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Abstract

We study the distribution of summary statistics of the sample con�guration of DNA
sequences taken from a large population that has evolved with determistically varying pop-
ulation size. We study the information available in the number of alleles and segregating
sites for estimating the substitution rate, and for making inferences about the time to the
most recent common ancestor of the sample. We exploit a Monte Carlo method for solv-
ing recurrence equations that de�ne the requisite sampling probabilities. The methods are
illustrated with some mitochondrial control region data.
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1 Introduction

Comparisons of DNA sequence information from individuals within a species can be used

to study aspects of the evolutionary history of that species. In the study of human evo-

lution one particular molecule, mitochondrial DNA, has played a central role; cf. Cann et

al. [1], Stoneking [2], Ward et al. [3], Shields et al. [4]. Mitochondria are small circular

DNA molecules about 16,500 base pairs in length. They live outside the nucleus of cells and

they play a role in energy production. Mammalian mitochondria are maternally inherited,

which makes them ideal for studying the maternal lineages in which they arise. One part

of the molecule, an 1100 base pair stretch known as the control region or D-loop, has been

particularly important for human evolutionary studies, primarily because its very high mu-

tation rate produces sequence di�erences between individuals who are (evolutionarily) quite

closely related. Samples of D-loop sequences are now available from many diverse human

populations. The data used in this paper are a sample of sequences from the beginning of the

control region, taken from the Nuu-Chah-Nulth Indians (Ward et al. [3]). These sequences,

one from each individual in the sample, may be used to track the maternal ancestry of the

populations under study.

Suppose that we take a random sample of n such sequences. We assume the sequences

are aligned, so that each of the n sequences has the same length, s base pairs. The sequences

can be thought of as an n � s matrix D, each row corresponding to the sample sequence

of one individual. In our data, s = 360 and n = 63. Each column is called a site. There

will be some sites at which the sample sequences have an identical letter (either A;C;G;

or T , the four bases in DNA), and some sites at which the sample sequences vary. These

sites are called segregating sites. Moreover, there will be some sequences in the sample that

are identical. Distinct sequences are called alleles or lineages. The number of segregating

sites and the number of alleles observed in a sample of sequences are important summary
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descriptions of the variability in the data.

Over time, changes in these sequences are passed on from generation to generation. In

this paper, we suppose that the changes are caused by substitutions, the replacement of one

base by another. In particular, we ignore the e�ects of length variations caused by insertions

and deletions, and we assume there is no recombination in the region, so that the sites in

the sequences are completely linked, being passed on intact from generation to generation.

Our aim is to model the substitution process, and use it to estimate the rate at which such

substitutions occur. This rate calibrates the molecular clock of the region, and so allows

us to make inferences about many ancestral features of the sample and of the population.

One quantity of great interest in human evolution is the time to the most recent common

ancestor (MRCA) of the sample or population.

The result of each mutation can be modeled in many di�erent ways, depending largely on

the type of data being analyzed. The simplest assumption is that each mutation produces

an allele never seen before in the population. Under this in�nitely-many-alleles model the

labels of alleles are arbitrary, being used merely to distinguish di�erent types from each

other. For some DNA sequence data, the in�nitely-many-sites assumption is often used,

particularly in theoretical studies of sequence variability. Under this model, each mutation

occurs at a site that has never had a mutation before. This means that each site in the DNA

sequence is binary, the two possible types at a site corresponding to the ancestral or mutant

base. Each mutation introduces a new segregating site into the sample. For this model,

the matrix D conventionally describes only the segregating sites, so that s is the number

of segregating sites in the data. If each distinct sequence of sites is identi�ed as an allele,

then the structure of the allele frequencies is precisely that of the in�nitely-many-alleles

model. A more detailed model for DNA sequence data speci�es di�erent mutation rates and

probabilities for di�erent sites, and in particular allows mutations to occur at a given site

more than once.
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In earlier work [5-8] we studied the sampling theory of these substitution models. We

derived the probability distribution of the data matrix D under particular mutation models,

and used this distribution to �nd maximum-likelihood estimators of the substitution param-

eters. Typically, these estimators cannot be found in explicit form or by standard numerical

analysis techniques for maximizing functions, due primarily to the extremely complicated

nature of the distributions. We resorted instead to a Monte Carlo approach in which like-

lihoods are simulated. Likelihoods for the full joint distribution of the data D can be very

time consuming to approximate in this way, particularly when the substitution mechanism

is complicated.

In this paper we assess the e�ects of using simpler summary statistics about the data,

in particular the number of alleles and segregating sites in the sample, for inferences about

the mutation rate in the in�nitely-many-sites model. This allows us to assess the trade-o�

between statistically more precise estimates based on the full data D, and the time required

to generate the estimates. We also assess the e�ects that the use of summary statistics have

on ancestral inference. Speci�cally, we approximate the conditional distribution of the time

TMRCA to the MRCA of the sample, given the number of segregating sites and alleles, and

we compare this to the conditional distribution based on the full data D.

This paper is organized as follows. The ancestry of the individuals in the sample is

not known in any detail, and therefore has to be modeled. In Section 2, we describe the

coalescent (Kingman [9], Hudson [10]), a stochastic process used by population geneticists

to describe the random ancestry of such a sample. We allow for deterministic variation in

population size (Kingman [11], Slatkin and Hudson [12], Gri�ths and Tavar�e [5]). The e�ects

of mutation are superimposed on this ancestral tree. In Section 3 we show how this approach

can be used to derive (recursions satis�ed by) the distribution of the number of alleles and

the number of segregating sites, their joint distribution, and the joint distribution of these

quantities and TMRCA. In Section 4 we describe a computer-intensive approach in which
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the recurrence equation is used to construct a time-inhomogeneous Markov chain in such a

way that the required sampling probability is the mean of a functional of the chain up to a

hitting time. This provides a conceptually simple Monte Carlo technique for approximating

complex sampling probabilities. The methods are illustrated using a sample of mitochondrial

D-loop sequences in Section 5.

2 The coalescent

2.1 Ancestral trees

In the population genetics literature the ancestry of the (female) individuals in a random

sample from a population is often modeled by a continuous-time stochastic process known as

the coalescent. This process was introduced by Kingman [9, 11] as an approximation, valid in

the limit of large population size, to the ancestral structure of a wide variety of reproduction

models. Assume that a random sample of n individuals is taken from a large population with

non-overlapping generations that have been of constant sizeN . The reproduction mechanism

can be described as follows: Suppose that in a particular generation the individuals are

labeled 1,2, . . . , N , and let �1; �2; : : : ; �N be the number of o�spring they have. We assume

the �i are exchangeable random variables with sum N , and that their joint distribution is

constant over time. Label the sampling generation as 0, and let AN
n (r) be the number of

distinct ancestors the sample has r generations into the past. To avoid degenerate limiting

behavior, we assume that

�
2
� lim

N!1
Var(�1) 2 (0;1): (1)

To de�ne the limiting process, begin with a continuous-time pure death process fAn(t); t �

0g on the integers n; n � 1; : : : ; 1: An(�) starts from n, moves from state k to k � 1 at

rate k(k � 1)=2, and is eventually absorbed in the state 1. Under assumption (1) and an

additional mild regularity condition, Kingman [11] showed that as N ! 1 the process
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fAN
n (bNtc); t � 0g converges in distribution to fAn(�

2
t); t � 0g. The parameter �2 has the

e�ect of calibrating the time scale of the ancestral process. For the Wright-Fisher model

often considered in the population genetics literature the �i have a symmetric multinomial

distribution, and hence �2 = 1. Without loss of generality we assume this scaling in what

follows.

Let Tj be the amount of time the sample has j distinct ancestors, for j = n; n� 1; : : : ; 2.

When �
2 = 1, the Tj are independent exponential random variables, with means E(Tj ) =

2=(j(j � 1)), from which it follows that the time TMRCA = Tn+ � � �+ T2 back to the MRCA

has mean

E(TMRCA) = 2

�
1�

1

n

�
: (2)

The coalescent itself may be thought of as a random rooted tree, with leaves representing

the n sample individuals, and vertices where ancestral lines join. In our continuous-time

approximation the tree is binary, and the topology of the tree is obtained by randomly

merging pairs of individuals. The individual at the root of the tree is the most recent

common ancestor of the sample. The tree has j branches of length Tj, for j = n; n�1; : : : ; 2:

Kingman's original formulation [9] of the coalescent applied to populations of constant

size. The case of deterministically varying population size in which all the generations are

large can be accomodated as follows. Suppose the generation at the time of sampling had size

M(0) = N , and that the size of the population r generations earlier was M(r). Assume once

more that in generation r the number of o�spring �
(r)
i born to individual i; i = 1; 2; : : : ;M(r);

are exchangeable random variables, and that Var(�
(r)
1 ) = �

2(r). We measure time in units

of N generations, and assume there is a strictly positive function v(�) such that

lim
N!1

bNtcX
j=1

�
2(r)

M(r � 1)
= �(t) �

Z t

0

1

v(s)
ds; (3)

satisfying 0 < �(t) < 1 for t > 0. Informally, when �
2(r) � 1, the function v(t) may be

thought of as the relative size of the population Nt generations ago. It will be convenient in
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what follows to denote the density of � by �:

�(t) = 1=v(t); t > 0:

Let A
v
n(t) be the number of distinct ancestors time t ago in this (limiting) variable

population size model. Gri�ths and Tavar�e [5, 7] show that the distribution of the process

fAv
n(t); t � 0g can be de�ned by the coupling

A
v
n(t) = An(�(t)); t � 0: (4)

See also Kingman [11]. We assume that �(1) =1, so that the sample may be traced back

to a common ancestor with probability one. Most interesting properties of the variable-size

process can be calculated using the representation in (4). For example, it de�nes the joint

distribution of the times Tj; j = n; n � 1; : : : ; 2, and so allows us to study properties of

TMRCA. The topology of the coalescent tree in the variable size case is just as before; just

the distributions of the lengths of the branches change.

2.2 Mutations in the coalescent

We assume that mutations occur independently among all o�spring, the probability that a

mutation occurs in a given o�spring in a given generation being u. It is conventional to

suppose that mutation rates are of the order of 1=N , in that

lim
N!1

2Nu = � 2 (0;1):

Mutations (in our case base substitutions) are then superimposed on the coalescent tree of

the sample as follows: Conditional on the tree, place mutations according to independent

Poisson processes of rate �=2 in each branch.
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3 Sampling equations

3.1 Estimating �

We begin by studying the distributions of the number of alleles Kn and the number of

segregating sites Sn in a sample of n genes from the in�nitely-many-sites model. Our method

is to derive a recurrence equation satis�ed by the distribution of interest. To illustrate how

such equations arise we give three examples, the �rst being the marginal distribution of Kn.

A similar approach may be used to derive sampling equations for many other distributions

of interest; see [5] for example.

Let q(t; (n; k)) be the probability that a sample of n genes taken at time t in the past has

k distinct alleles. As we look back into the past at the history of the genes in the sample,

we will eventually see either a coalescence event or a mutation event. The time Wt of this

�rst event has distribution

P(Wt > s) = exp

�
�

Z s

t
(u; n)du

�
; (5)

where

(u; n) =

 
n

2

!
�(u) +

n�

2
;

(5) being the probability that no coalescence events or mutations occur in the interval (t; s).

We denote the probability density function of Wt by

g(t; n; s) = (s; n) exp

�
�

Z s

t
(u; n)du

�
; s � t: (6)

If the event occurs at time s, it is a mutation with probability

n�

2(s; n)
=

�

� + (n � 1)�(s)
;

and a coalescence with probability

(n � 1)�(s)

� + (n � 1)�(s)
:

8



If the mutation occurs, the n � 1 other genes at time s must have comprised k � 1 alleles,

whereas if the coalescence occurs, the n�1 ancestors at time s must have comprised k alleles.

Combining these possibilities, we see that for n � 2; 1 � k � n

q(t; (n; k)) =

Z
1

t

(
�

� + (n� 1)�(s)
q(s; (n� 1; k � 1))

+
(n� 1)�(s)

� + (n� 1)�(s)
q(s; (n� 1; k))

)
g(t; n; s)ds; (7)

with the convention that q(s; (n; k)) = 0 if k > n or k < 1. The initial condition is

q(s; (1; 1)) = 1, and the sampling distribution of interest is given by q((n; k)) � q(0; (n; k)).

We may derive an analogous equation for the distribution of Sn. Let ~q(t; (n;m)) be the

probability that the sample of size n taken at time t in the past has m segregating sites.

Similar reasoning shows that for n � 2; 0 � m � n

~q(t; (n;m)) =
Z
1

t

(
�

� + (n� 1)�(s)
~q(s; (n;m� 1))

+
(n� 1)�(s)

� + (n� 1)�(s)
~q(s; (n� 1;m))

)
g(t; n; s)ds; (8)

with the proviso that ~q(t; (n;m)) = 0 if m < 0, and initial condition ~q(t; (1; 0)) = 1: It is the

quantity ~q((n;m)) � ~q(0; (n;m)) that provides the sampling distribution of the number of

segregating sites in our sample.

The third example provides the joint distribution of Kn and Sn. At time t, choose a

random sample of size n and a random subsample of size r from those n. Introducing the

subsample is a device to produce a recursive system of equations. Let q�(t; (n;m; r; k)) be the

probability that the sample has m segregating sites and the subsample has k alleles. We want

to �nd the sampling distribution q�((n;m;n; k)) � q
�(0; (n;m;n; k)). Once more we consider

what happens at the �rst event in the history of the sample. If it was a mutation, then with

probability r=n the mutation occurred in the subsample, in which case the remaining r � 1

genes in the subsample must have formed k � 1 alleles, and the n genes at time s must
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have contained m � 1 segregating sites. If the mutation occurred outside the subsample

(probability 1 � r=n), then the n genes at time s must have had m � 1 segregating sites,

and the r ancestors of the subsample must have had k alleles. The other possibility is that

the coalescence occurred �rst. If it involved ancestors of two genes in the subsample, then

the subsample of r� 1 ancestors at time s must have contained k alleles, and the sample of

n�1 genes at time s must have had m segregating sites. In the event that the coalescence at

time s involved less than 2 of the ancestors of individuals in the subsample, the subsample

comprising the r distinct ancestors of the subsample must have had k alleles, and the sample

of n � 1 ancestors at s must have had m segregating sites. Combining these possibilities

produces

q
�(t; (n;m; r; k)) =Z 1

t

"
�

� + (n� 1)�(s)

�
r

n
q
�(s; (n;m� 1; r � 1; k � 1)) +

�
1 �

r

n

�
q
�(s; (n;m� 1; r; k))

�

+
(n� 1)�(s)

� + (n � 1)�(s)

(
r(r � 1)

n(n� 1)
q
�(s; (n� 1;m; r � 1; k))

+

 
1 �

r(r � 1)

n(n� 1)

!
q
�(s; (n� 1;m; r; k))

)#
g(t; n; s)ds (9)

for k = 1; 2; : : : ; r; m � k � 1.

3.2 The time to MRCA

The second part of our study focusses on the information available in summary statistics

of the data D when they are used for ancestral inference. A problem of some current

interest in anthropology concerns the estimation of the age and geographical location of

the mitochondrial MRCA of humans; Cann et al. [1], Stoneking [2]. In our setting, this

issue involves inferences about the conditional distribution of TMRCA for a sample, given the

summary statistics, and a comparison of it with the corresponding conditional distribution

given the full data set D.
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The approach to �nding sampling distributions used above can be modi�ed to �nd the

joint distribution of the summary statistic and TMRCA. We illustrate the approach by �nding

the joint distribution of the number of segregating sites in a sample of n genes taken at time

t in the past, and the time from t until the most recent common ancestor of the sample is

reached. Let ~q(t; (n;m); w) be the probability of m segregating sites and a waiting time to

the MRCA of at most w. The argument that leads to (8) readily produces the recursion

~q(t; (n;m); w) =
Z 1

t

(
�

� + (n � 1)�(s)
~q(s; (n;m� 1); t+ w � s)

+
(n� 1)�(s)

� + (n� 1)�(s)
~q(s; (n� 1;m); t+ w � s)

)
g(t; n; s)ds; (10)

where ~q(t; (n;m); s) = 0 if m < 0 or s < 0. The distribution of interest is then

P(TMRCA � wjSn = m) =
~q(0; (n;m); w)

~q((n;m))
; w � 0: (11)

For the joint distribution of Sn;Kn and TMRCA, let q
�(t; (n;m; r; k); w) be the probability

that a sample of n genes taken at time t in the past has m segregating sites, the subsample

of r genes has k distinct alleles, and the time to the MRCA is at most w time units further

into the past. Then q
� satis�es an equation of the form (9), with terms on the right side of

(9) of the form q
�(s; (n;m; r; k)) replaced by q�(t; (n;m; r; k); t+w� s). The distribution we

are interested in is

P(TMRCA � wjSn = m;Kn = k) =
q
�(0; (n;m;n; k); w)

q�((n;m;n; k))
; w � 0: (12)

4 Monte Carlo methods

In the case of constant population size, when �(s) � 1, the recurrence equations in the

previous section simplify considerably because the sampling time t plays no role in the

equations. Writing P(Kn = k) = q((n; k)) � q(t; (n; k)), we see from (7) that

(� + n � 1)P(Kn = k) = (n� 1)P(Kn�1 = k) + �P(Kn�1 = k � 1);
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with initial condition P(K1 = 1) = 1. The solution of this recurrence is well known to be

P(Kn = k) =
�
kjSk

nj

�(n)

; k = 1; 2; : : : ; n;

where Sk
n is a Stirling number of the �rst kind, and x(n) = x(x+1) � � � (x+n� 1); see Ewens

[13]. The recursion for P(Sn = m) = ~q((n;m)) � ~q(t; (n;m)) reduces to

(� + n� 1)P(Sn = m) = (n� 1)P(Sn�1 = m) + �P(Sn = m� 1):

This distribution has been studied by Watterson [14], and an explicit formula is known for

it; cf. [15]. Gri�ths [16] has studied the joint law of Kn and Sn, deriving in particular the

constant population size analog of the recurrence in (9), but few explicit results are available.

Although these distributions can be found explicitly (or at least computed simply) in the

constant population size case, this seems far from the case for the variable population size

case, especially if the sample size n is at all large. With this di�culty in mind, we describe

a Markov chain Monte Carlo method that proves useful in approximating the solutions we

require.

4.1 The basic method

The recursions in (7) { (9) have a common structure that may be written in the form

q(t; x) =

Z
1

t

X
y2A

r(s;x; y)q(s; y)g(t; x; s)ds

+
Z 1

t

X
y2B

r(s;x; y)q(s; y)g(t; x; s)ds; x 2 B; (13)

where q(t; x) is known explicitly (or is easy to compute, perhaps numerically) for x 2 A,

r(s;x; y) � 0 and g(t; x; s) is a probability density satisfying
R1
0 g(t; x; s)ds = 1: For example,

in equation (7) the states x are of the form x = (n; k), we can take A = f(1; 1)g, and for

1 � k � n; n � 2 we have

r(s; x; y) =
�

� + (n� 1)�(s)
; y = (n� 1; k � 1)
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=
(n� 1)�(s)

� + (n� 1)�(s)
; y = (n� 1; k);

and g(t; x; s) is given by (6). For states of the form x = (n; 1) only the second term applies,

since q(t; (n; 0)) = 0.

Let P (s;x; y) be a transition probability kernel on the discrete state space X = A[ B

satisfying
P

y2X P (s;x; y) = 1 for all s � 0; x 2 X and

P (s;x; y) > 0 if r(s;x; y) > 0:

P and g determine a non-homogeneous Markov chain X(�) on X as follows: Given that

X(t) = x 2 B, the time of the next change of state has density g(t; x; s), and given that

this change occurs at time s, the probability that the next state is y is P (s;x; y). We are

interested in the process up to the time � that it reaches the set A. We assume that P has

been constructed so that Px(� <1) = 1 for all x 2 B.

We can rewrite (13) as

q(t; x) =

Z 1

t

X
y2A

f(t; x; s; y)q(s; y)P (s;x; y)g(t; x; s)ds

+

Z 1

t

X
y2B

f(t; x; s; y)q(s; y)P (s;x; y)g(t; x; s)ds; x 2 B; (14)

where

f(t; x; s; y) =
r(s;x; y)

P (s;x; y)
: (15)

It is convenient in what follows to include the variable t in the de�nition of f given above.

The term q(s; y) in (14) for y 2 B can be evaluated iteratively, to provide for x 2 B

q(t; x) =Z 1

t

X
y12A

f(t; x; s1; y1)q(s1; y1)P (s1;x; y1)g(t; x; s1)ds1

+
Z 1

t

X
y12B

f(t; x; s1; y1)P (s1;x; y1)g(t; x; s1)

2
4Z 1

s1

X
y22A

f(s1; y1; s2; y2)

q(s2; y2)P (s2; y1; y2)g(s1; y1; s2)ds2

�
ds1 + � � � : (16)
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This provides a probabilistic representation of q(t; x). Let �1 < �2 � � � < �K = � be the

(random number of) jump times of X(�) until entering A, and de�ne �0 = t. Then

q(t; x) = E(t;x)

0
@q(�;X(� ))

KY
j=1

f(�j�1;X(�j�1); �j;X(�j))

1
A ; (17)

where E(t;x) denotes expectation with respect to X(t) = x.

The representation in (17) provides a Markov chain Monte Carlo approximant to q(t; x):

Simulate many independent copies of the process X(�) starting from X(t) = x, and compute

the observed value of the functional under the expectation sign in (17) for each of them.

The average of these values is an unbiased estimate of q(t; x), and we may then use standard

theory to see how accurately q(t; x) has been estimated. To be useful in practice we must

check in each case that the variance of the estimator is �nite.

There is a natural candidate for P , obtained by de�ning

f(x; s) =
X
y

r(s;x; y)

P (s;x; y) =
r(s;x; y)

f(x; s)
; (18)

and then (15) shows that f(t; x; s; y) reduces to

f(t; x; s; y) = f(x; s):

It is also important in practice, particularly in the context of variance reduction, to have some

exibility in choosing the stopping time � , or, equivalently, the set A. In the present context

it is often possible to calculate probabilities once there are two or three distinct ancestors,

rather than tracing the genealogy back to just a single individual. Several examples are

given in [6, 8].

It is also clear that this method can be adapted to deal with more complicated problems

in which the X(�) process might be semi-Markov. In principle, Markov chain Monte Carlo

methods like this date back at least to the late 1940s, where they were used to solve matrix
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equations of the form Ax = b; Forsythe and Leibler [17]. Halton [18] discusses several

variants on this theme. These methods are similar in spirit to the Metropolis algorithm

(Metropolis et al. [19]), further developed by Hastings [20]. In that method, the quantity

of interest is represented as the mean (under the stationary distribution) of a function of an

ergodic Markov chain, and this mean is estimated by computing an ergodic average. This

uses a single run of the chain to produce estimates, the observations within the run being

correlated. In the present approach we use independent runs of random lengths, which in

principle makes the subsequent analysis of the output somewhat simpler.

4.2 Monte Carlo likelihoods

In the general setting, the probability q(t; x) is usually a function of some unknown parame-

ters, which we denote here by �; we write q�(t; x) to emphasize the dependence on �. Often

we are interested in �nding the solution q� for a variety of values of �, for example when

using q as a likelihood function. One way to do this is to perform several independent simu-

lations of the process controlled by each of the values of �. In practice this usually proves to

be too time consuming, and we use the following approach based on importance sampling.

We construct a single process X(�) with parameters �0, from which estimates of q�(t; x) may

be found for other values of �. Write (12) in the form

q�(t; x) =

Z 1

t

X
y2X

h�;�0(t; x; s; y)P�0(s;x; y)q�(s; y) g�0(t; x; s)ds (19)

where

h�;�0(t; x; s; y) =
f�(t; x; s; y)g�(t; x; s)P�(s;x; y)

g�0(t; x; s)P�0(s;x; y)

The representation of q�(t; x) is, from (17),

q�(t; x) = E(t;x)

0
@q�(�;X(� ))

kY
j=1

h�;�0(�j�1;X(�j�1); �j ;X(�j))

1
A : (20)

Estimates of q�(t; x) may be now obtained as described above. This method proves to

be faster when the cost of producing observations on the process X(�) outweighs the cost

15



of calculating the functionals in (20). In exchange for this time saving, the estimates for

di�erent � are no longer independent, but rather they are correlated because of the common

generating process. This makes the analysis of the output somewhat more complicated than

in the independent replicates case. In practice, several di�erent values of the generating

parameters �0 are used, and the results combined to form a single estimate of q�(t; x) for

several di�erent values of �.

Monte Carlo likelihood and Bayesian methods using the Hastings-Metropolis approach

are also popular; see Geyer and Thompson [21], Besag and Green [22], Smith and Roberts

[23], and Thompson [24] for some examples.

4.3 The distribution of time to MRCA

The quantities required to �nd the conditional distributions in Section 3.2 satisfy recursions

like (10), and these have the common form

q(t; x; w) =
Z
1

t

X
y2X

r(s;x; y)q(s; y; t+ w � s)g(t; x; s)ds: (21)

Iterating as in Section 4.1 produces the representation

q(t; x; w) = E(t;x)

0
@q(�;X(� ); t+ w � � )

kY
j=1

f(�j�1;X(�j�1); �j;X(�j))

1
A ; w � 0; (22)

where f is de�ned in (15). The natural initial condition in these recursions takes the form

q(t; x; w) = Ifw � 0g; x 2 A;

where IfAg denotes the indicator of the event A. Thus the term q(�;X(� ); t+w�� ) in (22)

reduces to If� � t+wg. It follows that if we simulate the process X(�) R times, and de�ne

Fl =
klY
j=1

f(�j�1;X(�j�1); �j;X(�j)); (23)

the value of the functional under the expectation sign in (17) for the lth simulation, l =

1; 2; : : : ; R, then a conditional probability of the form q(t; x; w)=q(t; x) can be approximated
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by the ratio PR
l=1 FlIf�l � t+ wgPR

l=1 Fl

;

where �l is the time the lth simulation hits A. In particular, the conditional distribution

function q(t; x; w)=q(t; x); w � 0 can be approximated by the empirical distribution which

jumps a height F(l)=
P
Fj at the point �(l), the lth smallest of the simulated values �1; : : : ; �R.

Conditional moments can be computed in a similar way.

5 Applications

In this section we use the Monte Carlo Markov chain method described in Section 4 to study

a particular mitochondrial data set. Our aim is to explore the extent to which using just

part of the data set for estimation and inference changes our conclusions. One reason this

is important is that it allows us to assess the trade-o� between computational complexity

(using the Markov chain method on complicated state spaces X ) and statistical accuracy

(presumed to come from use of the full data set).

5.1 A mitochondrial data set

We begin with a brief description of the data that motivated much of our work. A muchmore

comprehensive description appears in [7], but the present outline should su�ce to set the

scene. We focus on mitochondrial data sampled from a single North American Indian tribe,

the Nuu-Chah-Nulth from Vancouver Island. The original data appeared in Ward et al. [3].

They comprise a random sample of mitochondrial DNA sequences from 63 individuals. Each

sequence is the �rst 360 base pair segment of the control region, comprising 201 pyrimidine

sites (bases A or G) and 159 purine sites (bases C or T). 21 of the pyrimidine sites are

segregating, i.e. not identical in all 63 sequences in the sample. In contrast, only 5 of the

purine sites are segregating. There are 28 distinct DNA sequences in the data. Each site in

the data is binary, being either a purine site or a pyrimidine site. Furthermore, because there
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Table 1: Mitochondrial DNA sequence data

1 1 2 2 3 1 1 1 1 1 2 2 2 2 3 3

Position 0 9 5 9 4 8 9 2 4 6 6 9 3 6 7 7 1 3 allele

6 0 1 6 4 8 1 4 9 2 6 4 3 7 1 5 9 9 freqs.

Site 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

allele

a A G G A A T C C T C T T C T C T T C 2

b A G G A A T C C T T T T C T C T T C 2

c G A G G A C C C T C T T C C C T T T 1

d G G A G A C C C C C T T C C C T T C 3

e G G G A A T C C T C T T C T C T T C 19

f G G G A G T C C T C T T C T C T T C 1

g G G G G A C C C T C C C C C C T T T 1

h G G G G A C C C T C C C T C C T T T 1

i G G G G A C C C T C T T C C C C C T 4

j G G G G A C C C T C T T C C C C T T 8

k G G G G A C C C T C T T C C C T T C 5

l G G G G A C C C T C T T C C C T T T 4

m G G G G A C C T T C T T C C C T T C 3

n G G G G A C T C T C T T C C T T T C 1

Data from Ward et al. ([3], Figure 1). Variable purine and pyrimidine positions in the control region.

is no recombination in mitochondrial DNA, each site in the sample has the same ancestral

history.

In [7] we studied one part of the original data that seems to have a relatively simple

mutation structure. The subsample we used comprised 55 of the original 63 sequences, and

352 of the original 360 DNA sites. Eight of the pyrimidine segregating sites were removed,

resulting in a set of 18 segregating sites in all; 13 of these sites are pyrimidines, and 5 are

purines. These data are given in Table 1, reproduced in modi�ed form from [7]. Only the

segregating sites are shown, subdivided into sites containing purines and pyrimidines. Each

row of the table represents a distinct DNA sequence, and the frequencies of these alleles are

given in the right hand column of the table.

In [7] we used the data described in Table 1 to estimate the substitution rate � in the

control region, using purine and pyrimidine sites both separately and combined. We modeled

the evolution of the sequences using the in�nitely-many-sites model described in Section 2,

and based our estimation on the complete tree structure of the data. We also studied the

conditional distribution of the time to the MRCA given the full tree structure. In the next
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section, we study the analogous problems using just the summary statistics based on the

number of alleles and segregating sites seen in the data.

5.2 Constant population size

We argued in [7] that to a �rst approximation, the population size of the Nuu-Chah-Nulth

has been constant for roughly the last 6,000 years. We make the same assumption here, and

so take v(x) = 1 for all x.

5.2.1 Estimating the substitution rate

We begin by estimating the substitution rate � using the Monte Carlo likelihood method

described in Section 4.2, with the canonical choice of X(�) determined by (18). 50,000

replicates of the X(�) process were made. The results are summarized in Table 2. The

table compares estimates based on Watterson's moment method [14] that uses the number

of segregating sites, the estimates based on the distribution of the number of segregating

sites (determined by (8)), the joint distribution of the number of alleles and segregating

sites (determined by (9)), and the maximum likelihood estimate obtained in [7] using the

full sequence data. The standard deviations (sd) for the last three rows of the table were

found from (estimates of) the observed Fisher information. The rows of the table present

estimates in order of what is, intuitively, increasing information. The estimates increase with

increasing information content, but have essentially constant standard deviations. This is

consistent with recent results of Fu and Li [25], who showed that Watterson's estimator has

good variance properties when � is small. From a practical point of view, it is interesting to

note that essentially the same results are obtained by any of the methods when � is small

(as in the purine data), whereas there are more substantial di�erences when � is large (as

for the combined data set).
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Table 2: Estimates of �

Region pur pyr all

Estimator � sd �/sd � sd �/sd � sd �/sd

W1 1.09 0.58 1.89 2.84 1.12 2.54 3.93 1.44 2.73

S2 1.11 0.58 1.93 2.94 1.13 2.61 4.10 1.45 2.83

AS3 1.21 0.61 1.98 3.25 1.14 2.85 4.69 1.43 3.28

MLE4 1.22 0.61 2.00 3.31 1.14 2.90 4.76 1.48 3.21

1 Watterson moment estimator using number of segregating sites
2 Likelihood using number of segregating sites
3 Likelihood using number of segregating sites and alleles
4 Likelihood using full data from [7]

5.2.2 Ancestral inference

We shall compare estimates of the distribution of TMRCA conditional on (a) the number

of segregating sites; (b) the number of segregating sites and alleles; and (c) the full data.

In Table 3 we give the mean and standard deviation of these conditional distributions for

the purine and pyrimidine sites combined. These are found by using the approach outlined

in Section 4.3. The distribution function was estimated by binning the observations in

expression (23), from which the mean and standard deviation were then computed. The

values of � used in the table correspond to the maximum likelihood estimates (plus and

minus one standard deviation) presented in Table 2 based on the full data.

It can be seen from Table 3 that for these data both the mean and standard deviation of

the conditional distribution decrease with increasing information. Notice in particular that

for � = 3:3, the mean conditional time to the MRCA using just the number of segregating

sites is some 60% larger than the corresponding quantity using the full data. Notice also
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Table 3: Conditional mean (standard deviations) of TMRCA

Data

� none1 sites2 sites, alleles3 all4

3.3 1.96 (1.08) 2.22 (0.84) 1.68 (0.57) 1.40 (0.55)

4.8 1.52 (0.56) 1.28 (0.41) 1.20 (0.39)

6.3 1.16 (0.40) 1.04 (0.32) 0.96 (0.12)

1 Unconditional moments from discussion at (2), n = 55.
2 Uses method in (23) and recursion of form (8)
3 Uses method in (23) and recursion of form (9)
4 Results from [7], Table 3.

that when the substitution rate is large, the means tend to be very similar, although the

precision decreases dramatically with increasing information.

In Table 4, we give the results of a similar analysis for the purine and pyrimidine data

separately. The values of � used in the table correspond once more to the maximumlikelihood

estimators given in Table 2. Much the same qualitative conclusions apply as in Table 3.

Finally, we compare the estimates of the conditional distributions themselves, using the

purine and pyrimidine sites combined. We estimate these distributions for three values of

the substitution rate �, namely 3.3, 4.8 and 6.3. The unconditional distribution is that of

TMRCA = Tn + � � �+ T2 from Section 2.1. The conditional distributions were found by using

the method in Section 4.3, and the results are plotted in Figures 1 - 3. The plots con�rm the

observation that the larger the value of �, the closer the conditional distributions based on

the number of segregating sites and on the number of alleles and segregating sites are to each

other, and the smaller the variability in the distributions. Note also that the unconditional

distribution has a markedly di�erent shape.
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Figure 1: Distribution functions of TMRCA, � = 3:3

x-axis is time

solid curve: distribution conditional on segregating sites and alleles

dashed curve: distribution conditional on segregating sites

dotted curve: unconditional distribution
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Figure 2: Distribution functions of TMRCA, � = 4:8

x-axis is time

solid curve: distribution conditional on segregating sites and alleles

dashed curve: distribution conditional on segregating sites

dotted curve: unconditional distribution
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Figure 3: Distribution functions of TMRCA, � = 6:3

x-axis is time

solid curve: distribution conditional on segregating sites and alleles

dashed curve: distribution conditional on segregating sites

dotted curve: unconditional distribution
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Table 4: Conditional mean (standard deviation) of TMRCA

Data

� none sites sites, alleles all1

1.22 1.96 (1.08) 1.79 (0.83) 1.62 (0.71) 1.54 (0.65)

3.33 1.63 (0.64) 1.42 (0.50) 1.26 (0.41)

1 results from [7]
2

� = 1:2 corresponds to purine sites
3

� = 3:3 corresponds to pyrimidine sites

5.3 Variable population size

One of the advantages of the Markov chain Monte Carlo approach advocated here is that it

is relatively straightforward to adapt it to study models with variable population size. In

Sections 3 and 4 we showed how this could be done for fairly simple summary statistics of the

data. In [5] we developed the analogous theory for the full sampling distribution of the data,

assuming in�nitely-many-alleles, in�nitely-many-sites, or �nitely-many-sites models for the

sequences. We used these results to estimate � for a given population size function v, and

to estimate parameters of v for given substitution rate �. Rather than focus further on the

issue of rate estimation, we turn instead to ancestral inference once more.

5.3.1 Ancestral inference

We do not have a very accurate picture of the contractions and expansions of the population

size that the Nuu-Chah-Nulth population had prior to about 6,000 years ago. Rather than

make further assumptions in this direction, we shall use simulated data to address the issue

of what is learned about the time to the MRCA using the assumption of constant population

size, when in fact the population has undergone exponential decrease (looking back into the
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Table 5: Simulated sequence data

Site 1 2 3 4 5 6 7 8 9 Allele

freqs.

allele

a 1 1 0 0 0 0 0 0 0 5

b 0 0 0 0 0 0 0 0 0 25

c 1 0 0 0 0 0 0 0 0 12

d 0 0 1 0 0 0 0 0 0 7

e 0 0 0 1 0 0 0 0 0 1

f 1 1 0 0 1 0 0 0 0 1

g 1 0 0 0 0 1 0 0 0 1

h 1 1 0 0 0 0 1 0 0 1

i 1 0 0 0 0 0 0 1 0 1

j 0 0 0 0 0 0 0 0 1 1

Simulated data from in�nitely-many-sites model

Substitution rate � = 4:5, expansion rate 5:0

1 denotes mutant base, 0 denotes ancestral base

past). To do this, we simulated a data set of n = 55 genes from the in�nitely-many-sites

model with exponential growth function given by

v(x) = e
��x

; x � 0

with � = 5:0 and � = 4:5, the value of � being chosen to reect the size observed in the

mitochondrial data. The data are shown in Figure 5 in a form consistent with that in Table

1.

We compared the estimates of the conditional distribution of TMRCA given the number

of segregating sites, the number of segregating sites and alleles, and the full data under two

assumptions: (a) no population expansion, and � = 4:5; and (b) exponential population

expansion with � = 5:0 and � = 4:5. This should provide a rough assessment of how

26



ancestral inference based on models that ignore population expansion compare to analyses

that include the possibility of expansion.

In Table 6 we give the summary statistics of the analyses. The row for � = 0:0 gives

the results for the analysis based on the assumption of no population expansion. The same

qualitative behavior as in Table 3 is observed, the mean and standard deviation decreasing

with increasing information. The conditional mean time is much larger than in the case

that assumes exponential population expansion. There is a heuristic explanation of why

this behavior might be anticipated: The e�ect of the expansion is to drastically decrease

the unconditional time to the MRCA. Assuming a constant population size has the e�ect of

reducing the substitution rate. Hence in assuming that � = 4:5, the �xed population size

analysis is taking the substitution rate too small, and hence the conditional mean will tend

to be too big.

The row for � = 5:0 gives the corresponding result for the analysis assuming exponential

population expansion (the same as used to generate the synthetic data). In this case the

means and standard deviation are essentially identical in all cases, presumably because the

data are `typical' of the model being used.

In Figures 4 { 6, we present some more detailed information about the conditional distri-

butions. Figure 5 shows that the conditional distributions and the unconditional distribution

are essentially identical. In this case, inference based on the distribution of the number of

segregating sites does as well as the distribution based on the full distribution.

In practice, of course, we do not know the values of substitution rates and population

expansion parameters. Further simulation studies of the correspondence between condi-

tional distributions based on estimated parameters and the conditional distribution for the

parameters that simulated the data are underway.
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Figure 4: Distribution functions of TMRCA, � = 0:0

x-axis is time

dotted curve: distribution conditional on full data

dashed curve: distribution conditional on segregating sites and alleles

dotdash curve: distribution conditional on segregating sites

solid curve: unconditional distribution
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Figure 5: Distribution functions of TMRCA, � = 5:0

x-axis is time

dotted curve: distribution conditional on full data

dashed curve: distribution conditional on segregating sites and alleles

dotdash curve: distribution conditional on segregating sites

solid curve: unconditional distribution
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Figure 6: Distribution functions of TMRCA, combined

x-axis is time

solid curves: unconditional distribution, from Figure 4 (right-hand curve),

from Figure 5 for left-hand curve.

dotted curve: distribution conditional on full data (� = 5:0)

dotdash curve: distribution conditional on full data (� = 0:0)
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Table 6: Conditional mean (standard deviation) of TMRCA

Data

� none sites sites, alleles all1

0:02 1.96 (1.08) 1.02 (0.38) 0.90 (0.31) 0.81 (0.27)

5.03 0.46 (0.09) 0.45 (0.09) 0.45 (0.09) 0.45 (0.08)

1 Uses theory from [5, 7].
2 Analysis based on assumption that there was no population expansion.
3 Analysis based on assumption that there was population expansion.

6 Discussion

The computational method for solving recursive systems described in this paper has proved

extremely useful for addressing issues that have previously proved intractable by explicit

methods. Perhaps its most compelling feature is that it is entirely generic; it is simple to

adapt to many di�erent problems. The advantage of this approach over more conventional

numerical methods becomes more pronounced as the complexity of the recursion increases.

Several examples arising in population genetics are cited in the paper.

These schemes di�er from the `usual' Markov chain Monte Carlo (MCMC) methods

like Hastings-Metropolis in that the process being simulated is not ergodic, and there are

no `start-up' problems in ascertaining when stationarity is deemed to hold. However, the

technique shares several common features with other MCMC methods: variants on the theme

are among the oldest of Monte Carlo methods, variance reduction and time reduction are

important practical issues, and the method may be extended to generate approximants to

complete likelihood surfaces from a single generating process.
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