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Abstract 

Kimura and Ohta showed that  the expected age of a neutral muta- 
tion observed t o  be offrequency x in a population is -2a:(1-2)-' log x .  
We put this classical result in a general coalescent process context that  
allows questions t o  be asked about mutations in a sample, as well as in 
the population. In the  general context the population size may vary 
back in time. Assuming an infinitely-many-sites model of mutation, 
we find the distribution of the number of mutant genes a t  a particular 
site in a sample; the probability that  an allele a t  that  site of a given 
frequency is ancestral; the distribution of the age of a mutation given 
its frequency in a sample, or population; and the distribution of the 
time t o  the most recent common ancestor, given the frequency of a 
mutation in a sample, or in the population. 
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1 Introduction 

A classical result in population genetics, derived in a diffusion process setting 

by Kimura and Ohta (1973), is that the expected age of a neutral mutation 

observed to be of frequency x in a stationary population is 

- 2 2  
log x. 

1 - x  

There is an implicit reversibility argument (made explicit by subsequent au- 

thors) that the age distribution back in time of a mutant allele known to have 

frequency x in the population is the same as the distribution of the time to 

extinction forward in time of the allele conditional on extinction. The his- 

tory of the problem and relevant references are given in Watterson's (1996) 

review of Kimura's use of diffusion theory. A related result of Watterson 

and Guess (1977) shows the probability that an allele of frequency x in a 

population is the oldest is x, the same as the probability that such an allele 

A will eventually be fixed in the population forward in time. 

Many theoretical results that can be obtained from diffusion process argu- 

ments can also be derived by using the underlying coalescent tree (Kingman 

1982), and this approach will be used here. The ancestry of a sample of n 

genes from a classical neutral diffusion process can be described by a coa- 

lescent tree. Let T,, Tn-l, . . . , T2 denote the lengths of time for which the 

sample of size n has n, n - 1, . . . , 2  distinct ancestors back in time to its most 

recent common ancestor. In the usual coalescent process, corresponding to a 

constant size population, the number of distinct ancestors A,(t) time t ago 

is a time-homogeneous death process with death rate p, from state j given 

The times T j  are therefore distributed as independent exponential random 

variables with rates p j .  

This paper derives results about ages of mutations and the time to the 

most recent common ancestor of a sample of genes, and the population, under 

a, general distribution for the ancestral tree. We assume that: 
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AGE OF MUTATION IN GENERAL COALESCENT TREE 275 

( A l )  T,, . . . , T2 are continuous random variables. 

(A2) The ancestral tree is binary; when there are k ancestral lines, each pair 

has probability (:)-I of being the next pair to  coalesce. 

(A3) Mutations occur according to  a Poisson process of rate 6'12 along the 

edges of the  tree (conditional on the  edge lengths). 

In this paper, we use generic time units. In the  population genetics setting, 

these may be converted t o  generations by letting one t ime unit correspond t o  

2N generations, appropriate for the  coalescent approximation of a population 

of current size 2N genes. The compound parameter 0 is given by 0 = 4 N u ,  

where u is the  mutation rate per sequence per generation. 

The motivation for considering a general tree comes from a coalescent 

model with variable population size, and from other processes such as birth 

processes generated forward in time. Specific results are derived in this paper 

for variable population size, particularly with exponential growth, in addition 

t o  the  classical coalescent process. Reversibility arguments are not used: 

rather, results follow directly from the tree structure. If the  results were 

placed in the context of a population process described by a diffusion process, 

it would not be reversible. 

In this paper we assume the  infinitely-many-sites model of mutation (Wat- 

terson, 1975): a new mutation in the population is assumed to  occur at a site 

in an infinitely-long DNA sequence where there has never previously been a 

mutation. Thus in this model the number of mutations in the  ancestral tree 

of n sample genes is the  number of segregating sites in these n sequences. 

A mutation on an edge of the  tree at a site occurs a t  that  site in all leaves 

subtended by that  edge, while other leaves contain the ancestral base. Note 

that  each mutation that  has arisen in the  history of the  sample back to  its 

most recent common ancestor is represented in that  sample. The results in 

this paper may be interpreted in Kimura and Ohta's setting by focusing on 

the alleles present a t  a particular segregating site: for example, the result in 

(1.1) can be interpreted as the  mean age of a mutation, a t  that  segregating 

site, of frequency x in the population. 
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1.1 Some new results 

In this section, we record some of the new results derived later in the paper. 

In Section 3, we show that in the infinitely-many-sites model the proba- 

bility qn,b that a segregating site has b mutant bases is given by 

In Section 2, we show how the relevant expectations may be evaluated by 

simulation. 

We show in Section 5 that for the constant population size coalescent 

process, the expected age of an allele observed to have b copies in a sample 

Section 5 also provides results for the variable population size case, as well 

as limiting forms for the whole population. In Section 6, the expected time 

to the most recent common ancestor of the sample, conditional on this allele 

having b copies in the sample, is shown to be 

Section 6 also discusses the variable population size case, and shows in par- 

ticular that the expected time to  the most recent common ancestor of the 

population, conditional on a mutation observed to be of frequency x in the 

population is 
2x 2 - x 

2--(I+- log 2). 
1 - 2  l - x  (1.6) 

The counterpart of Kimura and Ohta's result (1.1) for the mean age of a 

mutation in a general coalescent tree is 

where Sk = Cp Tj.  The general counterpart of Watterson and Guess' result 

is derived in Section 4. In particular, the probability that an allele observed 

to be of frequency x is the oldest in the population is found to be 
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AGE OF MUTATION IN GENERAL COALESCENT TREE 277 

this evaluates to x when the population size is constant. 

We note that here, and in what follows, there is an implicit assumption 

of convergence being used in deriving population results from those of a 

sample of size n by letting n -+ co. In particular, in the general setting 

the waiting times IT j )  in ( A l )  have distributions that depend on n, and 

they need not be independent. In deriving results about times to common 

ancestors, we require that the limiting tree height be almost surely finite. 

For example, in trees generated from homogeneous binary birth processes of 

rate X k ,  k = 2 , 3 , .  . ., formulae for characteristics of finite trees continue to 

hold, but the series in formulae as n -+ co may not converge. In a coalescent 

process the total height of the tree is finite, but this holds in a birth process 

if and only if C r  A;' < co. 

1.2 Ancestral classes in the coalescent 

We have noted that the waiting times { T j )  in ( A l )  need not be independent, 

and that their distribution may depend on n. The tree is thought of as being 

generated in two steps: first generate the ancestral times that determine edge 

lengths, then form the binary tree by coalescing edges. The construction can 

be done either backward in time by coalescence, or forward in time where 

coalescence corresponds to a birth, which is equally likely to occur from 

each existing edge. In this subsection, we review some results for topological 

properties of the trees that will be exploited in the sequel. 

Kingman (1982) studied the distribution of ancestral classes in the coa- 

lescent process. If n sample individuals are labeled from l to n, then these 

individuals are partitioned into k equivalence classes, according to which of 

the k ancestors they have. There are several different ways to write the dis- 

tribution of these classes depending on whether the individuals are labeled 

within classes, and whether classes are ordered or not. Perhaps the easiest 

description is when the individuals are unlabeled, and classes are ordered. 

Then the distribution of the partition is the same as the distribution of n 

balls placed uniformly at random in k cells, with no cell empty. There are 
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(;I:) ordered arrangements with equal probability, corresponding to inte- 

ger solutions of rl  + . - .  + r k  = n,  with r; > 1, i = 1 , .  . . , k. (This is of 

course a classical combinatorial result; see Feller (1968, Chapter 2) for the 

probabilistic setting.) The probability that a particular class has size b is 

since once b is fixed, there are n - b balls left to arrange into k - 1 cells. 

The expected number of classes with b descendants in the sample depends 

on subtree arrangements in the coalescent tree. 

In the limit as n + cc the relative proportions X I , .  . . , Xk of the popu- 

lation that are subtended by k ancestors have a Dirichlet distribution with 

constant density 

The relative frequency in a particular cell thus has a Beta density 

( k -  1)(1 - X ) " ~ , O  < x < 1 

As 12 --+ cc, with b / n  -+ x, 

consistent with (1.11). 

Arguments leading to (1.9), (1.10)) and (1.11) are combinatorial and re- 

ally depend only on exchangeability in the coalescent structure, and not on 

the distribution of ancestral times. Therefore (1.9), (1.10) and (1.11) are 

true under assumptions (Al)  and (A2). 

Another way to derive (1.9) and (1.10) is to relate the coalescent tree to 

a classical urn model. Identify k ancestors with different colored balls in an 

urn. In the coalescent tree when an ancestor line branches into two lines in 

forward time place an extra ball of the same colour as the parent line into the 

urn. Then when there are n balls in the urn the colours are distributed as 

individuals subtended by the k ancestors. The distribution of colored balls 

in the urn and the Dirichlet limit are classical results (see e.g. Feller 1971). 
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2 Variable population size 

We review some aspects of the  variable population size model described in 

Griffiths and Tavark (1994b). In a model of growth forward in time (con- 

traction back in time) denote the  ratio of population sizes a t ime t back from 

the present by X(t), and let u(t)  = l/X(t). Let {A,(t), t 2 0) be the  death 

process described by (1.2), and let {AL(t), t 2 0) denote the  corresponding 

quantity in the  variable population size case. Then 

An explicit formula for the distribution of A,(t) is well known (Tavark 

1984, Griffiths 1980) for the  constant population size case, and it follows from 

(2.1) that 

where ,ox(t) = exp (- (t) J: u(u)du),  a(j)  = n(a + 1 ) .  . . (a  + j - I ) ,  and 

a[jl = a(a  - 1) .  . . (a  - j + 1). The mean waiting time in state j is then given 

by 
03 

E(T,) = 1 P(A,(t) = j )d t  , j  = 2 , .  . . , n. 
0 

Assuming that  Jr V ( U ) ~ U  = m, we can find the distribution of the num- 

ber of distinct ancestors A"(t) of the  whole population at t ime t by letting 

n + m in (2.2). We obtain 

rn ( -1 ) j -~(2 j  - l )k(j- l l  
P(A" ( t )  = k )  = pj ( t )  , k  2 1. 

j=k k!(j  - k)! 
(2.3) 

The distribution of coalescence times can be found easily by simulation, 

as follows. For 2 5 j 5 n ,  let 

denote the  time taken for A:(.) t o  reach state j - 1, and define Sn+l = 0. The 

waiting times T,, . . . , T2 form a stochastic process such that  the  distribution 

of Sj, conditional on Sjtl = s , j = n ,  . . . , 2  has a probability density function 

given by 
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{Se )  is a (backward) Markov process starting from S,+, = 0. 

Let {Ue) be a sequence of mutually independent uniform random variables 

and Fj(t ;  s) be the distribution function corresponding to  (2.4). Simulated 

times can be found by successively solving 

for j = n ,  n - 1 , .  . . , 2 .  Note that  

and 

E ( S j  / S,+l = s) = Lm(l  - F,(t; s))dt .  

Exponential growth 

For exponential growth, X(t) = exp(-Pt), P > 0 and (2.5) reduces to  

Plots of simulated mean coalescence times E(S, ) ,  J = 2 , .  . . ,25 in a sample of 

n = 100 genes in an exponential growth model for ,O = 0.0,0.1,0.5,1.0,2.0,5.0 

are shown in Figure 1. (The mean coalescence times for larger values of J 

are essentially constant in p, and equal t o  the value for ,L? = 0; these are not 

shown in Figure 1.) Each plot is based on 50,000 replications. Note that  

coalescence times decrease with increasing p, because time scaling is relative 

to  the  population size at time 0. 

It is well known (cf. Slatkin and Hudson 1991) that if /? is large then the 

phylogeny produced by an exponential growth model is star  shaped. This 

can be seen mathematically as follows. 

Let {s:} be the  coalescence times in the exponential growth model, and 

{S,)  in the  constant size population model. From the representation (2.1) it 

follows that  
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AGE OF MUTATION IN GENERAL COALESCENT TREE 

Number of ancestors of a sample of 100 

Figure 1: Expected coalescence times in a sample of 100 

and hence 

sf = p-l iog(l + ps,). 

Our interest here is in results as /3 + cm. It follows immediately from 

(2.7) that 

As p + cm, we see that 

S! -+ 0 with probability 1, j = 2 , .  . . , n 
T,P " P-l log(@) + P-l log(Tn), 
T! - p-' ~ O ~ { S ~ / S ~ + ~ ) ,  j < n. 

To explain the star-shaped coalescent tree that is produced as ,B + co, 
we note that 
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282 GRIFFITHS AND TAVARE 

so that the first coalescence times in the sample dominate the tree. Note 

however that later coalescences will have some effect unless log(P) is large as 

well. 

It is possible to show that 

where Euler's y = 0.577216 . . . , which gives the asymptotic formula 

3 The number of mutant genes in a sample 

The distribution of the number of mutant genes arising from a single mutation 

in an ancestor is of interest. We assume that the mutation is segregating in 

the sample, so that it arose before the most recent common ancestor of 

the sample. In this section we derive this distribution under the general 

conditions (Al) ,  (A2) and (A3). 

The simplest way to do this is via a marked Poisson process argument. 

Following Ethier and Griffiths (1987), we think of the DNA sequences as 

being represented by unit intervals. We label the locations of new mutations 

that arise in the sample using a sequence of independent and identically 

distributed random variables having the uniform distribution on (0,l). Thus 

for any set M c (0, l), mutations with locations in M arise in a branch of 

the coalescent at rate 81M1/2, where IMI is the probability of M under the 

uniform distribution. We note that our results apply without change when 

the locations of the mutations have any continuous density over (0,l); we 

focus on the uniform case for simplicity. Now let T denote the sequence 

of waiting times T2, . . . , Tn in the coalescent tree of the sample. Let Ch = 
C(x,  b, h) denote the event that there is a mutation with label U in the 

interval (x, x + h) C ( 0 , l )  that subtends b copies in the sample, and let Ik 
denote the event that this mutation arises when the sample has k ancestors. 

We have, to order o(h), 
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AGE OF MUTATION IN GENERAL COALESCENT TREE 

Averaging over the distribution of T gives 

Summing (3.1) over b gives 

Oh 
P(There is a mutation with label in (x,  x + h)) - - ) kE(Tk). (3.2) 

k 

Dividing (3.1) by (3.2) and letting h -+ 0 shows that the probability that a 

particular segregating site has b copies of the mutant type in the sample of 

Substituting for pn,k(b) from (1.9) and simplifying gives (1.3). 

If B n , ~  is a random variable having the probability distribution (1.9), it 

is routine to show that 

The mean number p of genes with this mutation, from (3.3) and (3.4), is 

therefore 

Let Wn = z;=, Tk, be the time to the most recent common ancestor (TM- 
RCA) of the sample, and let Gn = CE!2 kTk be the total edge length in the 

coalescent tree. The mean number of mutant genes p can be therefore be 

expressed as 

The variance, from (3.3) and (3.4), is 
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where the random variable K has the distribution of the number of ancestors 

when the mutation occurred; that is, 

Constant population size 

Here E(Tk) = 2/(k(k - I ) ) ,  k = n , .  . . , 2 ,  and so 

and 

The mean and variance of the distribution in (3.8) are 

n n' 

p - G  
and u2 - -. 

2 log n 

Note that the quantity C khk(b)E(Tk) is the expected number of seg- 

regating sites (and therefore mutations) that have b copies of the mutant in 

the sample of n. In the constant population size case, this has value B/b, in 

agreement with a result of Fu (1995). 

Variable population size. 

The graph in Figure 2 was produced by evaluating the relative frequency 

E(Wn)/E(Gn) for a sample of n = 100 by simulation, using 100,000 runs on 

each of 400 P grid points. The expected frequency of mutant genes decreases 

as p increases, and converges to  n-l as p -+ m. 

4 Which is the mutant gene? 

Suppose that at a particular segregating site an allele is observed to have 

frequency a in a sample of n genes. A result of Watterson and Guess (1977) 
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AGE OF MUTATION IN GENERAL COALESCENT TREE 

Figure 2: Expected frequency of mutant genes 

can be used to show that in the constant population size model the probabil- 

ity that this type is ancestral is its relative frequency a / n .  In other ancestral 

trees where the ancestral times have a different distribution this result is not 

necessarily true. In this section we derive a formula for the probability that 

an allele of frequency a  is ancestral, under the conditions (Al),  (A2) and 

(A3).  
An extended version of this problem in the context of mutations occurring 

at sites in DNA sequences is to determine the joint distribution of ancestor 

bases in a sample of sequences. In the infinitely-many-sites model this is 

equivalent to placing a root in an unrooted tree, and determining the proba- 

bility of each possible rooted tree conditional on the observed unrooted tree. 

This is a much harder problem than determining which is a single mutant 

gene, and explicit results are difficult to obtain. Griffiths and TavarB (1994a, 

1995) study unrooted and rooted genealogical trees and show how to compute 

the probability numerically. 

Given a configuration of a copies of an allele A and b = n - a  copies of 

another allele, the conditional probability that A is the ancestral type is 
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286 GRIFFITHS AND TAVARE 

To derive the limiting form of (4.1), we note that as n + co, with x = 
a l n ,  0 < x < 1 fixed, n ~ ~ , ~ ( b )  + ( K - ~ ) x ~ - ~ ,  and npn,k(a) + ( k - l ) ( l - ~ ) " ~ .  

It follows that the limiting version of (4.1) is 

(As noted in Section 1.1, in taking the limit there is an implicit assumption 

of convergence of (4.1) to (4.2).) P,(x) is interpreted as the probability that 

an allele in the population with relative frequency x is the oldest. It is easy to 

see that lirnz,o P,(x) = 0, lim,,l P, (x) = 1, P, (!+x) = 1 - P, ($  -x), o < 
1 x < 5 .  

Constant population size 

In the constant population size model P(a ,  b) = a / (a  + b), from the identity 

(3.7), and P,(x) = x. 

Variable population size 

For the model of Section 2, it is enough to assume that X(t) is non-increasing 

and continuous at t = 0 to ensure convergence of (4.1) to (4.2). 

By way of example, consider the case of exponential population growth, 

where X(t) = exp(-Pt). For each fixed x E (112, I ) ,  it is intuitively clear 

that P,(x) should increase as P increases. Graphs of P,(x) for illustrative 

values of j3 are shown in Figure 3. As P increases there is indeed an increased 

probability of the most frequent allele being ancestral. 

5 Distribution of the age of a mutation 

Let (& denote the age of a mutant having b copies in a sample of n genes, 

for 0 < b < n. If the mutation occurred while there were k ancestors of 
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AGE OF MUTATION IN GENERAL COALESCENT TREE 287 

Frequency of type 

Figure 3: Probability of an allele being ancestral 

the sample, then the conditional distribution of <n,b would be distributed as 

UTk + Sktl, where U is a uniform random variable on [ O , l ] ,  independent of 

{T,). Arguing as in the derivation of (3.1) and (3.2),  the Laplace transform 

where Sk+l = CjL=k+l Tj .  Let An(t) denote the number of ancestors of the 

sample of n a time t ago. Then 

Inverting (5.1) and using (5.2), the density of fnTb is 
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288 GRIFFITHS AND TAVARE 

Moments of &, from (5 .1) )  (5.2), and (5.3)  are 

from which the mean and variance of Jn,b can be obtained. 

To derive the population version of (5.4) ,  we assume that { A n ( t ) ,  t 2 0 )  

converges in distribution to a process { A ( t ) , t  2 0) as n + oo, and that the 

time taken for A(-)  to reach 1 is finite with probability 1. Then as n + oo, 

and bln + a ,  0 < x  < 1,  we see that 

In this population limit the density of the age of a mutant 

a relative frequency x  is, from (5 .3 ) ,  

gene that has 

(5 .6)  

The numerator in (5.6)  is the second derivative of the probability generating 

function of A ( t )  with argument 1  - x .  

It is possible to find an empirical simulated density in (5 .3)  or (5.6) by 

estimating the expectation in the numerator by the mean of A n ( t ) ( A n ( t )  - 

l)("-An(t))  b-1 or A ( t ) ( A ( t )  - 1 ) ( 1  - x ) " ( ' ) - ~ ,  with a large number of runs on a 
grid of time points. 

Constant population size 

From (5.4), we see that 

with an asymptotic form as n + oo, bln -+ x  of 
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AGE OF MUTATION IN GENERAL COALESCENT TREE 289 

-22 
E ( & )  = - log x .  1 - x  

Equation (5 .8)  is the well known formula (1 .1)  derived by Kimura and Ohta 

(1973) .  The density (5 .6 )  is also known in various forms (Watterson, 1977; 

Tavark, 1984).  In this case the distribution function is identical to  

Variable population size 

In the variable population size ca,se, define 2, by 

Analogous t o  ( 5 . 9 ) ,  we then have 

Figure 4 graphs E ( J , )  as a function of x in the exponential growth model 

for illustrative values of /3. The expected age of a mutation decreases in /? 

for fixed x. This is consistent with the time scale of the tree being shortened 

as p increases. 

6 TMRCA in a sample 

Let TIn.b denote a random variable that is distributed as the conditional dis- 

tribution of W, given that a sample of n genes contains b genes of a mutant 

type a,nd n - b ancestral genes. Clearly the density of q n : b  is 

where f,(t) is the density of W,. The mean is 
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GRIFFITHS AND TAVARE 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Frequency of mutant 

Figure 4: Expected age of a rriutarlt gene 

Constant population size 

The density in equation (6 .1 )  can be expressed as 

gn,b = fn * Z , , b  , 

where * denotes convolution, and 

The representation ( 6 . 3 )  follows 

e - m t f n ( t ) E ( T k  1 
= E  he-'^^) 

from the fact tha t  

Wn = t ) d t  
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0 I I 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Frequency of mutant type 

Figure 5: Expected TMRCA 

and substituting in the numerator of (6.1). 

The mean is 

As n -+ m, b/n -+ x the density has a similar form to (6.3), (6.4), with (!I:) 
replaced by (1 - x)"~ and the mean simplifies to 

22 2 - 2  
E(ym,$) = 2 - -(I + - log 2) . 

1 - x  1 - x  

E ( V ~ , ~ )  is monotonic increasing in x and E(rlm,o) = 2, E(rlm,l) = 3. 

Variable population size 

The expected TMRCA decreases with P ,  and for large ,L? the frequency of the 

mutant type has little influence on the TMRCA, as shown in Figure 5. 

The joint density of Wn and [ n , b  is 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Frequency of mutant type 

Figure 6: Relative age of a mutation 

This is of interest because, for example, it allows a comparison of the age of 

a mutation with Wn by calculating 

E L  k(k - 1) (!I:) ~ E ( ( s Z  - s,2+1)/wn) 
E([n,b/Wn) = . (6.8) 

EZ2 k(k - 1) (;I:) W k )  

Limit results for (6.1), (6.2), (6.7) and (6.8) as n + ca, while bln + x are 

obtained by replacing (E:) by (1 - r)"'. 

Variable population size 

Comparing the plots of E([,/W,) in Figure 6 with Figure 4, we see that the 

relative age of a mutation increases as a function of P ,  rather than decreases, 

as in Figure 4. 

D
ow

nl
oa

de
d 

by
 [

U
SC

 U
ni

ve
rs

ity
 o

f 
So

ut
he

rn
 C

al
if

or
ni

a]
 a

t 0
4:

04
 0

7 
Ju

ly
 2

01
4 



AGE OF MUTATION IN GENERAL COALESCENT TREE 293 

7 TMRCA in the population 

Let [n,b denote a random variable that is distributed as the conditional dis- 

tribution of W,, the TMRCA in the population, given that a sample of n 

genes contains b genes of a mutant type and n - b wild type genes. 

Let {an,k(!)) be the probability distribution of the number of lines ! 

subtended in a sample of n ,  from a time back where there are k lines in the 

population. The argument to find the distribution of the TMRCA of the 

population cnlb, given a base frequency of b in the sample, is similar to that 

used to find the age distribution at a site. The Laplace transform is 

derived by considering that a mutation occurs on an edge of the sample 

coalescent tree while k ancestors of the population are in common with 1 
ancestors of the sample. It is possible to show using the methods in Griffiths 

(1980), or Saunders, Tavark and Watterson (1984), that 

Constant population size 

The mean time in the constant population size case is 
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