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ABSTRACT 

The infinitely-many-sites process is often used to model the sequence variability 
observed in samples of DNA sequences. Despite its popularity, the sampling theory 
of the process is rather poorly understood. We describe the tree structure underlying 
the model and show how this may be used to compute the probability of a sample of 
sequences. We show how to produce the unrooted genealogy from a set of sites in 
which the ancestral labeling is unknown and from this the corresponding rooted 
genealogies. We derive recursions for the probability of the configuration of se- 
quences (equivalently, of trees) in both the rooted and unrooted cases. We give a 
computational method based on Monte Carlo recursion that provides approximants 
to sampling probabilities for samples of any size. Among several applications, this 
algorithm may be used to find maximum likelihood estimators of the substitution 
rate, both when the ancestral labeling of sites is known and when it is unknown. 

1. INTRODUCTION 
The infinitely-many-sites model is extremely popular in the popula- 

tion genetics literature as a description of the DNA sequence variability 
observed in samples of genes. Hudson [SI provides an excellent overview. 
For the most part, inference for this process has been based on the 
distribution of summary statistics of the sequences. One such is the 
number of segregating sites, which is the number of DNA sequence 
locations in the aligned sequences in which more than one nucleotide is 
represented. While this statistic is simple, it clearly does not make full 
use of the data. Strobeck [lo] showed that certain genealogical trees 
play an important role in defining the probability distribution of the 
sample configuration. He showed how such probabilities could be 
calculated for samples that contained at most three distinct haplotypes. 
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In this paper, we develop the theory of the genealogical trees that 
underpin the model and show how this theory can be used to calculate 
probabilities for samples of any size. One novel application of the 
theory is a way to compute maximum likelihood estimators of the 
substitution rate. 

From a practical point of view, there are two important new aspects 
to our results. The first shows how sample configuration probabilities 
can be found when the ancestral labeling of the sites is unknown. The 
second is the development of a computationally feasible numerical 
algorithm for calculating such probabilities. This algorithm is based on 
the principles described by Griffiths and TavarC [6], in which the 
probability of interest is represented as the mean of a functional of a 
particular Markov chain that can readily be simulated. 

1.1. THE COALESCENT 

The genealogy of a sample of n genes drawn at random from a large 
Wright-Fisher population of approximately constant size N individuals 
is often described by the coalescent [91. The time Ti during which the 
sample has j distinct ancestors has an exponential distribution with 
mean [ E T i  = 2/(j(j - l)), j = 2,3,. . . , n, times for different j being inde- 
pendent. Time is conventionally measured in units of 2 N generations. 
For reviews of the basic structure of the coalescent, see [8, 111, for 
example. 

The coalescent can be thought of as the ancestral tree of the sample, 
showing how individuals are related back to their common ancestor. In 
the time scaling used here this tree is binary. Mutations are superim- 
posed on the ancestral tree as follows. Suppose there is a probability of 
mutation of u per gene per generation, and set 8 = 4Nu. Conditional 
on the tree, put down mutations according to Poisson processes of rate 
8 / 2 ,  independently for each branch in the tree. A typical sample path 
of a coalescent relating individuals in a sample of size n = 7, together 
with the mutations occurring in the tree, is given in Figure 1. 

The coalescent tree with mutations can be condensed into a ge- 
nealogical tree with no time scale by labeling each gene by a sequence 
of mutations up to the common ancestor. For the example in Figure 1, 
the sequences may be represented as follows: 

gene 1 (9,7,3,1,0) 
gene 2 (3,1,0) 
gene 3 (11,6,4,1,0) 
gene 4 (8,6,4,1,0) 
gene 5 (8,6,4,1,0) 
gene 6 (8,6,4,1,0) 
gene 7 (10,5,2,0). 
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FIG. 1. Coalescent tree with mutations. 0 denotes mutation, 0 denotes individuals. 

The 0's in each sequence are used to indicate that the the sequences 
can be traced back to a common ancestor. The condensed genealogical 
tree is shown in Figure 2. The leaves in condensed tree correspond to 
the genes in the sample and the branches in the tree are the internal 
links between different mutations. 

1.2. TREES IN THE INFINITELY-u4Ny-SITES MODELS 

There are many different models in the literature that describe the 
effects of mutation on the type of each gene. In this paper, we focus on 
the infinitely-many-sites model of Watterson [12]. Under this model, a 
gene can be though of as an infinite sequence of completely linked sites, 
each labeled 0 or 1. A 0 denotes the ancestral (original) type, and a 1 a 
mutant type. The mutation mechanism is such that a mutant offspring 
gets a mutation at a single new site that has never before seen a 

. 
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trees, the vertices represent sequences and the number of mutations 
between sequences are represented by numbers along the edges. 

Given a single rooted tree, the unrooted genealogy and therefore all 
other rooted trees, corresponding to other possible rootings, can be 
found. The constructive way to do this from a given rooted tree is to put 
in vertices corresponding to sequences, and also inferred sequences at 
each vertex of degree greater than two. A mutation at a vertex is 
counted in the unrooted tree edge leading toward the root in the given 
rooted tree. If there is no root type in the sample and the root is of 
degree two, then it is removed from the unrooted genealogy (as in our 
example). The unrooted tree constructed from any of these rooted trees 
is unique. It is convenient to label the vertices as to the genes they 
represent. The unrooted tree for the example sequences is shown in 
Figure 3. 

Conversely, the class of rooted trees produced from an unrooted 
genealogy may be constructed by placing the root at one of the se- 
quences or between mutations along an edge. Two examples are given 
in Figure 4. In the first the root corresponds to the third sequence, 
labeled 3 in Figures 1 and 3, and in the second it is between the two 
mutations between the two inferred sequences. 

Trees are called labeled if the sequences are labeled. Two labeled 
trees are identical if there is a renumbering of the sites so that they are 
identical. An ordered labeled tree is one where the sequences are 

FIG. 3. Unrooted genealogical tree corresponding to Figure 1. The unlabeled 
circles are inferred individuals. 
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0 

0 

FIG. 4. Moving the root. (a) Tree with root the third sequence; (b) Tree with root 
between mutations. 

labeled and considered to be in a particular order; visually this corre- 
sponds to a tree diagram with ordered leaves. An unlabeled (and so 
unordered) tree is a tree where the sequences are not labeled. Visually 
two unlabeled trees are identical if they can be drawn identically by 
rearranging the leaves and corresponding paths in one of the trees. (The 
sites of an unlabeled tree are, however, still labeled.) 

Usually trees are unlabeled, with sequences and sites then labeled 
for convenience. However, it is easiest to deal with ordered labeled 
trees in a combinatorial and probabilistic sense and then deduce results 
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about unlabeled trees from labeled trees. If there are (Y sequences 
(including the inferred sequences) with m1,m2,.  . . mutations along the 
edges and s segregating sites, then there are 

a + + ( m j - l ) = s + l  
i 

rooted trees when the sequences are labeled. There may be fewer 
unlabeled rooted trees, as some can be identical after unlabeling the 
sequences. In the example there are 11 segregating sites, and so 12 
labeled rooted trees, which correspond to distinct unlabeled rooted 
trees as well. 

The class of rooted trees corresponds to those constructed from 
toggling the ancestor labels 0 and 1 at sites. The number of the 2s 
possible relabelings that are consistent with the sequences having come 
from a tree is 

. 

mi-1 

j k = l  

This follows from the observation that if there is a collection of m 
segregating sites which correspond to mutations between sequences, 
then the corresponding data columns of the 0-1 sequences (with 0 the 
ancestral state) are identical or complementary. Any of the 
configurations of k identical and m - k complementary columns corre- 
spond to the same labeled tree with a root placed after the kth 
mutation. The correspondence between different rooted labeled trees 
and the matrix of segregating sites can be described as follows: in order 
to move the root from one position to another, just toggle those sites 
that occur on the branches between the two roots. 

Ethier and Griffiths [ l ]  provide a simulation algorithm to generate 
the rooted genealogical tree of a sample of size n from the infinitely- 
many-sites model, starting from a common ancestor. The simulation 
proceeds as follows: 

(1) Start with a tree with two leaves. 
(2) At successive time instants where there are r leaves, either 

(i) grow a leaf (with probability ( r  - l)/(r + 8 - 1)); or 

(a 

(ii) grow a branch (with probability 8 / ( r  + 8 - 1)). (3) 
(3) Stop when there are n + 1 leaves in the tree, and delete the last leaf. 

It is possible to simulate an unrooted tree using the same algorithm, by 
finding the unrooted tree that corresponds to the simulated rooted tree. 
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1.3. INFERENCE ABOUT e 
Watterson [12] was interested in estimating the parameter 0 using 

the number K of segregating sites in the sample. Since the mean 
number of segregating sites in a sample of size n is 0Z7:;jf1, he 
proposed the unbiased estimator 
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This estimator does not make full use of the data since it ignores the 
genealogical relationships among the genes in the sample. It might be 
expected to be less efficient than an estimator that does. A start on the 
theory of likelihood methods for unlabeled genealogical trees was made 
by Strobeck [lo]. In this paper, we extend the exact recursive method of 
Griffiths [4] to unrooted trees, and we develop a Markov chain Monte 
Carlo method for computing probabilities of either rooted or unrooted 
trees. This technique complements the recursive method and allows 
such probabilities to be computed for arbitrary data sets, which may 
have both large numbers of individuals and many segregating sites. 

2. GENEALOGICAL, TREE PROBABILITIES 
The type of a gene i in the sample is described by a sequence 

yi = ( y i o , y i l ,  ... ) of positive integers. Suppose that in a sample of n 
genes there are d distinct sequences, xl ,xz, .  . . , xdy grouped according to 
their multiplicities n = ( q , .  . . , nd). We write the data in the form 
(xl, ..., xd,n) =(T,n), where T represents a rooted tree and n the 
multiplicities of the leaves. In the example discussed earlier, there are 
d = 5 distinct sequences that can be represented as 

Note that the label 0 is common to all sequences because we are 
assuming that the individuals in the sample can be traced back to a 
common ancestor. 

Let '(xly.. . ,x,J and (.yl,. . . ,yJ be collections of sequences, not neces- 
sarily distinct. Define equivalence relations - and = on trees by 
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(xl,.. . , x n )  - (yl,. ..,y,) if there exists a bijection 7:  Z, + Z, = { O , l ,  
2 ,... } with y,, = q ( x i j )  for i = l , . .  ., n and j = 0,1,. . . and (xl,. . .,xJ = 
(yl,...,yn ) if there exists a bijection 7: Z, -+ Z, and a permutation 
r E S,, the set of permutations of (1,. . ., n>, such that yw( i ) j  = 7 ( x i j )  for 
i = 1,. . . , n and j = O , l , .  . . . Equivalence classes under N correspond to 
labeled trees, and those under = to unlabeled trees. 

Let p(T ,n)  be the probability, under the stationary distribution of 
the process, of obtaining a particular ordered sample of distinct se- 
quences T = (x,,. . . , x d )  with multiplicities n = (n,,. . . , nd) in a sample of 
size n under equivalence N . Ethier and Griffiths [l]  prove that p ( T ,  n) 
satisfies the equation 

In (5), ej is the jth unit vector, 9 is a shift operator which deletes the 
first coordinate of a sequence, Y k T  deletes the first coordinate of the 
kth sequence of T ,  9 k T  removes the kth sequence of T ,  and “ x k 0  
distinct” means that xko  # xi,  for all (xl,. . .,xd) and (i, j) # (k,O). In the 
inner summation in the last term of (5) there is at most one j such that 
Y x k  = xi. The boundary condition is p(T, ,e , )  = 1. The system (5) is 
recursive in the quantity {n - 1 +the number of vertices in TI. Equation 
(5) can be validated by a simple coalescent argument by looking back- 
wards in time for the first event in the ancestry of the sample. The first 
term on the right of (5) corresponds to a coalescence occurring first, 
while the last two terms correspond to mutations. There are two 
mutation terms, the first corresponding to the ancestor not being in the 
sample, the second to the ancestor being in the sample. 

For the purposes of an algorithm for computing these probabilities, it 
is more convenient to consider the recursion satisfied by the quantities 
po(T,n)  defined by 

po(T,n)  is the probability of the labeled tree T without regard to the 
order of the sequences in the sample. Using (3, this may be written in 
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the form 

n ( n - l +  e ) p o ( T , n )  

= n(nk -l)pO(T,n-e,) 
k : n k 2 2  

+ e  c pO(%T,n) 
k : n k =  1,xkOdistinct 

9 X k  # xi vj 

+ e  C ( n j + l ) p O ( ~ k T , ~ k ( n + e j ) ) .  (7) 
k : n k = l  j : 9 ’ x k = x j  

xko distinct 

Let p*(T,n)  be the probability of a corresponding unlabeled tree 
with multiplicity of the sequences given by n under equivalence = . p* 
is related to p o  by a combinatorial factor as follows. Define Tu = 

(xu(1) ,  . . . ,xu(,)) ,  and nu = . , n , ( d ) )  for (T in s d .  Letting 

a( T,n) = I{ (T E s d  : Tu = T , n ,  = n} 1, (8) 

we have 

The number of distinct ordered labeled trees corresponding to the 
unlabeled tree is 

In the tree shown in Figure 2, a(T,n)= 1. A subsample of three 
genes (9,7,3,1,0), (11,6,4,1,0), (10,5,2,0), forming a tree T’ with fre- 
quencies n’ = (1,1,1), has a(T’, n’) = 2 because the first two sequences 
are equivalent in an unlabeled tree. 

2.1. RECURSIONS FOR UNROOTED TREES 

Ethier and Griffiths [ l ]  consider the case of rooted trees, which we 
extend to cover the unrooted case. A labeled unrooted genealogical tree 
of a sample of sequences has a vertex set V which corresponds to the 
labels of the sample sequences and any inferred sequences in the tree. 
Let Q be the edges of the tree, described by (mi j , i7  j E V ) ,  where mij  is 
the number of mutations between vertices i and j. Let n denote the 
multiplicities of the sequences. It is convenient to include the inferred 

. 
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sequences 1 E V with n, = 0. Then the unrooted genealogy is described 
by (Q,n>. 

Define equivalence relations - and = on trees, expressing equiv- 
alence of having the same number of segregating sites between pairs of 
sequences. For a tree T = (xl,.. .,xd) define a d X d matrix C ( T )  by 

cUb(T) is the number of segregating sites between xu and xb. For two 
trees Tl and T2 (with possibly nondistinct sequences), Tl - if 
C(Tl) = C(T2), and Tl = if there exists u E S, such that C(Tl,) = 
C(T, 1. Unrooted trees are thus considered equivalent if they have the 
same matrix of numbers of differences between the sequences at their 
vertices. 

Define p(Q, n), po(Q, n), p* (Q, n) analogously to the probabilities for 
(T,n) where in the first and third probabilities (Q,n) is a representative 
of equivalence classes under N,, and zU. Suppose that 12 is an 
equivalence class of trees under - with pairwise segregating site 
matrix C,. Then B is the union of the equivalence classes of trees T 
under - having C(T)=C, .  The probability of a labeled unrooted 
genealogical tree Q is thus 

p(Q,n)=  p ( T , n ) ,  (10) 
T : C ( T )  = c, 

where the trees T in the summation are distinct under - . If Q has a 
total of s mutations, there are s + 1 terms in the sum in (10). The same 
relationship holds in (10) if p is replaced by p o ,  and q by qo. The 
combinatorial factor relating p* (Q, n) and po(Q, n) is 

a(Q,n) =I{a ESIVI:Qa =Q,n,  =.}I. (11) 

The quantities p(Q,n) and po(Q,n) satisfy recursions similar to (5)  and 
(7). The recursion for p(Q,n) is 

n ( n - l +  O)p(Q,n> = C nk(nk-l)p(Q,n-e,) 
k : n k a 2  

+ e  P(Q-e,j,n) 
k: n k  = l , lk l=  1 
k +  j , m k j > l  

+ 6 ~(Q-e , j ,n+ej -e , ) ,  (12) 
k : n k =  l , lk l=  1 
k +  j , m k j = l  
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where Ikl = 1 means that the degree of the vertex k is 1 (that is, k is a 
leaf), and k + j means that vertex k is joined to vertex j .  In the last 
term on the right of (12), vertex k is removed from Q. The boundary 
conditions in (12) for n = 2 are 

and 

To see why (12) is true, consider the possible rooted trees in (10) 
constructed by placing a root in the unrooted tree and sum their 
probabilities using (5). The first term on the right of (12) is clearly 
correct. For the second term note that a tree 9,T is a valid tree 
contributing to Q-e, for all trees T except when the root is at the tip 
of the sequence x k ,  and that the union of the class of trees YkT over 
different positions for the root produces Q - ek. A similar argument 
gives the third term. 

Strobeck [ 101 derived equations for the probabilities of unrooted 
genealogies for two and three distinct haplotypes. His equations for 
these particular cases correspond to (121, with the factor (11) included 
in the recursions. There appear to be corrections needed to his Equa- 
tions (3) and (4). The last two terms in his Equation (3) have multipliers 
S(n, + 1, n,)+ 1 and S(n,, n2 + 1)+ 1 missing, and a divisor of n is 
missing from the last three terms in his Equation (4). 

2.2. RECURSIONS FOR SEQUENCES 

The recursions for the probabilities of rooted or unrooted trees can 
be translated directly into recursions for the probabilities of samples of 
sequences. Let S be the distinct binary sequences of the segregating 
sites in a sample of sequences, the rows of S representing distinct 
alleles, and let n be their multiplicities. If 0 represents an ancestral site, 
then 

+ e  p(Sk',nk+ej).  (13) 
k : n k = l , s . l = e k  

s i .  = sj. 
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In (13), si. and s.[ denote the ith row and the transpose of the lth 
column of S. A superscript denotes removal of that column, and a 
double superscript notation Ski  indicates removal of row k and column 
1. For each k the second summation on the right includes just one term 
where s . ~  = e k  though there may be multiple columns ek in S. The 
boundary condition in (13) is p(@,(l)) = 1, where @ is an empty matrix 
which may occur on the right side of (13) when n = 2. 

The combinatorial factor relating p* (S, n) and po(S,  n) is 

a(S,n) = I[ (+ E Sd :nu = n , 3  T E S ,  such that (Su(i),T(j)) = S} I. (14) 

The factors in (8) and (14) are identical. 

to arbitrary labels 0 and 1 for the two types in the columns, and 
In the case where the ancestral state is unknown, S is unique only up 

n ( n - ~ +  e)p(S,n) = n k ( n k  -I)p(S,n-e,)  
k : n k ,  2 

+ e  C p(s' ,n) 
k : n k =  l , ~ , ~  = e k  

o r e i , s i . # s j . , k + j  

where e; is the complement of the kth unit vector. Again, for each k 
the second summation on the right includes just one term where s . ~  = ek 
or e; though there may be multiple columns ek and e; in S. The 
boundary conditions in (15) for n = 2 are 

and 

where S, represents rn segregating sites between two sequences. The 
combinatorial factor relating p*(S,n) and pO(S,n) is - 
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where K is one of the 2, functions in G, which map d X s 0 - 1 matrices 
to the same class of matrices by toggling 0 and 1 entries in columns. The 
factors in (16) and (11) are identical. 

Equation (13) and (15) have the benefit that they do not require a 
knowledge of the genealogical tree structure of a sample, and are 
possibly easier to code than the corresponding tree recursions. However 
whatever inference can be drawn about the genealogy of a sample is of 
great interest in practice. 

2.3. A NUMERICAL EXAMPLE 

In this example we suppose that the ancestral states are unknown 
and that the sequences, each with multiplicity unity, are: 

1 0 0 0  
0 0 0 1  
0 1 1 0  

For convenience, label the segregating sites 1, 2, 3, and 4 starting from 
the left. When 0 is the ancestral state, a possible rooted tree for these 
sequences has paths to the root of (l,O), (2,3,0), and (4,O). It is then 
straightforward to construct the corresponding unrooted genealogy, 
which is shown in Figure 5. The central sequence is inferred. 

There are five possible labeled rooted trees constructed from the 
unrooted genealogy, corresponding to the root being at one of the 
sequences, or between the two mutations on the edge between the 
inferred individual and gene 3. These five trees are shown in Figure 6, 
together with their probabilities p(T ,  n), computed exactly from the 
recursion (5) when 8 = 2.0. p(Q,n) is the sum of these probabilities, 
0.00497256. The factor in (11) is 2, and the multinomial coefficient 
3!/1!1!1! = 6 so p*(Q,n) = 3 X0.00497256 = 0.0149177. Note that the 
trees (b) and (e) are identical unlabeled rooted trees, but are distinct 
labeled rooted trees, so are both counted in calculating p*(Q,n). 

1 

2 

1 

FIG. 5. Unrooted genealogy for numerical example. 
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FIG. 6. Labeled rooted tree probabilities. 

The genealogy in Figure 5 fits into Strobeck’s [lo] genealogy in his 
Figure l(c), and his (revised) algorithm gives the same probability. 

In this small genealogy the coalescent trees with four mutations can 
be enumerated to find the probability of the genealogy. The trees which 
produce the tree in Figure 5 are shown in Figure 7, with correspon- 
dence to the trees in Figure 6 highlighted. 

Let T3 be the time during which the sample has three ancestors and 
T2 the time during which it has two. T3 and T2 are independent 
exponential random variables with rates 3 and 1, respectively. By 
considering the Poisson nature of the mutations along the edges of the 
coalescent tree and adding the probabilities of the trees in Figure 7 we 
find that 

p*(Q,n) = E  e-(3T3+2Tz)e/2(T,2(T2 + T3)’ /2!+2T;(T2 + T 3 ) / 2 !  

+2T;T2 /2! + T,2T2(T2 + T3)  + T:T. /2! ) )  

(( *)1 

Evaluating this expectation gives the correct probability 0.0149176. 

(a> (a> (b>,(e> (C> (dl 
FIG. 7. Possible coalescent trees producing Figure 6 trees. 
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3. CALCULATING GENEALOGICAL TREE PROBABILITIES 
For small sample sizes, probabilities like po(Q,n) can be computed 

numerically by solving the recursion (7) for each rooted tree using 
Griffiths' program FTREE [4], and then combining the results using 
(10). In practice this direct combinatorial approach is impractical for 
large sample sizes. In this section, we present an alternative method for 
computing probabilities like po(T,n) .  The obvious strategy of using the 
Ethier-Griffiths simulation method in (3) down from the common 
ancestor is not useful in practice because most of the time the observed 
(T,n) will not be hit. Rather, we base our approach on simulating back 
up the tree from the sample to the ancestor. The basic ingredients of 
the method are discussed in Griffiths and TavarC [6], where simulation 
algorithms for probabilities of sample configurations of DNA sequence 
data generated by the finite-sites models are provided. 

The idea is to use (7) to construct a Markov chain with a set of 
absorbing states in such a way that the probability po(T,n)  can be 
written as the expected value of a functional of the Markov chain up to 
the time the absorbing states are hit. The appropriate Markov chain 
{XU), I = 0, 1, ...} has a tree state space, and makes transitions as 
follows: 

( I Z k  - l )  
f (T,n) (n  + e -1) 

( T ,  n) + ( T ,  n - e k )  with probability 

e ( n j  + 1) 
f ( T , n ) n ( n +  e-1)  * 

+ ( 9 k T ,  9k( n + e j ) )  with probability 

(19) 

In (17), (18), and (19), k = 1,2,. . ., d. The first type of transition is 
only possible if nk > 1, and the second or third if nk = 1. In the last two 
transitions a distinct singleton first coordinate in a sequence is removed. 
The resulting sequence is still distinct from the others in (181, but in 
(19) the shifted kth sequence is equal to the j th sequence. The scaling 
factor is 

~ 

: 
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where m is given by 

93 

m=I{k:nk=l ,Xk ,od i s t inc t ,~Xk # x j v j } I  

+ c  C ( n j + 1 ) *  
k : nk = 1 

xk , ,  distinct 
j :  9 x k  = xi 

The idea is to simulate the X process starting from an initial tree 
(T ,n )  until the time T at which there are two sequences (xl0,...,xli) 
and (x,,, ..., x Z j )  with x l i  = x Z j  (corresponding to the root of the tree) 
representing a tree T,. The probability of such a tree is 

The representation of po(T,n)  is now 
r7--1 1 

where X(1) = (T( l ) ,n( l ) )  is the tree at time 1. Equation (20) may be 
used to produce an estimate of po(T,n)  by simulating independent 
copies 
of the tree process {XU), I = 0,1,. . .), and computing [ IIT:if(T(I), 
n(I))]pO(Tz) for each run. The average over all runs is then an unbiased 
estimator of po(T,n) .  An estimate of p*(T,n)  can then be found by 
dividing by a(T,n).  

It is possible to construct a simulation method to find the likelihood 
of an unrooted genealogy based on (12). However, it seems best to 
proceed by finding all the possible rooted labeled trees corresponding to 
an unrooted genealogy and their individual likelihoods. 

3.1. COMPUTING A LIKELIHOOD SURFACE 

The method of Griffiths and TavarC [6] can be modified to compute 
po(T,n)  for fixed (T,n) as a function of 8 from a single realization of 
the process { X ( f ) ,  f = 0,1,. . .}. In the context of estimating 8, this 
provides a Monte Carlo approximant to a likelihood surface. This 
method is as follows: Simulate the chain {XU), I = 0,1,. . .} with a 
particular value 8, as parameter and obtain the likelihood surface for 
other values of 8 using the representation 

7 - 1  

I = O  
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where (as before) (T(l),n(l)) is the tree at time 1, and h is determined 

and 

this last holding both for transitions of the form (181, when (T’,n’) = 

(P,T,n), and of the form (191, when (T’,n’) = (9,T,9fk(n+ei)). 

3.2. CHECKING THE ALGORITHM 

In order to check the Monte Carlo algorithm, we use an example for 
which exact results can be computed using Griffiths’ PTREE algorithm 
[4]. The sample of size n = 30 is described in Table 1. The sample has 
the rooted labeled genealogy given in Figure 8. For illustration, we 
assume that the labeling of ancestral and mutant sites is known. 

In Table 2 exact values of the tree probability p*(T,n) are given, 
together with simulation estimates based on 30,000 runs, for a variety of 
8 values. Notice that the approximate confidence intervals, which are 
based on the simulation variance, cover the true value in each case. 

To check the surface simulation method for approximating probabili- 
ties, we ran the simulation method determined by (21) for 8 = 0.6(0.2)3.0, 
8, = 1.0,1.8,2.6, using 30,000 replicates each. The approximating curves 
of logp*(T,n) for different 8, values are combined by weighting 
inversely proportional to the estimated variance. This composite curve 

TABLE 1 

Alleles and Their Frequencies 

Sequences Frequency 

0 0 1 0 0 0 1  3 
0 0 0 0 0 0 1  4 
0 0 0 0 0 0 0  4 
1 0 0 1 0 0 0  11 
1 0 0 0 0 0 0  1 
0 1 0 0 0 0 0  2 
0 0 0 0 1 0 1  2 
0 0 0 0 1 1 1  3 
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FIG. 8. Genealogical tree corresponding to Table 1. 

and the true curve computed by Griffiths' algorithm are shown in 
Figure 9. The agreement is extremely good. If the ancestral labeling is 
unknown, then the probabilities of the different rooted trees can be 
computed individually and summed according to (10) to approximate 
the probability of the unrooted tree. 

4. DISCUSSION 
One important application of the theory we have developed here is 

maximum likelihood estimation of the substitution rate 8 in the typical 

TABLE 2 

Exact and Estimated Tree Probabilities 

True Estimated 95% Confidence 
e scale probability probability interval 

1.0 10-12 4.77 4.25 (3.52,4.97) 
2.0 10-11 1.27 1.35 (1.13,1.58) 
4.0 3.33 3.22 (2.85,3.59) 
6.0 10-13 3.85 4.01 (3.42,4.60) 
8.0 10-14 4.12 3.57 (2.95'4.20) 
10.0 10-15 4.75 4.28 (2.81,5.75) 
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FIG. 9. Log-likelihood curves (dashed line: exact values; solid line: Monte Carlo 
approximant). 

case where the ancestral labeling of sites is uneown. Further investiga- 
tion of the statistical properties of the MLE 8 is certainly worthwhile. 
We are currently investigating how much better the MLE is than the 
simpler estimator (4) based on the number of segregating sites. 

In addition to maximum likelihood estimation of the substitution rate 
8, there are several other applications of the theory and simulation 
method we have described here. Among these is ancestral inference. 
For example, we may use the likelihoods of individual rooted trees to 
compare different ancestral labelings of the sites. The methods may also 
be extended to make inferences about the distribution of the time to 
the most recent common ancestor of a sample, conditional on the 
observed sequences. 

A program PTREESIM implements the algorithm for simulating the 
likelihood of a sample of genes from the infinitely-many-sites model 
using the representation in (20). Maximum likelihood estimation of 8 is 
achieved by simulating likelihood surfaces with respect to 8, as de- 
scribed in Section 3.1. The best way to treat the case when the ancestral 
base type at segregating sites is unknown is to produce a listing of all 
the labeled rooted genealogical trees with their likelihoods and then 
add up these likelihoods to find the likelihood of the unlabeled un- 
rooted genealogical tree. PTREESIM automates this procedure for 

I 

: 
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single likelihoods and for surface simulation. Checking consistency of a 
collection of sequences with the infinitely-many-sites model, and the 
production of a (rooted or unrooted) tree from these sequences is an 
option in PTREESIM. The algorithm used is that in Griffiths [31. 
PTREESIM is available from the authors on request in portable C 
source code and in executable form for a PC. 

The infinitely-many-sites process described here is certainly an over- 
simplified picture of the variability observed in DNA sequence data. 
The assumption that once a mutation has occurred at a site there may 
be no further mutation there is clearly in conflict with the occurrence of 
back substitutions, for example. Griffiths and TavarC [6] show how the 
Monte Carlo recursion technique can be used to approximate the 
likelihood of samples from coalescent models which allow for back 
substitutions. These techniques are considerably more expensive com- 
putationally than the present ones. 

The sampling theory developed here applies to samples from popula- 
tions that have maintained approximately constant size for many gener- 
ations, an assumption that is clearly unreasonable in some cases. The 
effects of deterministically varying population size can be incorporated 
into the analysis; see Griffiths and TavarC [SI. The combinatorial and 
topological structure of the tree (T,n) is precisely the same as that 
described here, but the probabilistic structure has to be modified to 
account for the fact that the times T,. while the sample has j distinct 
ancestors are dependent random variables. 

' 
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