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Abstract. This paper describes recent work on computationalmethods for the coa- 
lescent. We show how integro-recurrence relations for sampling distributions and related 
quantities may be solved by a simple Markov chain Monte Carlo method. We describe 
the method in the context of the coalescent process for a population that is evolving 
according to a deterministic population size function. The usual constant population 
size models appear as a special case of this approach. One of the appealing features 
of the approach is its generic nature: many appr-ently different problems may be at- 
tacked with this one approach. A wide variety of examples are discussed, among them 
maximum likelihood estimation of parameters. 

Key words. Coalescent process, Markov chain Monte Carlo, Population genetics, 
Sampling distributions, Variable population size. 

A M s (  MOS) subject classifications. 60035,92A05, 92A10. 

1. Introduction. Kingman’s introduction of the coalescent in 1982 
[15] [16] has had the effect of focusing attention on the role played by ge- 
nealogy in the evolution of populations. Coalescent arguments are now 
standard in the population genetics literature, and many novel applica- 
tions and extensions continue to be found. For recent reviews of a range of 
applications, see [13], [14] and [26] for example. One important feature of 
this genealogical approach is that it provides a simple way to simulate the 
behavior of samples taken from populations undergoing very complicated 
mutation mechanisms, usually without having to simulate the structure of 
the entire population. In general terms, the idea is to generate the geneal- 
ogy of the sample back to the common ancestor, and then simulate the 
effects of mutation down the ancestral tree from this most recent common 
ancestor to the individuals in the sample. This approach is very useful for 
studying the statistical behavior of allelic configurations in a sample. 

In contrast, we discuss methods that intrinsically use the mutation 
process in the other direction, from the individuals in the sample back to 
the common ancestor. This approach has proven useful for computing the 
probability that a sample of genes has a partzcular allelic configuration. 
Such sampling probabilities, epitomized by the Ewens Sampling Formula 
[4], play an important role in the statistical analysis of genomic variability, 
as they form the basis of a likelihood approach to inference in the coalescent. 

Our approach to sampling probabilities and related quantities is via the 
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derivation of certain integro-recurrence equations that they satisfy. These 
recursions are determined by what happens as we look back up the ancestral 
tree towards the root. Either we see a coalescence event or a mutation (or 
perhaps a recombination) event, and these different possibilities lead to a 
recursive formula for the sampling probability. These recursions are usually 
difficult to solve, either explicitly or by conventional numerical analysis 
techniques. We have developed a Markov chain Monte Carlo technique by 
which the solutions to such recursions can be approximated. The idea, 
typical of Monte Carlo methods, is to represent the quantity of interest 
as the mean of a functional of a non-homogeneous Markov chain, and to 
estimate this mean by repeated simulations of the chain. 

There are many variants on this theme, among them a surface sim- 
ulation technique that uses a single Markov chain to generate solutions 
of recurrences with different parameters (this being particularly useful to 
compute Monte Carlo approximants to likelihood surfaces), and a version 
that can be used to solve non-homogeneous recursions. We discuss these 
issues, and give a variety of examples, later in the paper. 

The setting for the subsequent development is the coalescent evolving 
with a deterministically varying population size [16] [25]. We present the 
structure of this process as a deterministic time change of the usual co- 
alescent, and use this representation to derive the appropriate sampling 
distributions. The results extend those in [SI. In particular, we show how 
the method can be used to study models for DNA sequence data in which 
the stationary distribution of a sequence is arbitrary, for example a high- 
order Markov measure. This extends earlier work in [SI. 

ROBERT C. GRIFFITHS AND SIMON TAVARk 
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2. The coalescent. The ancestry of the genes in a random sample 
from a population is often modeled by a continuous-time stochastic process 
known as the coalescent. This process was introduced by Kingman [15] [16] 
as an approximation, valid in the limit of large population size, to the 
ancestral structure of a wide variety of selectively neutral reproduction 
models, including the Wright-Fisher model. Specifically, assume that a 
random sample of n genes is taken from a large random mating population 
with non- overlapping generations that have been of constant size N genes 
for a long time. Label the sampling generation as generation 0, and let 
#(r) be the number of distinct ancestors the sample has r generations 
into the past. For the Wright-Fisher model, which can be thought of as 
the case where genes choose their parent genes uniformly and at  random, 
Kingman [15] showed that as N 4 00 the process { A : ( [ N t J ) , t  _> 0) 
converges in distribution to a Markov pure death process.{A,(t),t _> 0) 
on the integers n , n  - 1,. . . , 1. An(*) moves from state k to k - 1 at rate 

The same limiting process applies to many other neutral models of 
reproduction, as long as the genealogy does not collapse or expand too fast 
[15]. Let u2 being the (limiting) variance of the number of offspring of a 

k(k - 1)/2. 
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typical gene, and suppose 0 < u2 < 00. When time is scaled in units of 
u - ~ N  generations, then the process { A ~ ( [ c - ~ N ~ J ) , ~  2 0) converges in 
distribution to { A n ( t ) , t  2 0). 

The coalescent may be thought of as a random tree, with leaves r e p  
resenting the n sample genes, and vertices where ancestral lines join. In 
this continuous-time approximation the tree is binary, and the topology of 
the tree is obtained by randomly merging pairs of individuals. The root 
of the tree is the most recent common ancestor (MRCA) of the sample of 
genes. Let Ti be the amount of time the sample has j distinct ancestors, 
for j = n, n - 1 , .  . . ,2. The TJ  are independent exponential random vari- 
ables, with means !ET’ = 2/(j(j - l)), from which it follows that the time 
TMRCA = Tn + . * .  + T2 back to the MRCA has mean 

The coalescent may be modified to account for the effects of stochastic 
or deterministic variation in the population size [16]. In the determinsitic 
case, suppose that the population is of size M ( 0 )  G N genes at the time of 
sampling, and is of size M ( r )  in the rth generation before sampling. Let 
u2(r)  be the variance of the number of offspring born to an individual in 
generation r. We concentrate here on fluctuations in the population size 
that are of order N .  We assume that there is a relative size function v ,  and 
a variance function rz such that for all z 2 0 

and 

?(z) = lim uz( [NzJ). 
N-.= 

For the Wright-Fisher model, ?(z) E 1. Define the population size inten- 
sity function A and its density X by 

With time measured in units of N generations, we may once more ap- 
proximate the distribution of the ancestral process by a continuous time 
non-homogeneous death process {A:( t ) ,  t 2 0 } ,  whose structure is most 
simply defined as a deterministic time change of the process An(*): 

(2.3) AE(t) = An(A(t)), t 2 0. 

All of the properties of the variablesize process can be calculated using 
the representation in (2.3). For example, this shows immediately that if ~ 
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A(m) = 00 the sample may be traced back to a common ancestor with 
probability one. It also defines the joint distribution of the times T j , j  = 
n, n - 1 , .  . . , 2  (which are no longer independent), and so allows us to study 
properties of TMRCA. These distributions are somewhat unmanageable, 
but they are very simple to simulate. Let Sn < Sn-1 < < S2 be the 
times at which A i ( . )  moves to n - l , n  - 2 , .  . . , 1, and set S n + l  G 0. The 
sequence Sn , Sn-1,. . . , S2 is Markovian, and the coupling in (2.3) shows 
that 

d 
A(Sj ) - A(Sj+l) = Ej , j = n, - 1, . . . , 2  

where the Ej are independent exponential random variables with parameter 
j ( j  - 1)/2. To simulate the sequence of jump times, we need only 

(i) Set s = 0,j = n 
(ii) Generate Ej exponential j ( j  - 1)/2 

(iii) Solve for t the equation A($) - A(s) = E, 
(iv) Set Sj = t , s = t , j = j - I  
(v) If j is greater than 1, go to step (ii). 
The topology of the ancestral tree in the variable population size case 

is formed just as before: merge a random pair of individuals at each of the 
times Sn, . . . , S2. 

3. The effects of mutation. The effects of mutation are superim- 
posed on the ancestral tree of the sample. These mutations occur according 
to Poisson processes of rate 0/2 along each edge of the tree, the processes 
in different edges being conditionally independent given the length of the 
edges. As a limit from the Wright-Fisher model, if u is the probability of a 
mutation per gene per generation, then 0 = limnr,m 2Nu, where N is the 
size of the population of genes from which the sample was taken. 

The effects of each mutation may be modeled in many different ways. 
For example, to describe the evolution of a sample of DNA sequences in 
which the sites in the sequence are completely linked, it is convenient to 
consider a general mutation scheme in which there are d possible types of 
gene, labeled 1 , 2 , .  . . , d. When a mutation arises in a lineage, a transition 
is made from type i to j according to the entry pi, in a transition matrix 
P. It is convenient to allow entries on the diagonal of P to be non-zero, 
thereby providing for different overall mutation rates for the different types. 
The mutation rates in the model are uniquely determined by the generator 
matrix 

6 

The configuration of types in the sample is determined by the muta- 
tions in the tree from the root to the leaves. It is usually assumed that P is 
a regular matrix with a stationary distribution z. If the common ancestor 
is chosen from a stationary population, then her type has the distribution 

R = (rjj) E -(P - I ) .  
(3.1) 2 

3r. 
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3.1. Mutation models for DNA sequences. If the sequences are 
of length s, and the alphabet of bases at each site has a elements ( t y p  
ically a = 2 or 4), then d = a'. Types are denoted by sequences i = 
(il , . . . , is) with entries in [a] z { 1 , 2 , .  . . , a) .  We assume that there is no 
recombination between sites. 

The standard model assumes that mutations cause just a single base 
change, site 1 being chosen with probability hi > 0, 1 = 1,2 , .  . ., s. The 
lth site has transition matrix MI, with stationary distribution A'. The 
mutation matrix P is then given by 

(3.2) 

where @ denotes direct product, I is the identity matrix, and 

a 

P = C h l I @  I @ * - * @  MI @ * * e @  I , 
I=1 

A = A1 8.. .@A'.  

This model allows for variable rates at different sites (the overall rate at 
site 1 being 19h1/2), and for arbitrary substitution probabilities at each 
site. Nonetheless, the stationary distribution of this mutation mechanism 
corresponds to independent trials, so that a single gene sampled at random 
from a stationary population will appear to have independent sites. In its 
simplest form, the model takes hi z l/s and Mi 3 M, 50 that there are no 
mutational hotspots, and a gene sampled at  stationarity appears to have 
i.i.d. sites. 

For many gene regions, this independence of sites feature is clearly 
violated (cf. [l], [28]), and a more complex model of the substitution 
process is required to fit observed data. These authors note that many 
DNA sequences exhibit a Markovian structure. With this in mind, we 
describe a simple model, explored in more detail in Tavart5 [27], that may 
be arranged to have an arbitrary stationary measure. To illustrate, suppose 
that we require the stationary measure A to be a Markov measure, that is 
for each i = (il, . . . , i n )  

n 

(3.3) ~ ( i )  = ~ ( i l )  I'I t ( i j - 1 ,  i j )  
j =2 

where T = (t(1, m), 1 5 I ,  m 5 a) is a strictly positive stochastic matrix, 
and ( ~ ( l ) ,  1 5 15 a) is a probability distribution. 

Suppose that the sequence is currently of type i .  A potential mutation 
changes a sequence of type i to a sequence of type j with probability p( i ,  j) 
determined by (3.2). Thus the potential mutant sequence differs from its 
parent in at  most a single coordinate. . The net effect of this potential 
mutation depends, however, on the bases at neighboring sites. For two 
sequences i and j that differ at a single coordinate, define 
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The mutation mechanism then makes a mutant of type j with probability 
h( i ,  j ) ,  and otherwise makes a ‘mutant’ of type i ,  the original type. 

When the mutation matrices Ml are identical at each site with MI E 
M = ( r n ( i , j ) ) ,  the stationary distribution of this model is A determined 
by (3.3). To check this, we need only observe that this construction is a 
variant of Hasting’s algorithm [12], familiar to Markov chain Monte Carlo 
enthusiasts. The form of h ( i , j )  simplifies considerably for the present 
example. Simple algebra shows that when i and j differ in just the Ith 
coordinate 

Thus a mutation mechanism determined by the bases at sites adjacent 
to the target site can readily produce a Markov dependent stationary dis- 
tribution. Clearly, this scheme can be generalized in many ways to produce 
stationary measures of great complexity, for example those with high order 
Markov dependence, and those with non-homogeneous Markov structure. 

In the next section, we show how the distribution of the allelic config- 
uration of a sample of genes undergoing such a mutation mechanism in a 
population of deterministically varying size can be calculated. 

3.2. Sampling distributions. In this section, we return to our orig- 
inal labeling of types as 1,2, .  . . , d ,  with mutation matrix P = ( p i j ) .  Let 
q(t, n) be the probability that a sample of n genes taken at time t in the 
past has a type configuration of n = ( n l ,  . . . , nd) , where ni is the number 
of copies of type i in the sample. The fundamental integro-recurrence rela- 
tion for q(t,n) is derived by considering the configuration of genes at the 
time of the first event (either a coalescence or a mutation) in the ancestry of 
the sample prior to time t .  The time Wt of this first event has distribution 
determined by 

(3.4) 

where 

The integro-recurrence for the sampling formula takes the form 
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n6 n; . . 

where {ei}  are the d unit vectors, and - 

is the density of Wt. Boundary conditions are required to determine the 
solution to (3.5). These have the form 

(3.6) q ( t , e j )  =  if, i = 1 , .  . . , d ,  

where T: is the probability that the most recent common ancestor is of 
type i. It is often assumed that 

(3-7) T: = n i l  i =  1 ,  ..., d ,  

where 7r = (TI , . . . , ~ d )  is the stationary distribution of P. Of particular 
interest is the solution q(n) E q(0, n). 

To derive (3.4), we first calculate the probability of no coalescence 
events in a sample of size n in time ( t ,  s). This event has probability 

Given no coalescences in ( t ,  s), the conditional probability of no mutations 
in ( t , s )  is just the chance that no mutations occur on the n branches of 
the ancestral tree in time ( t ,  s). This is 

exp (-;(s - t ) )  . 

To verify (3.5) suppose that the first event prior to time t occurred at time 
Wt = s. The relative rates of mutation and coalescence for the n genes 
are n0/2 : n(n - l )A(s) /2 ,  so the probability that the event at time s is a 
mutation is n 6 / 2 y ( s 1 n ) .  To obtain a configuration of n after a mutation 
the configuration at time s+ must be either n, and a transition i -c i takes 
place for some i E [dl (the mutation resulted in no observable change), or 
n + ei - ej i, j E [dl, nj > 0,  i # j and a transition i - j takes place. 
On the other hand, the probability that the event at s is a coalescence is 
n(n - 1)/2y(s ,  n). To obtain a configuration n the configuration must be 
n - ej for some j E [dl with nj > 0 and the ancestral lines involved in the 



Both (3.5) and (3.9) can be found as the solution of this differential equa- 
tion with integrating factors exp(- s; ~ ( u ,  n)du) and exp(- -y* (u ,  n)du), 
respectively. 

When the population size is constant through time, equations (3.5) 
and (3.9) reduce to a discrete recurrence for the configuration probability 
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coalescence must be of type j .  Averaging over the density of Wt produces 

An alternative (and equivalent) integro-recurrence relation for q ( t ,  n)  
can be derived by considering the configuration of genes at the time of the 
first event that changes the configuration in the ancestry of the sample prior 
to time 2 .  The time W; of this first event has distribution determined by 

*( 3.5). 

where 

The corresponding recurrence is 

where g* is the density of W; . This equation is somewhat simpler to solve 
than (3.5), and so may be preferred in practice. 

To see that the solutions to (3.5) and (3.9) are the same, note that 
(3.5) is equivalent to the differential equation 
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This recursion has been studied in various forms by several authors, among 
them Sawyer, Dykhuizen, and Hart1 (1987), and Lundstrom (1990). Given 
{q(m); m < n}, simultaneous equations for the r:fyl) unknown proba- 
bilities { q ( m ) ; m  = n }  are non-singular, and in theory can be solved. In 
practice a numerical solution is difficult because of the large number of 
equations, and the situation is considerably more difficult for the recursion 
in (3.5). In the next section, we describe the Markov chain Monte Carlo 
approach that we have used to solve systems like (3.5), and describe qome 
of the applications of the technique. 

4. Markov chain Monte Carlo. The recursions for sampling proba- 
bilities, typified by (3.5) and (3.9), have a common structure. Let X denote 
the discrete set of states of the recursion. In (3.5) for instance, X is the set 
of &dimensional vectors n = (nl, . . . , nd) with nonnegative integer entries 
and sum m = 1,2,. . . , n,  n being the size of the sample. The recursions 
may be written in the form 

q(t ,z )  = 

where q(t ,z)  is known explicitly for z E d, r ( s ; z , y )  2 0, g ( t , x ; s )  is a 
probability density satisfying so" g ( t ,  z; s)ds = 1, and X = d U B. 

For the sampling probabilities determined by (3.9) we have z = n, n = 
d nj, y = m, and the non-zero entries of the kernel r in (4.1) are 

r(s;n,m) = (ni + l )p i j ,  m = n +ei - ej ,  i , j  E [q, e 
27*(s, n) 

n j > O ,  i # j  

where 7. is given in (3.8). 
These recursions are typically impossible to solve explicitly except per- 

haps for very small sample sizes. Standard numerical solutions are often 
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.. not practicable either because of the enormous dimension of X or the diffi- 
culty in evaluating multiple integrals. Instead, we have developed a Markov 
chain Monte Carlo method that can be used to find approximants to q ( t ,  t). 
The idea, as in all Monte Carlo methods, is to express q(t ,  t) as the mean 
of a functional of X(.), and then repeatedly simulate from X(-). This can 
be achieved in the following way. 

Let P(s;  t, y) be a transition probability kernel on the state space X 
satisfying CyEX P(s; t, y) = 1 for all s 2 0, z E X and 

P(s;  t, y) > 0 if r(s; t, y) > 0. 

We use P and g to define a non-homogeneous Markov chain X(.) on X that 
evolves as follows: Given that X ( t )  = z E f3, the time of the next change 
of state has density g ( t ,  t; s), and given that this change occurs at time s, 
the probability that the next state is y is P(s;  2, y). We are interested in 
the process up to the time r that it reaches the set A. We assume that P 
has been chosen so that P=(r < oa) = 1 for all t E B. 

Now write (4.1) as 

where 

(4.3) 

Let r1 r2 < Tk = r be the jump times of X(.) and define TO = t. 
It is shown in [lo] that 

k 

(4-4) q( t l z )  = pt,z)q(T,X(T)) JJ f ( r j - l i X ( r j - l ) ; 7 j , X ( r j ) ) i  
j = 1  

where I@+.. denotes expectation with respect to X ( t )  = 5 .  This rep- 
resentation provides a simple Markov chain Monte Carlo approximant to 
q(t ,  t): Simulate many independent copies of the process X(.) starting from 
X ( t )  = t, and compute the observed value of the functional under the ex- 
pectation sign in (4.4) for each of them. The average of these values is an 
unbiased estimate of q(t ,z) ,  and standard theory may be used to assess 
how accurately q( t ,  t) has been estimated. 

There is a canonical candidate for P, obtained by setting 

f( t ;  8) = r(s; 2, Y), 
Y 
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and 

(4.5) 

Equation (4.3) shows that f(t, z; s, Y) reduces to 

For the special case in (3.9), if we define 

then 
e 

P ( s ; n , m )  = (ni + l)pij, m = n + ei - ej, i ,  j E [d, w*(s; n) 
nj >0, i # j  

We have found it important in practice, particularly in the context of 
variance reduction, to have some flexibility in choosing the stopping time r ,  
or, equivalently, the set A. For instance, the natural choice for the case (3.9) 
has A = {m : mi = 1). This corresponds to tracing the ancestry 
back to a single individual. However, it is sometimes possible to calculate 
sampling probabilities, either explicitly or perhaps numerically, when there 
are two or three distinct ancestors, rather than tracing the genealogy back 
to just a single individual. In this case we can take A = {m : mi = 2) 
for example. 

d 

4.1. Surface simulation and Monte Carlo likelihoods. The sam- 
pling probability q ( t ,  z) is usually a function of some unknown parameters, 
denoted here by r; we write qr(t,+) to emphasize the dependence on I'. 
Often we are interested in finding the solution qr for a variety of values 
of I', for example when using q as a likelihood function. To compute q on 
a surface of r-values, we use the following approach based on importance 
sampling. We construct a single process X(.) with parameters I'o, from 
which estimates of qr(t, z) may be found for other values of r. Write (4.1) 
in the form 

where 
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P(s1; t,Yl)P(S2; y1,312)9(t,z; sl)g(sl, y1; sz)ds2ds1 
+,.. 

In terms of the Markov process X(.), m(t,z) may be represented as 
follows. Let 71 < 72 < e e < Q = T be the times of the jumps X(.) makes 
until it reaches the set A, and set TO = t. Then 

k - 1  I 

m ( t , x )  = Pt,r) cW(r(ix(r()) IIf(rj-t,X(Tj-1);Tj,X(Tj)) 
I=O j=1 

k 

(4.11) 

Once more, independent replicates of X(-) starting from X(t) = t may be 
used to estimate the expectation in (4.11), values of the sum on the right 
being accumulated as each simulation progresses. It is straightforward to 
adapt this scheme to the surface simulation setting of the last section. 

4.3. Other sampling properties: the distribution of the time 
to MRCA. Sampling distributions are not the only quantities that pro- 
duce recursions to which the Markov chain Monte Carlo method can be 
applied. One example arises in studying the joint distribution of the sam- 
ple configuration and the time to the most recent common ancestor. Let 
q(t ,  t, w )  be the probability that a sample taken at time t has configuration 
t, and the (further) time to the MRCA is at most w. Of particular interest 
is the distribution function 

+ 4t ,z )m(T,X(T) )  n f(q-l,x(Tj-l); Tj,X(q)). 
j = 1  

(4.12) 

It is shown in [9] and [lo] that q(t,  2 ,  w )  satisfies a recursion of the form 

and that for w > 0 
k 

(4.14)9(t,tlw) = y(t,z)q(T,X(r),t+w-7) IIf(7j-I,X(7j-l);7j,x(7j)). 
j=1 

Under the initial condition 

q(t, t, w )  = I { w  1 0}, z E A 

the term q(r,X(T),t + w - T) in (4.14) reduces to I{. 5 t + w } .  If we 
simulate the process X(-) R times, and define 

ki 

f i  = f(q-1, X(Tj-1); rj ,x(q)) ,  
j=1 
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the value of the functional under the expectation sign in (4.4) for the lth 
simulation, then the distribution in (4.12) can be approximated by the ratio 

where d') is the time the lth simulation hits A. Conditional moments can 
be computed in a similar way. 

4.4. Applications. In this section, we review briefly some of the ap- 
plications of this computational approach. Further details may be found 
in the original papers. Computer code is available from the authors on 
request. 

4.4.1. The infinitely-many-sites model. The simplest mutation 
structure is the infinitely-many-sites model of sequence evolution, in which 
every mutation in the ancestral tree of the sample produces a new segregat- 
ing site in the sample. Hudson [13] [14] gives a variety of applications. The 
sample may be described by a collection of sequences of zeros and ones. 
If the labeling of the ancestral base at each site is known, we can suppose 
that the ones denote mutant bases at a site, while the zeros denote sites 
at which the ancestral type is still present. Typically, this labeling is un- 
known. The distribution of the sample is determined by certain rooted and 
unrooted genealogical trees that are embedded in the process; rooted trees 
correspond to known labeling of sites, unrooted trees to unknown labeling 
of sites. The theory of these trees is developed in [7]. Markov chain Monte 
Carlo methods are used to estimate parameters in the varying population 
size model in [SI. population Inference about the distribution of the time to 
the most recent common ancestor, conditional on the structure of a sample, 
is discussed in 191, where applications to mitochondrial sequence data are 
given. These computer-intensive methods are sometimes time- consuming, 
and it is therefore of some interest to know how inferences based on sim- 
pler summary statistics of the data (for example, the number of segregating 
sites and alleles) compare to inferences based on the full data. Inference 
about 6 and the time to the MRCA are addressed in [lo]. 

If distinct sequences in the sample are identified as alleles, the sampling 
theory of the allele frequencies in the constant population size case is given 
by the Ewens sampling formula [4]. The analogous theory for the variable 
population size case appears in [8], where the Markov chain Monte Carlo 
method is also explored. See also [lo]. 

4.4.2. The finitely-many-sites model. Of central interest in the 
analysis of DNA sequence data is the development of methods for esti- 
mating parameters of the substitution process. In the population genetics 
setting, this can be thought of as the problem of estimating the parameters 
of the mutation rate matrix R in (3.1). One method, developed by Lund- 
strom [19] and extended in [20], uses a method of moments approach. In 
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the simplest mutation model determined by (3.2) with identical substitu- 
tion matrices MI G M and equal rates hr = l/s at each site, the vectors 
the count the number of each type of base observed at  each site are ex- 
changeable. In particular, they have the same distribution (but of course 
they are not independent). This observation provides a simple moment 
method for estimating the entries of the rate matrix OM: equate observed 
and expected counts, and minimize the sum of squares of the differences. 
A detailed study of the behavior of this method appears in [19] and [20]; 
the extension to hypervariable sites is described in [21]. 

Our development of the Markov chain Monte Carlo method for coa- 
lescents was motivated in part by trying to assess whether the estimation 
methods described above had good statistical properties. The simulation 
method, together with the surface simulation for likelihoods, is developed 
for the sampling distribution (3.10) in [SI. Among the issues addressed 
is the effect on variance reduction of choosing the stopping time r ,  and a 
variety of suggestions for speeding up the method. Note that it is simple to 
use the same Monte Carlo approach to estimate parameters for the more 
complicated sequence models described in Section 3.1, and the effects of 
variable size can be accommodated simply as well [8]. 

Notice that in the model of sequence evolution determined by (3.2), the 
mutation processes at  different sites are conditionally independent given the 
genealogy. This means that if the genealogical tree is known, the proba- 
bility of a set of sequences may be computed by, in effect, reducing the 
problem to the computation of sampling probabilities at a single site. For 
simple models for M I ,  the mutation matrix at the Ith site, it is possible to 
compute the probability that a base that is of type i at time 0 is type j at 
time t ,  and so compute the probability that a site has a particular set of 
types at the tips of the ancestral tree. 

Kuhner, Yamato and Felsenstein [17] [18] have developed an alternative 
approach to maximum likelihood estimation of 8 in this constant population 
size model. They use a Metropolis-Hastings sampler to sample genealogies, 
and compute the probability of the set of sequences by using the conditional 
independence property. 

4.4.3. The effects of recombination. The previous examples have 
been concerned with samples in which the effects of recombination can be 
ignored. However, the same principles can be applied to study recombina- 
tion as well. The simplest case is the one with completely unlinked loci, for 
which computational aspects of the sampling theory can be found in [24], 
[20], and [21]. For the linked case, think of two finitely-many-alleles loci, 
-4 and B,  with K alleles at the first locus, L at  the second, and mutation 
rate matrices 
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The analog of the sampling equation (3.10) is a linear system satisfied by the 
probability q(u, b, c) of ordered configurations of the form (a, b, c) ,  where 
u = ( 0 1 , .  . . ,OK), b = (61,. . . , b ~ ) ,  and c = ( C j j ,  i E [ K ] , j  E [L]). Here, ai 
gametes have type i at the A locus and unspecified alleles at the B locus, bj 
gametes have type j at the B locus and unspecified alleles at the A locus, 
and cij gametes have allele i at the A locus and allele j at the B locus, for 
i E [K], j E [L]. The linear system can be derived from a simple coalescent 
argument, and the sampling formula q(0, 0,  c )  of the gamete configuration 
c found by the Markov chain Monte Carlo approach. The same method 
works to solve the analogous linear system for two infinitely-many-alleles 
loci that is discussed by Ethier and Griffiths [2], [3]. The methods can 
also be extended to allow for variable population size, more loci and more 
complex mutation schemes. 

4.4.4. The effects of migration. Nath and Griffiths (1993) derive 
a recursion analogous to (3.10) in an island model with migration among 
L islands. q(n) is then replaced by g(n1 , . . . , n ~ )  the configuration proba- 
bility of samples of sizes nl, . . . , nL taken from the L islands. 

The Markov chain Monte Carlo technique in Section 4 is developed, 
and the estimated surface of probabilities with the migration rate varying 
is used to study likelihood estimation of the migration rate in the case of 
L = 2 islands with d = 2 possible alleles. 

5. Discussion. In this paper, we have reviewed one computational 
approach for calculating sampling probabilities and related quantities for 
models arising from versions of the coalescent. The progenitor of this ap- 
proach dates back at least to the late 1 9 4 0 ~ ~  where it was used to solve 
matrix equations of the form Ax = 6; see Forsythe and Leibler [5] and Hal- 
ton [ll] for example. The techniques advocated here are similar in spirit to 
the Hastings- Metropolis method [22], [12], where the quantity of interest 
is represented as the mean (under the stationary distribution) of a function 
of an ergodic Markov chain, and this mean is estimated by computing an 
ergodic average. This uses a single run of the chain to produce estimates, 
the observations within the run being correlated. In the present approach 
we use independent runs of random lengths, which in principle makes the 
subsequent analysis of the output somewhat simpler. 

These techniques may also be applied to other variants on the popu- 
lation genetics theme. The models are described here in terms of ‘alleles’ 
and ‘mutations’, but these may be interpreted in other ways as well. For 
example, imagine a population of individuals reproducing according to the 
coalescent, but now think of the ‘alleles’ as describing the structure of a 
population of mitochondria within each individual. For example, the pa- 
rameter 19 may be interpreted as the birth-and-death rate of the individual 
mitochondrial populations, and the transition matrix P describes how a 
given population reproduces at the birth-and-death times. If each of the 
mitochondria is labeled as type A or type B, then a plausible model for the 

t 
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evolution of the individual populations is the two-type Moran model with 
mutation. More complicated within-individual reproduction mechanisms 
could of course be used. This provides a simple model for the evolution 
of a mitochondrial lineage within a reproducing human population. These 
methods also work for other models in which the branching structure of 
the coalescent is replaced by other branching processes, such as the binary 
splitting, or Yule, process. In this case, all that changes in equation (3.10) 
is the relative rate of ‘splits’ and ‘mutations’. 
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