per- 
form the numerical integration in (22). 

6.2. Mutations in the Backwards Process 
To illustrate the effects of truncating runs that have “too many” muta- 

tions in their paths back to the common ancestor, we use the data from 
Section 6.1 once more. In Table V are the estimates and relative timings for 
20,000 runs of the (otherwise naive) simulation method described in (31), 
for different values of b. In all cases, the value of 8 is 2.0. 

As expected, the method reduces simulation time dramatically. The 
variability of the estimates appears to be increasing as the cut-off level b 
decreases, as would be expected. Notice, though, that the 95 %confidence 
intervals for the underlying probability overlap each other. 

The estimated probabilities in Table V are not monotone in the value of 
b, as they should be from the representation (31). This is because the runs 
for different values of b are not coupled. To investigate the way in which 
the estimates depend on the value of b, we kept all runs and looked 
through the results for various values of b. The examples illustrate what 
happens for different values of 8. The first is based on the data of Section 
6.1 where 8=2.0, the second on (simulated) data with 8 =  10.0 and 
sequences 

1 2 2 2 2 2 2 2 2 1  (1) 
1 2 2 2 1 2 2 2 2 1  (7) 
1 2 2 1 1 2 2 2 2 1  (1) 
1 2 2 2 1 2 2 2 1 2  (1) 

TABLE V 

Truncating Runs with Many Mutations 

Truncation Estimated Relative 
level b probability SE time 

5 1.047 x lo-’ 1.960 x 1 .o 
10 9.589 x loT6 1.877 x 1.6 
20 5.202 x 0.907 x 2.3 
50 7.464 x 10-6 1.140 x 10-6 4.8 
co 7.885 x 1.304 x 7.5 
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and the third on 8 = 15.0 and sequences 
2 1 2 2 2 2 1 1 1 2  (2) 
1 1 2 2 1 2 2 2 1 2  ( 1 )  
1 1 2 2 1 2 2 2 2 2  ( 6 )  
2 2 2 2 2 2 1 1 1 2  ( 1 )  

In Table VI are the coupled estimates of q(n, b )  for different values of b, 
together with the number of simulation runs (out of 20,000) that did not 
exceed b mutations. 

TABLE VI 
Coupled Estimates of q(n, b )  

Runs with 
< b mutations a n ,  b )  SE 

b e = 2.0 ( x  106) ( x  106) 

2 91 
5 147 
7 155 

10 166 
20 285 
50 3943 

25000 2 m  

e = 10.0 

6.05 1.22 
7.33 1.35 
7.33 1.35 
7.34 1.35 
7.34 1.35 
7.34 1.35 
7.34 1.35 

2 0 
4 4 
6 6 

10 9 
20 22 
50 1273 

25000 2 m  

e = 15.0 

0.00 0.00 
6.53 3.51 
6.75 3.52 
6.96 3.52 
6.96 3.52 
6.96 3.52 
6.96 3.52 

20 0 0.0 0.0 
30 32 2.40 1.89 
40 166 2.41 1.89 
70 2093 2.41 1.89 

150 13039 2.41 1.89 
200 17126 2.41 1.89 

25000 2 m  2.41 1.89 
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In the first example we are interested in the case b = 2, which gives the 
probability of getting the two segregating sites from only two mutations 
and no further back mutations. The estimated conditional probability that 
the sequences were formed by just two mutations is 6.05/7.34 = 0.82. In the 
second example, b = 4  is the minimal number of mutations required to 
produce the four segregating sites. Many other possible mutational 
paths can produce the data, but only 9 of the 20,000 runs are effectively 
contributing to the estimate of q(n)! In the final example, a huge number 
of mutations can occur, but only 166 contribute to the estimate of q(n). 
While the coupled simulations are not effective in reducing simulation time 
in the algorithm, they do give insight into the distribution of mutational 
events that produce the sample. 

7. SIMULATING LIKELIHOOD SURFACES 

One of the main statistical uses for the distribution q(n) is estimation of 
parameters using maximum likelihood methods. One way to do this is to 
simulate the likelihood independently at a grid of points, and examine 
the shape of the resulting surface. In practice, this can be a very time 
consuming approach, particularly in the sequence case. In this section, we 
describe an approach, akin to importance sampling, for estimating a 
likelihood surface at a grid of points using just one run of the simulation 
algorithm. 

The method uses the following lemma in the spirit of Lemma 1. 

LEMMA 2. Let { x k ;  k 2 O )  be a Markov chain with state space S and 
transition matrix P. Let A be a set of states for  which the hitting time 

is finite with probability one starting from any state x E T S - A.  Let h 2 0 
be a given function on A ,  let f 2 0 be a function on S x S and define 

for all X 0 = x e S ,  so that 

u x ( f )  = h(x) ,  x E A.  
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Then for all x E T 

Proox The proof follows that of Lemma 1 and is omitted. I 
Remark. When f ( x ,  y )  = f ( x )  for all y, and h(x) = f ( x ) ,  x E A, Lemma 

2 reduces to Lemma 1. 

In Section 3 we applied Lemma 1 with {Xk, k 2 0} being the Markov 
chain (N(k), k 2 0} whose transition matrix was determined by (12) and 
(14) and q was the time taken to reach the set S, {m E S : Iml = r}. We 
are interested in calculating the probability q(n) for different values of the 
parameter 8 E { B;p+ 1 < i, j < d }  in (12). Note that for a particular value 
of 8 we solve a system of the form 

where the transition matrix pe (n, m )  is determined by (14), and fe(n) is 
given in (12). Now suppose that eo is a particular set of parameters that 
satisfies 

{ ( n , m ) : p e , ( n , m ) = O } ~  ((n,m):pe(n,m)=O}- 

We can write the equations (35) in the form 

so that from Lemma 2 

where {N(k), k >O} is the Markov chain with parameters 8o and 

It follows that q(n) can be calculated from the realizations of a single 
Markov chain, by choosing a sensible value of 8, to drive the simulations, 
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and evaluating the functional q(N(1)) n;:if(N(j), N(j  + 1)) along the 
sample path for each of the different values of 8 of interest. 

7.1. Estimating the Mutation Rate 8 
One particularly important special case of this procedure involves 

estimation of 8, the mutation rate. Recall that 8 = 4Nu where u is the muta- 
tion probability per gene per generation and N is the effective diploid 
population size. If u can be estimated from other information then N can 
be estimated, and vice-versa. 8 is one of the standard parameters in popula- 
tion genetics, and there are numerous ways to estimate it for different 
models of mutation. Recent references, using methods different from the 
present ones, include Lundstrom et al. (1992a, b) and Felsenstein (1992a). 

If the mutation matrix { p U }  in (12) is assumed known, then 8 is the only 
parameter of interest, and we shall write @=e,  @,=Bo in what follows. 
From Eqs. (12) and (38) we see that for In1 = n  

7.2. A K-Allele Example 
Suppose then that we want to estimate the mutation rate 8. There are 

several issues that need to be addressed, among them sensible choices for 
8, and an assessment of the variability and time dependence of the method. 
In this section, we use the surface method for the four allele model 
discussed in Section 4.2 for this purpose. We concentrate on the test data 
described in Tables I and 111. The data for 100 genes had a configuration 
of n = (50, 30, 15, 5). In Table VI1 we give the results of 20,000 naive 
simulation runs to estimate q(n)  for 8=0.5, 1.0, 2.0 for different values 

It can be seen from Table VI1 that the accuracy of the method worsens 
as 8 moves away from 8,. In particular the estimate for the combination 

of e,. 

TABLE VI1 

Surface Simulation of Probabilities for Sample (50,30, 15, 5) 
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1 .o 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 

10.0 

Note. 

-13.91 
- 12.76 
- 12.30 
- 12.08 
-11.99 
- 11.98 
- 12.00 
- 12.05 
-12.13 
- 12.22 

-14.15 4.0 
-12.73 4.5 
-12.28 5.0 
-12.09 5.5 
- 12.00 6.0 
-11.98 6.5 
-12.00 7.0 
-12.04 7.5 
-12.08 8.0 
-12.11 8.5 

- 12.08 
- 12.03 
- 11.99 
- 11.98 
- 11.97 
-11.98 
- 12.00 
- 12.02 
- 12.05 
- 12.09 

- 12.09 
- 12.05 
- 12.02 
- 12.00 
- 11.98 
- 12.00 
- 12.01 
- 12.03 
- 12.06 
- 12.10 

5.5 
5.6 
5.7 
5.8 
5.9 
6.0 
6.1 
6.2 
6.3 
6.4 

All results based on 50,000 simulations, with Bo = 6.0. 

- 11.975 
- 11.973 
- 11.973 
- 11.972 
- 11.972 
- 11.973 
- 11.973 
- 11.975 
- 11.978 
- 11.978 

- 11.967 
-11.964 
- 11.963 
- 11.962 
- 11.961 
- 11.962 
- 11.962 
- 11.963 
- 11.965 
- 11.967 

8 = 2.0, 8, = 0.5 seems to be quite biased. The diagonal entries of Table VI1 
should be compared to the corresponding entries for r = 1 in Table 111. In 
these examples, the simultaneous estimation method takes about 40 % of 
the time of the independent method. This difference in timing will become 
much more pronounced in cases (such as sequence data) where the time 
taken to calculate the appropriate functionals is low compared to the time 
taken to simulate the random trajectory. On the other hand, there seems 
to be a trade off in the accuracy of the estimates. A more accurate surface 
should result from longer runs. , 

The method seems to work well when one is trying to estimate 
probabilities in a neighborhood of the special value 0,. This is precisely the 
case when trying to find maximum likelihood estimates. As an example, we 
have simulated the log-likelihood surface for the data set n = (50, 30, 15, 5) 
using 50,000 simulations of the method that stops simulating when S3 
is reached, and compared it to the true surface. The results are given in 
Table VI11 

The results seem particularly encouraging. In addition to taking 
approximately 25 % of the time for independent simulations, the method 
produces a maximum likelihood estimate of 6 =  6.0 for the simulations 
along the grids 4.0(0.5)8.5 and 1(1)10 with 8, = 6.0 in both cases. The more 
refined grid of 5.5(0.1)6.4 produced the estimate e= 5.9, which is indeed the 
true MLE. 

1.3. A Sequence Example 
This section uses the simulated sequence data from Section 6.1. The 

surface simulation based on 50,000 runs on the grid of 8 values 1.0(0.5)18.0 
with 8, = 1.0,9.0, 18.0 gave the surfaces in Fig. 1. 
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FIG. 1. Log-likelihoods in B for different values of Bo. (a) Solid line Bo = 1.0; dashed line 
Bo = 9.0; dotted line Bo = 18.0. (b) dashed line formed from average at each grid point. Solid 
line formed from weighted average at each grid point. 

In Fig. la, we plot the three estimates of the likelihood surface for 
different test values eo. Each of these values of 8, provides an unbiased 
estimator of the true underlying log-likelihood at the grid of &values, but 
the variances of the estimates depend markedly on eo. There are several 
ways in which these curves might be combined to produce a composite 
estimate of the true underlying log-likelihood curve. For a given value of 
8, we weighted the estimates for each value of eo inversely proportional to 
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their (estimated) variances. This method should work well when correla- 
tions among estimates for different values of 8 are not too high, as is 
indeed the case here. These weighted averages were used to construct the 
composite curve plotted in Fig. lb. Using this curve, we find that the MLE 
of 8 is 8 ~ 7 . 0 .  

Approximate confidence intervals for parameter estimates can be found 
in several ways. A parametric bootstrap approach would simulate many 
samples using the estimated parameter values as the true parameters, and 
look at the observed distribution of the resulting estimates. This approach 
can be extremely time consuming. An alternative is to use the likelihood 
surface directly: include 8* in the interval if one cannot reject the 
hypothesis that 8 = 8* at the appropriate level. This test is based on the 
(putative, asymptotic in n )  x2 distribution of the likelihood ratio test 
statistic. For the example at hand, the log-likelihood at 8* = 2 is - 12.5, 
compared to the value of about -11.3 at 6, so we can include 8 = 2  
(the value used to generate the data) in the confidence interval. 

1.4. A Simulated Sample of Sequences 
A simulation of 50 sequences of length 20 with two possible bases at each 

site, 8 = 1.0, and the probability of change 0.5 for each base provided the 
following sequences: 

1 2  1 1  2 1 2  1 2  1 1  2 1 2  1 2  1 1  2 2  

1 2 1  1 2 1 2 1 2 1 1 2 1  1 1  1 1  1 2 2  

(13) 

(16). 
1 2 1 1 2 1 2 1 2 1 1 2 1 1 1 2 1 1 2 2  (21) 

The results below show the behaviour of the surface method when the 
runs are truncated when more than 30 mutations occur in the backwards 
process. The estimates in Table IX are based on 10,000 runs of the naive 
method, with a cut-off of b = 30, and' 8, = 1.0. From the table, we see that 
the MLE of 8 is 8=  0.80. 

TABLE IX 
Log-Likelihoods Found by Truncating at b = 30 

e 
0.2 
0.4 
0.6 
0.8 
1 .o 
1.2 
1.4 
1.6 
1.8 

Likelihood ' 

1.02 10-13 

2.47 x 10-13 
3.45 x 1 0 4 3  

3.86 10-13 

3.85 10-13 

3.58 x 1 0 4 3  

3.19 x 1043 
2.75 x 1 0 4 3  

2.32 x 1043 

SE 

2.42 10-14 

5.92 x 10-14 
8.28 x 1044 
9.29 x 10-14 
9.28 x 10-14 

7.70 x 1 0 4 4  

5.61 x 10-14 

8.64 x 

6.64 x 
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(1.1) (12) (2.2) (1.1) ( 1 3 )  (2.2) (1.1) (12) (22) 

FIG. 2. Possible trees for the example in Section 7.4. 
13 21 16 13 21 16 13 21 16 

There are only two segregating sites in the sequences. The sample is 
consistent with being from the infinitely-many-sites model where there is no 
back-mutation. If this is so, there are only three possible mutation trees for 
the two segregating sites, as shown in Fig. 2. The third tree is the most 
likely. 

The vertices represent mutations in these trees. Probabilities of the trees 
under the infinitely-many-sites model can be calculated from a computer 
implementation of a recursion of Griffiths (1989), and are shown in Table 
X. A comparison value of 812 is chosen because in the finitely-many-sites 
model from which the simulated data come, the rate of base changes is 8/4, 
compared to the infinitely-many-sites model where it is 812. In Table X, the 
column headed Linf is the sum of the tree probabilities in the preceding 
three columns, using rate 812, whereas the column headed Len(@ is 
20 x 19 x 2’’ x likelihood for the finitely-many-sites model with rate 8. Thus 
Ls, (8) is the probability of an unordered, unlabelled configuration of sites. 
The maximum likelihood under the infinitely-many-sites model occurs at 
812 = 0.4, at exactly the same point 8 = 0.8 as in the finite-sites model. 

I 

TABLE X 

Calculated Tree Probabilities 

012 Tree 1 Tree 2 Tree 3 Lid L,(O) 

0.1 5.08 x 

0.3 1.63 x 
0.4 1.77 x lo-’ 
0.5 1.72 x lo-’ 
0.6 1.56 x 
0.7 1.36 x lo- ’  
0.8 1.14 x 
0.9 9.45 x 

0.2 1.20 x 10-5 
3.81 x 1.92 x 2.81 x 4.06 x lo- ’  
9.02 x 4.64 x 6.78 x lo-’ 9.84 x lo-’ 
1.22 x 6.40 x 9.25 x lo-’ 1.37 x loT4 
1.32 x 10-5 7.09 10-5 1.02 x 10-4 1.54 x 10-4 
1.28 x 1 0 - ~  7 . 0 0 ~  1 0 - ~  1.00 x 1 0 - ~  1.53 x 

8.39 10-6 4.84 x 10-5 6.82 x 10-5 1 . 1 0 ~  1 0 - ~  

1.15 x 6.44 x 9.15 x 1.43 x 
9.98 x 5.67 x 8.03 x lo-’ 1.27 x 

6.90 x l o w 6  4.04 x 5.68 x lo-’ 9.24 x lo-’ 



156 GRIFFITHS AND TAVARh 

8. DISCUSSION 

There are now many examples of Monte Carlo methods designed for the 
approximation of probabilities deriving from complex stochastic systems. 
These often come under the heading of Markov chain Monte-Carlo 
(MCMC) techniques, which are designed to simulate observations from 
densities known up to a normalising constant. Convenient references 
include Hastings (1970), Geyer and Thompson (1992), Smith and Roberts 
(1993) and Besag and Green (1993); see in particular the discussion of the 
last three papers. In contrast, our sampling probabilities are not known 
just up to a normalising constant. Rather, we have based our method for 
computing likelihoods in the coalescent on simulation of Markov chains 
whose transition mechanism is determined by recurrence equations satisfied 
by certain sampling probabilities. The idea behind our method is rather 
different from “conventional” MCMC, but, in common with MCMC, it 
has a long history. The technique of using simulation in a Markov chain 
with an absorbing state to solve a system of linear equations is one of the 
oldest techniques in the Monte-Carlo field, dating back at least to Forsythe 
and Leibler (1950). The method is ‘described, together with a “matrix multi- 
plication’’ proof of the analog of Lemma 1, in Section 5.1.3 of Rubinstein 
(1981) and Section 7.3 of Ripley (1987) for example. 

8.1. Computational Aspects 
A computer implementation of the simulation methods described in this 

paper is available, in portable C code, from the authors. The program 
SEQUENCE computes the likelihood of a sample of sequences when there 
is a possibly inhomogeneous mutation structure along bases, with a given 
transition matrix for base changes. This corresponds to the model in 
(2) with possibly different h,, but identical P,. The distribution of allele 
frequencies at a single locus is the special case of one base. 

The implementation also includes options for 

simulation back to the most recent common ancestor; 
simulation back to 2 or 3 ancestors, then calculation of the sample 

setting a bound on the number of mutations; 
computing likelihoods when the most recent common ancestor is of 

variable rates at different positions (with fixed P matrix); 
simulation of likelihood surfaces, with the parameter set O,, 

containing values of either 8, the mutation parameter; or P, the mutation 
matrix; or {hi}, the collection of site mutation probabilities. 

probability. (Calculation is restricted to reversible transition matrices); 

a given type; 
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A computational problem with small likelihoods is underflow, so in each 
run instead of the product in (15), C;=,log(f(N(j))) is calculated, then a 
simple extended precision routine is used to find the mean of the exponen- 
tials of the log sums. In calculating likelihoods for sequences many runs 
contribute effectively zero to the mean. This is expected because many of 
the large number of possible sample paths have a tiny probability in the 
actual coalescent process. 

There are several computational issues that we are working on to 
increase the speed with which evolutionary parameters can be estimated 
from very large DNA sequence data sets. The approach based on stopping 
runs with “too many” mutations seems particularly promising. We are also 
assessing the behavior of the algorithm for use on supercomputers and we 
are developing eficient methods for running the surface simulation algo- 
rithm. One possible approach to the search for a maximum likelihood 
estimator is an adaptive search method, in which the test value e,, is 
changed during the course of the simulation. Another approach that may 
prove useful is to use the recursions to derive further recursions satisfied by 
appropriate derivatives of the sampling probabilities, and estimate these 
simultaneously with the sampling probabilities themselves. 

We are also exploring the uses of recursions for renormalized sampling 
probabilities of the form 4(n) = q(n) c(n) for some sequence of constants 
c(n). This provides a way to avoid combinatorial evaluations, and may also 
be useful in reducing the variance of the estimators. 

8.2. Other Applications 
The methods developed in this paper can be applied to many other 

sampling problems arising in population genetics. The key ingredient in the 
application of these techniques is the derivation of a sampling equation 
analogous to (3). These may be derived by coalescent methods or directly 
from diffusion equations, as illustrated in (7)-(9). For the infinitely-many- 
sites process, the analog of Eq. (3) is given by Ethier and GrSiths (1987), 
and exploited further by Grifiths (1989). In Grifiths and TavarC (1993), 
we have developed the sampling theory for the infinitely-many-sites process 
when the ancestral type of each site is unknown, and provided a method 
for true likelihood estimation of 8. Another important example is the two 
locus model with recombination, for which the basic equations are derived 
by Ethier and Grifiths (1990a, b) and Grifiths (1991). The technique 
deseribed here may then be used to find maximum likelihood estimators of 
the recombination fraction for a variety of different mutation models. 

Other cases include models with selection (where the diffusion method 
comes more fully into play), and processes that incorporate the effects 
of variable population size, migration, and subdivision. Modifications 
of the basic scheme may also be used to study problems in ancestral 
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inference. For example, it provides a way to estimate the mean time to 
the most recent common ancestor of a sample, conditional on the types 
observed in the sample. This is a quantity of some current interest in 
the study of human evolution. Finally, it should be clear that the method 
is not restricted to applications in population genetics, but rather 
provides another computer-intensive approach to the study of likelihoods 
that arise from many other Markov processes. 
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