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THE AGES OF MUTATIONS IN GENE TREES

By R. C. Griffiths1 and Simon Tavaré2

University of Oxford and University of Southern California

Under the infinitely many sites mutation model, the mutational his-
tory of a sample of DNA sequences can be described by a unique gene
tree. We show how to find the conditional distribution of the ages of the
mutations and the time to the most recent common ancestor of the sam-
ple, given this gene tree. Explicit expressions for such distributions seem
impossible to find for the sample sizes of interest in practice. We resort
to a Monte Carlo method to approximate these distributions. We use this
method to study the effects of variable population size and variable muta-
tion rates, the distribution of the time to the most recent common ancestor
of the population and the distribution of other functionals of the underlying
coalescent process, conditional on the sample gene tree.

1. Introduction. The seminal paper of Kimura and Ohta (1973) exploited
diffusion theory to derive the expected age and the variance of the age of a
neutral mutation observed to have frequency x in a population. This paper
stimulated many authors to study the distribution of the age of an allele; the
paper of Watterson (1996) describes some of the history and more of the bio-
logical context. The emergence of molecular techniques for assessing genetic
variability in different regions of the genome in samples of individuals led di-
rectly to the development of a number of inference and estimation techniques
for sample data. The Ewens sampling formula [Ewens (1972)] was among the
first of these. The subsequent development of “coalescent methods” by King-
man (1982a), Tajima (1983) and Hudson (1983) changed the focus of the theory
by forcing attention on the role of genealogy. For example, Griffiths and Tavaré
(1998) put Kimura and Ohta’s results in a coalescent context and obtain an
analogous result for the expected age of a mutation observed z times in a
sample of n genes.

Computer intensive estimation techniques for coalescent-based models have
recently been devised for a number of mutation processes [cf. Griffiths and
Tavaré (1994a, c) and Kuhner, Yamato and Felsenstein (1995)]. In such prob-
lems, the pattern of mutations in the observed DNA sequences forms the data
from which estimates of parameters such as mutation rates are made. An-
other focus of this research has been ancestral inference, defined broadly as
the evaluation (either theoretically or computationally) of the conditional dis-
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tribution of various functionals of the coalescent process, conditional on the
observed pattern of mutations, or some summary thereof. A central theme in
the theory has concerned the distribution of the time to the most recent com-
mon ancestor (TMRCA) of the sample sequences. See, for example, Griffiths
and Tavaré (1994b), Fu and Li (1997), Tavaré, Balding, Griffiths and Donnelly
(1997). Griffiths and Tavaré exploit a relative of Markov chain Monte Carlo,
having roots dating back to papers of Forsythe and Leibler (1950) and Halton
(1970), to attack such problems.

In this paper we exploit this method to study the joint conditional dis-
tribution of the ages of mutations under a particular model for the muta-
tion process, conditional on the pattern of mutations observed in the data.
We use as examples of the approach molecular data taken from the Y chro-
mosome [Whitfield, Sulston and Goodfellow (1995)], and the nuclear gene β-
globin [Fullerton, Harding, Boyce and Clegg 1994, Harding, Fullerton, Grif-
fiths, Bond, Cox, Schneider, Moulin and Clegg (1997) and Harding, Fullerton,
Griffiths and Clegg (1997)]. We remark that in our approach to this problem,
the ages are unobservable random variables; it is then natural to report their
conditional distribution given the data.

We begin the paper with a brief description of the type of data we consider
and the basic genetic terms used in the sequel.

1.1. A Melanesian data set. We use a data set comprising DNA from part
of the β-globin locus from a sample of n = 57 sequences from a Melanesian
population [Fullerton, Harding, Boyce and Clegg (1994)]. Each sequence is
� = 2320 base pairs in length. The data are part of a larger world data set of
326 sequences described in Harding, Fullerton, Griffiths, Bond, Cox, Schnei-

Table 1
Melanesian β-globin sequences

2 1 2 2 2 1 2 2 1
Site 9 4 5 7 0 9 5 6 3 3 6 5 4

position* 4 1 3 9 0 0 0 3 7 5 3 5 2
5 6 2 2 8 6 8 6 9 8 4 4 3

Site # 1 2 3 4 5 6 7 8 9 10 11 12 13

Root T T T A T C T C T C G G C

allele freq
a G G T A T C T C T C G G C 25
b G G C A T C T C T C G G C 1
c T T T T T C T C T C G G C 16
d T T T A C T C A T C G G C 3
e T T T A C T C A C G G G C 7
f T T T A C T C A T G A G C 1
g T T T A C T C A T G G C T 4

*Site positions from Table 1 of Harding, Fullerton, Griffiths and Clegg (1997).



AGE OF MUTATIONS 569

Fig. 1. Melanesian β-globin tree.

der, Moulin and Clegg (1997). In data such as these, there are some sites (i.e.,
positions in the DNA sequence) at which each sequence in the sample is iden-
tical, and some sites, called segregating sites, at which there is variability. Of
the 2320 sites, 2307 were not segregating, and 13 were. In Table 1 a summary
of the segregating sites is given.

There are d = 7 distinct sequences observed among the 57 sequences in
the data; these alleles are labeled a–g in Table 1. In the last column the
frequencies of the seven alleles in the sample are also given. The type of the
ancestral base at each of the segregating sites, inferred from comparison with
more distantly related species, is given in the row of the table labeled “Root.”
For example, site 5 was a T in the ancestral sequence; the alleles a–c have
this ancestral base, whereas alleles d–g have the mutant base C. Notice that
sites 5–8 have the same mutation structure: the ancestral base appears in
alleles a–c, the mutant one in alleles d–g.

The data in Table 1 are equivalent to the rooted gene tree shown in Fig-
ure 1 [cf. Griffiths and Tavaré (1995)]. This rooted tree may be constructed
as a phylogeny with mutations as characters, using the algorithm of Gusfield
(1991), for example. The tree is unique up to permutations of mutations along
edges (e.g., the mutations at sites 5, 6, 7 and 8). We use the notation �T�n�
for such a tree; T denotes the topology of the tree and n the multiplicities of
its tips.

The matrix of segregating sites, with the ancestral bases replaced by 0 and
mutant bases by 1, is the incidence matrix of mutations on lineages. The gene
tree �T�n� represented as mutation paths to the root is given in Table 2.
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Table 2
Paths to root �0� for Melanesian data

25 : 1 2 0
1 : 3 1 2 0

16 : 4 0
3 : 5 6 7 8 0
7 : 9 10 5 6 7 8 0
1 : 11 10 5 6 7 8 0
4 : 12 13 10 5 6 7 8 0

2. Mutation and the coalescent. In this paper we develop methods for
inferring quantities of interest concerning the underlying stochastic process
that models the evolution of DNA sequences such as those described in the
last section. Under such models the tree �T�n� is random and its probability
distribution, and that of related quantities, is of interest. In this section we
describe the stochastic process we use to model the data and show how the
distribution of �T�n� can be computed.

2.1. The coalescent. We use Kingman’s (1982a, b, c) coalescent to model the
ancestral relationships among the n sampled sequences. This model arises in
the limit of large population size from a discrete population of N sequences un-
dergoing random mating in each generation. When time is measured in units
of N generations, and the limit N→ ∞ taken, the times Wi during which the
sample has i distinct ancestors have independent exponential distributions
with mean

E�Wi� = 2/i�i− 1�� i = 2�3� � � � � n�

The corresponding model for deterministic fluctuations in population size is
given in Section 6.2. At times Wn� Wn+Wn−1� � � � �Wn+· · ·+W2, two ancestors
are chosen at random to coalesce, corresponding to those sequences having a
common ancestor. One way to visualize the coalescent process is as a random
bifurcating tree. Reviews and further background may be found in Hudson
(1991) and Donnelly and Tavaré (1995).

Mutations are superimposed on this tree according to Poisson processes
of rate θ/2, independently in each branch of the tree. The parameter θ is
a function of the original population size N and the mutation rate µ per
sequence per generation: θ = limN→∞ 2Nµ. In this paper, we assume that
whenever a mutation arises on the tree, it gives rise to a new segregating
site. The resulting mutation model is known as the infinitely many sites model;
compare Watterson (1975). In Figure 2, a coalescent tree with mutations is
given. The numbers beneath the allele labels give the multiplicity of each
allele. In this tree, the pattern of mutations is consistent with the Melanesian
data set in Section 1.1. We note that for simplicity the coalescences involving
multiple copies of a given allele are not drawn.
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Fig. 2. Possible Melanesian coalescent tree.

We have seen that a gene tree T of d genes is constructed by labeling
mutations in the coalescent tree of the d genes, then describing each gene
by its mutation path x from current time back to the most recent common
ancestor. T = 	x1� � � � �xd
 is the collection of mutation paths x from leaves to
the root of the tree, with multiplicities of the types n = �n1� � � � � nd�. Mutations
form vertices in a gene tree.

2.2. Probabilities of gene trees. In this section we review how to calculate
the probability distribution of trees �T�n� under the infinitely many sites
model.

A fundamental recursion for the probability p0�T�n� of a tree �T�n� is

p0�T�n� = �n− 1�
�n− 1 + θ�

∑
k�nk≥2

�nk − 1�
n− 1

p0�T�n − ek�

+ θ

�n− 1 + θ�
∑

k�nk=1� xk0�distinct�
� xk =xj ∀j

1
n
p0��kT�n�(2.1)

+ θ

�n− 1 + θ�
∑

k�nk=1�
xk0 distinct

∑
j�� xk=xj

�nj + 1�
n

p0(�kT��k�n + ej�
)�
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see Ethier and Griffiths (1987), Griffiths (1989) and Griffiths and Tavaré
(1994b, 1995). In (2.1), ej is the jth unit vector, � is a shift operator which
deletes the first coordinate of a path, �kT deletes the first coordinate of the
kth path of T, �kT removes the kth path of T and “xk0 distinct” means
that xk0 = xij for all �x1� � � � �xd� and �i� j� = �k�0�. The boundary condition
is p0�T1�e1� = 1� If we define the degree of �T�n� as 	n − 1 + the num-
ber of mutations in T 
, then the system (2.1) is recursive in the degree of
�T�n�.

Recursions such as (2.1) can be derived directly from the structure of mu-
tation in the coalescent by looking back to the first event that occurs in the
history of the sample—either a mutation or a coalescence event. The first
term on the right of (2.1) corresponds to this event being a coalescence [with
probability �n − 1�/�n − 1 + θ�], the second and third to the event being a
mutation [with probability θ/�n − 1 + θ�]. If this event was a mutation, the
lineage with this mutation is necessarily a singleton in the sample. In the
second term, removing the last mutation from a lineage leaves the lineage
as a singleton in the data (e.g., mutation 11 in Figure 2). In the third term
the lineage with the mutation removed is identical to another in the sample
(e.g., mutation 3 in Figure 2). For each singleton path in T with a distinct
first coordinate there is exactly one nonzero term in the second and third
summations. A more detailed discussion and derivation appears in Griffiths
and Tavaré (1994b, 1995). The result of (2.1) can also be derived from Ethier
and Griffiths’ (1987) measure-valued diffusion representation of the infinitely
many sites model. The notation p0 conforms with that in Griffiths and Tavaré
(1994b). It is the probability of observing a labeled tree. If the tree is unlabeled,
then the probability is a combinatorial multiple of p0.

The program ptree implements (2.1) exactly. There are a large number of
terms in the recursion, so it only runs effectively for small trees with up to
about 15–20 sequences, depending on computer memory and speed. The im-
plementation is recursive, combined with a storage and lookup scheme for
probabilities of subtrees [Griffiths (1989)]. It is also possible to find a recur-
rence relationship similar to (2.1) when mutations are specified to have a
particular age ordering. This too is implemented in ptree.

Griffiths and Tavaré (1994b) developed a Monte Carlo algorithm based on
(2.1) for simulating p0�T�n� θ� as a function of θ. The simulated curve depends
on a generating value θ0 in a similar way to (4.13) below. The algorithm is
implemented in the program genetree and works effectively for larger sample
sizes.

3. Ages of mutations. We may associate with each mutation its age,
measured back in time to when it arose. We extend the definition of T to a
tree Ta = 	xa

1 � � � � �xa
d
 which contains age information in the mutation paths

to the root. Coordinates of the paths xa have the form �k� ak�, where ak is
the age of mutation k, measured back from the current time. For convenience
the root of the tree is labeled 0, and a0 is the age of the most recent common
ancestor of the tree. The tree, the ages of mutations and the multiplicities
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of types are all random variables. Recall that in describing a gene tree such
as that in Table 2 and Figure 1, we have chosen a particular ordering of
equivalent sites. For example, in the Melanesian data sites 5, 6, 7 and 8 are
ordered in such a way that site 5 is the youngest and site 8 the oldest. In what
follows a given fixed labeling is assumed.

A gene tree with age information is illustrated in Figure 3, with the time
axis to the right of the vertical line. The tree is drawn to scale with the ex-
pected age of mutations and the expected TMRCA conditional on the gene
tree structure �T�n�. Numbers to the left of the vertical line are the expected
number of ancestors conditional on the gene tree structure.

It is easy to work out the distribution of ages of mutations in a sample of
n = 2 sequences. If there are two sequences with a and b mutations on them,
then the conditional distribution of W, the time to the ancestor, is Gamma
with power parameter a + b + 1 and scale parameter 1 + θ [Tajima (1983)],
and ages are uniformly distributed as order statistics along respective edges
of the tree in �0�W�. For example, the age of the kth mutation on the edge
with a sites has mean k�1 + a + b�/�1 + θ��1 + a�. For larger sample sizes,
a computational approach is required to find these distributions. We develop
this method in the next sections.

Fig. 3. Melanesian β-globin tree. Time in units of 100,000 years.
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3.1. Recursions for ages. The probability of a tree �T�n� can be found
from the discrete recursion in (2.1). Keeping track of age information has
the effect of changing the recurrence to an integro-recurrence. To see this,
let q0�TA�n� = P�TA�n�A0 ≤ a0� � � � �As ≤ as�� where the tree T has s
segregating sites. A recursion for q0�Ta�n� is

q0�Ta�n� =
∫ ∞

0

{ ∑
k�nk≥2

nk − 1
n− 1 + θ

q0�Ta−t�n − ek�

+ ∑
k�nk=1� xk0 distinct�

� xk =xj ∀j

θ

n�n− 1 + θ�q
0��kTa′−t�n�

+ ∑
k�nk=1�
xk0 distinct

∑
j�� xk=xj

θ�nj + 1�
n�n− 1 + θ�

× q0(�kTa′′−t��k�n + ej�
)}
g�t�n�dt�

(3.1)

where g�t�n� is the exponential density with rate n�n+θ−1�/2 and a′ and a′′

denote appropriately relabeled ages after removal of the youngest mutation.
The argument used to obtain (3.1) is similar to that used for (2.1), with t
being the time of the first event back. Implicit in (3.1) is that q0�Ta−t�n� = 0
if t > minj	aj
. Ethier and Shiga (1993) study a measure-valued diffusion
process with mutation history and age information. Since (2.1) can be derived
from Ethier and Griffiths’ (1987) measure-valued diffusion, it is likely that
(3.1) can also be derived from Ethier and Shiga’s process.

It is possible to obtain a recursive system for the conditional expected ages
	E�Ai � �T�n��� i = 0� � � � � s
 and solve it in a similar way to ptree. Define
µi�T�n� = E�AiI	�T�n�
�, where I	·
 denotes the indicator function, with
the convention that µi�T�n� = 0 if mutation labeled i does not belong to the
tree. Then

µi�T�n� = 2
n�n− 1 + θ�p

0�T�n�

+ �n− 1�
�n− 1 + θ�

∑
k�nk≥2

�nk − 1�
n− 1

µi�T�n − ek�

+ θ

�n− 1 + θ�
∑

k�nk=1� xk0 distinct�
� xk =xj ∀j

1
n
µi��kT�n�

+ θ

�n− 1 + θ�
∑

k�nk=1�
xk0 distinct

∑
j�� xk=xj

�nj + 1�
n

µi
(
�kT��k�n + ej�

)
�

(3.2)

Together (2.1) and (3.2) allow µi�T�n� to be evaluated by recursion, i =
0� � � � � s�
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Let W =Wn+· · ·+W2 denote the time to the most recent common ancestor
(MRCA) of the sample of sequences. Griffiths and Tavaré (1994b) obtain a
representation of P�W ≤ w� �T�n�� as the expected value of a functional of
a stochastic process which has a tree state space and moves from an initial
state T to a singleton sequence, the root of T. The reason for obtaining this
representation is to provide a way to compute the conditional distribution
of W given �T�n� by repeated simulation. The aim here is to extend this
representation to allow computation of the joint distribution of the ages A,
conditional on �T�n�.

4. A Monte Carlo method. To develop the Monte Carlo approach, we
rescale the coefficients on the right of (3.1) to add to 1 and interpret the scaled
coefficients as transition probabilities in a Markov chain. Let f�T�n� be the
scale factor, the sum of the coefficients. The rewritten recursion then has the
form

q0�Ta�n� = f�T�n�
×
∫ ∞

0

{ ∑
k�nk≥2

p
(
T�n − ek � T�n

)
q0(Ta−t�n − ek

)
+∑

k

p
(
T′�n′ � T�n

)
q0(T′

a′−t�n′)

+ ∑
k→j

p
(
T′′�n′′ � T�n

)
q0(T′′

a′′−t�n′′)}g�t�n�dt�
(4.1)

where

f�T�n� = θ

n�n− 1 + θ�

(∣∣k� nk = 1� xk0 distinct� � xk = xj ∀j
∣∣

+ ∑
k�nk=1�
xk0 distinct

∑
j�� xk=xj

�nj + 1�
)

+ n− d

n− 1 + θ

(4.2)

and the generic form of the transition probabilities is

p
(
T�n − ek � T�n

) = nk − 1
�n− 1 + θ�f�T�n� �

p
(
T′�n′ � T�n

) = θ

n�n− 1 + θ�f�T�n� �

p
(
T′′�n′′ � T�n

) = θ�nj + 1�
n�n− 1 + θ�f�T�n� �

(4.3)

In (4.1)–(4.3) T′ and T′′ denote the trees in the last two summations in (3.1).
Here 	p�· � T�n�
 are transition probabilities in a Markov chain with a tree
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state space without age information. The chain is imbedded in a Markov pro-
cess with a tree state space, including age information, with jump distribution
g�t�n�. The process makes transitions from �Ta�n� to �Ta+t�n−ek�, �T′

a′+t�n′�
or �T′′

a′′+t�n′′�. The final age of a mutation is determined by the time at which
it is removed in the second or third type of transition. There is a single ab-
sorbing state at a singleton tree TA = 	�0�A0�
, the MRCA of the sample. A
functional representation argued directly from (4.1) is

P
(
TA�n�A0 ≤ a0� � � � �As ≤ as

)
= E�T0�n�

[
τ−1∏
�=0

f
(
T����n���)I{A0�ξ� ≤ a0� � � � �As�ξ� ≤ as

}]
�

(4.4)

where the Markov chain passes through states 	�T����n����� � = 0�1� � � � � τ

and is absorbed at transition τ at time ξ at a singleton tree. The expectation E
is in the full Markov process which includes age information, beginning with
all ages equal to zero. Letting a0� � � � � as → ∞ in (4.4), we see that

p0�T�n� = E�T0�n�

[
τ−1∏
�=0

f
(
T����n���)

]
�(4.5)

recovering the representation of Griffiths and Tavaré (1994b).
More generally, (4.4) may be replaced by

E
(
h�A0�A1� � � � �As

)
I
{�TA�n�})

= E�T0�n�

[
h�A0�A1� � � � �As�

τ−1∏
�=0

f
(
T����n���)

]
�

(4.6)

Writing F = ∏τ−1
�=0 f�T����n����, we then have

E
(
h�A0�A1� � � � �As���T�n�) = E�T0�n�

(
h�A0�A1� � � � �As�F

)
E�T0�n��F� �(4.7)

The quantity in (4.7) can be estimated by repeated simulation of the process.
Letting Fj�aj = �Aj

0� � � � �A
j
s � denote the values of F and a on the jth of r

simulation runs, we can use as an approximation to the right side of (4.7) the
ratio

r−1∑r
j=1 h�Aj

0�A
j
1� � � � �A

j
s �Fj

r−1∑r
j=1 Fj

�

Thus an estimate of the tree probability p0�T�n� is

p̂0�T�n� = r−1
r∑

j=1

Fj�(4.8)

and the empirical distribution of the ages, conditional on the tree �T�n�, is
given by the discrete distribution{�a1� p1�� � � � � �ar� pr�

}
�(4.9)
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where

pi =
Fi∑r
j=1 Fj

� i = 1� � � � � r�(4.10)

Characteristics of the joint conditional distribution of A given �T�n�, such as
mean ages, can be calculated from this empirical distribution. If α�j�

i is the
simulated age of the ith site on the jth run, then

Ê�Ai � T�n� =
∑r

j=1 α
�j�
i Fj∑r

j=1 Fj

�(4.11)

Note that p̂0�T�n�, being an average of independent identically distributed
random variables, is asymptotically normal with mean p0�T�n�. Ratio esti-
mates such as (4.7) have bias of order r−1 and, by the strong law of large
numbers, are asymptotically unbiased; typically r is chosen to be very large.
We note that the discrete distribution (4.9) can also be used to generate (ap-
proximately) i.i.d. observations from the required conditional distribution.

The computer program genetree implements the algorithm based on (4.4).
Output are mean ages and standard deviations of ages of mutations, an empir-
ical TMRCA distribution and the mean number of ancestors at times back in
the tree. A gene tree such as in Figure 3 can be drawn to scale in an automated
way using the program treepic.

4.1. Importance sampling. The algorithm using (4.1)–(4.11) can be modi-
fied by using importance sampling to simulate a family of empirical age dis-
tributions �a1� p1�θ��� � � � � �ar� pr�θ�� indexed by θ. Making θ explicit in the
notation, (4.1) can be manipulated into the form

q0
θ�Ta�n� =

∫ ∞

0

∗∑
h�T�n�T∗�n∗�q0

θ

(
T∗

a−t�n∗)pθ0

(
T∗�n∗ � T�n

)
g�t�n�dt�

where �T∗�n∗� denotes a state reached from �T�n�, and

h
(
T�n�T∗�n∗) = fθ�T�n� pθ�T

∗�n∗ � T�n�
pθ0

�T∗�n∗ � T�n�

=




fθ0
�T�n��n− 1 + θ0�/�n− 1 + θ��

if �T∗�n∗� = �T�n − ek��
fθ0

�T�n�(θ�n− 1 + θ0�/
(
θ0�n− 1 + θ�)�

if �T∗�n∗� = �T′�n′�� or �T′′�n′′��

(4.12)

Then

Pθ

(
TA�n�A0 ≤ a0� � � � �As ≤ as

)
= E

θ0
�T0�n�

[
τ−1∏
�=0

h
(
T����n����T��+ 1��n��+ 1�)

× I
{
A0�ξ� ≤ a0� � � � �As�ξ� ≤ as

}]
�

(4.13)
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Thus a family of age distributions indexed by θ is returned in the simulation
run with a single generating θ0. In practice these distributions will be accurate
only in the vicinity of θ0.

4.2. Melanesian data set. To illustrate the algorithms of this section, six
realizations of ages in the Melanesian gene tree with their relative likelihoods
are shown in Figure 4. While individual trees are not likely to be informative,
they do serve to illustrate the variability inherent in each run.

The standard deviation of ages of mutations in the tree in Figure 3 are
shown in Table 3. The standard deviations are typically half the means. For
illustration, the empirical density of the time to the most recent common an-
cestor and of the age of mutation 5 are shown in Figure 5.

The maximum likelihood estimate θ̂ = 2�55 found by Harding, Fullerton,
Griffiths and Clegg (1997) is used. Assuming a generation time of 20 years
together with the mutation rate of v = 1�34 × 10−9 per site per year used by

Fig. 4. Simulated Melanesian trees with relative likelihoods, conditional on observed data.
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Table 3
Ages of mutations*

site 3 11 12 9 13 10 5 1 2 6 4 7 8

sequences 1 1 4 7 4 12 15 26 26 15 16 15 15

mean age � tree 0.2 0.6 0.6 0.8 1.0 2.1 3.8 3.0 4.7 5.0 3.6 6.1 7.3

s.d. age � tree 0.2 0.5 0.4 0.5 0.5 0.9 1.5 1.5 2.0 1.9 1.9 2.2 2.4

mean age (4.14) 0.5 0.5 1.6 2.3 1.6 3.3 3.8 5.3 5.3 3.8 4.0 3.8 3.8

*Time in units of 100,000 years.

Harding, Fullerton, Griffiths, Bond, Cox, Schneider, Moulin and Clegg (1997),
this gives an implied effective population size of approximately 10,250 diploid
individuals. Therefore 1 unit of coalescent time corresponds to about 410,000
years. The simulations used r = 500�000. The mean and standard deviation
of the age of site 5 are 390,000 and 150,000 years with a 95% interpercentile
interval of 170,000–1,030,000 years. (Here, and in the remainder of the paper,
such an interval is determined by the 2.5 and 97.5 percentiles of the distribu-
tion of interest.) The mean time to the most recent common ancestor (TMRCA)
is around 900,000 years. The effective population size for a nuclear gene such
as β-globin, being diploid and carried by both sexes, is four times that of mito-
chondrial DNA or Y-chromosome DNA, implying roughly a four times longer
ancestry.

Griffiths and Tavaré (1998) show that the expected age of a mutation ob-
served to be in z sequences in a sample of n (1 ≤ z < n� is

2z
n− z

n−z∑
j=1

1
j

�n− z� · · · �n− z− j+ 1�
n · · · �n− j+ 1� �(4.14)

It is of interest to compare the expected ages of mutations using (4.14) with
the expected ages conditional on the gene tree, which are shown in Table 3.
The mean age of a typical one of sites 5, 6, 7 and 8 is 5.6, compared to the
estimate of 3.8 from (4.14). Clearly there is much more information in the
gene tree; the ages of particular sites are constrained by where they occur in
the tree.

5. TMRCA of the sample and population. In a sample of n sequences
the probability that the sample and the population share the same most recent
common ancestor is �n− 1�/�n+ 1� [Saunders, Tavaré and Watterson (1984)].
However the conditional probability given a gene tree �T�n� may be quite
different, depending on whether the tree suggests a short time to its ancestor
or not. It is of interest to develop an algorithm to compute the joint distribution
of the TMRCA in both sample and population, conditional on �T�n�. Let Y0
be the TMRCA in a sample of n sequences and Y1 the TMRCA in a larger
sample of m+n sequences representing the population and containing the n.

Let TY denote a tree with information additional to T about Y = �Y0�Y1�
and

q�Ty�n�m� = P
(
TY�n�Y0 ≤ y0�Y1 ≤ y1

)
�
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Densities beginning from left are
age of site 5 � gene tree as data,
TMRCA of sample � number of segregating sites as data,
TMRCA of sample � gene tree as data.

Fig. 5. Age of site 5 and TMRCA densities. Time in units of 100�000 years.

A recursive equation is

q�Ty�n�m� =
∫ ∞

0

{
n�n− 1�
r�n�m� θ�

∑
nk>1

nk − 1
n− 1

q�Ty−t�n − ek�m�

+ �m+ n��m+ n− 1� − n�n− 1�
r�n�m� θ� q�Ty−t�n�m− 1�

+ θ

r�n�m� θ�
∑
k

q�T′
y−t�n′�m�(5.1)

+ θ

r�n�m� θ�
∑
k→j

q�T′′
y−t�n′′�m�

}
g�t�n�m�dt�
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where r�n�m� θ� = �m+n��m+n− 1� +nθ, and g�t�n�m� is the exponential
density with rate r�n�m� θ�/2.

Events that may occur when there is a configuration of �n�m� sequences are
coalescence in the n subgroup with probability n�n−1�/r�n�m� θ�; coalescence
in the m+n sequences, but not in the n subgroup with probability

(�m+n��m+
n−1�−n�n−1�)/r�n�m� θ�; and mutation in the n subgroup with probability
nθ/r�n�m� θ�. If n = 1, (5.1) is just an obvious recurrence for Y1 based on
convolution of waiting time distributions in states

P�Y1 ≤ y1�m� =
∫ ∞

0
P
(
Y1 ≤ y1 − t�m− 1

)
g�t�1�m�dt�

Construct a Markov process with a state space �Ty�n�m� by rescaling the
coefficients in (5.1). Then a representation is

q�Ty�n�m� = EE�T0�n�m�

[
τ−1∏
�=0

f
(
T����n����m���)

× I
{
Y0�ξ� ≤ y0�Y1 ≤ y1

} �m�ξ��Y1�ξ�
]
�

(5.2)

where the imbedded Markov chain passes through states 	�T����n����m���)�
� = 0� � � � � τ
 and τ is the step at the hitting time when first n = 1. The
outside expectation is taken over the tail of the waiting time from when first
n = 1 until m = 0. The simulation rule then generates replicates �y0� y1� p�
similarly to (4.5) leading to an empirical distribution of Y0� Y1 conditional
on �T�n�. The functional values are F = ∏τ−1

�=0 f�T����n����m����, y0 is the
waiting time until the ancestor of the subgroup of n, and y1 is the total time
until the ancestor of the m + n. The algorithm is implemented in a program
popsim.

5.1. A Y chromosome data set. As an illustrative example, we use data
having three segregating sites arising in five Y-chromosome sequences given
in Whitfield, Sulston and Goodfellow (1995). Tavaré, Balding, Griffiths and
Donnelly (1997) also discuss these data. The major point is that the TMRCA
of the population and the sample can be quite different for some parameter
values. Using θ = 3�52 (calculated from 15,680 bases at a rate of 1�123 ×
10−9 per base per year and an effective population size of N = 5�000), the
expected number of segregating sites is 7.3, so a short ancestry of the sample
is suggested. The tree with expected ages and the TMRCA of the population
as the height of the box is shown in Figure 6.

If θ is really too large, because of the mutation rate or the effective popula-
tion size being incorrect, then a short ancestry is not suggested. The maximum
likelihood estimate given the gene tree as data is θ̂ = 1�65. The likelihood
curve is shown in Figure 7. This is an exact, rather than simulated, curve
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Fig. 6. Whitfield’s Y-chromosome tree. Time in units of 10,000 years.

Fig. 7. Likelihood curve for Whitfield data.
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Table 4
Ages of mutations in Whitfield’s tree

� 1.0 1.65 3.52 5.0

Age 1 2.1 1.8 1.3 1.0
Age 2 2.1 1.8 1.3 1.0
Age 3 10.8 8.7 5.7 4.4

TMRCA (S) 16.0 12.8 8.1 6.3
TMRCA (P) 18.6 16.4 15.8 16.5
Prob (S=P) 0.77 0.66 0.37 0.22

Likelihood 0.8 1.0 0.6 0.4

computed from the recursion (2.1) using ptree. Table 4 shows characteristics
of the tree for various values of θ. S and P denote sample and population
MRCA’s. Units are in 10,000 years, and the likelihood is relative to the maxi-
mum when θ = 1�65. Intuitively there cannot be a large amount of information
in a small tree like this.

Whitfield, Sulston and Goodfellow (1995) actually use the particular topol-
ogy in Figure 8 for their tree. The other possibility is that one of the younger
mutations occurs on the rightmost edge. In a small tree it is possible, though
tedious, to enumerate all possible sequences of mutation and coalescence
events to the ancestor, with their probability and times of occurrence. It can
be shown that the topology in Figure 8 has a very high probability of being the
correct one by comparing the likelihood curve with a likelihood curve produced
by ptree for the corresponding gene tree with no assumption as to the coales-
cence order. The TMRCA density can also be found exactly by a combinatorial
argument. This was done for the particular topology. There are essentially
six cases to consider, depending on whether the coalescence in the left of the

Fig. 8. Tree topology.
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Fig. 9. Family of TMRCA densities as θ varies.

diagram in Figure 8 is below the last two mutations, between the last two
mutations, above the last two mutations and before the coalescence of their
lines, above the coalescence of their lines and below the topmost mutations,
or above the topmost mutation.

It is possible to find the joint distribution of the TMRCA and the tree.
Considering the six possible trees leads to the distribution of the TMRCA given
the tree topology in Figure 8. A family of TMRCA densities, with parameter
θ, is shown as a surface in Figure 9. The density is quite flat for small θ, but
concentrated around the mode for larger values, at small TMRCA values.

6. Further applications. In this section we collect together some results
that show how the basic approach can be applied to several related problems.

6.1. Infinitely many alleles model. One useful summary statistic of the
set of sequences is the counts n of allele frequencies (recall that many distinct
trees can have the same allele counts). These allele frequencies evolve accord-
ing to the infinitely many alleles model; compare Ewens (1972). The age of an
allele is defined as the age of the youngest mutation in that allele. It is simple
to derive a recursion that allows us to compute the joint age distribution of
alleles in a sample, conditional on their frequencies n1� � � � � nd. Let A1� � � � �Ad

be the ages of alleles 1� � � � � d, A0 the TMRCA of n1� � � � � nd and define

ra�n� = Eh�A0� � � � �Ad�I	n
�
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Then, for n > 1,

n�n− 1 + θ�ra�n�

=
∫ ∞

0

{ ∑
k�nk≥2

n�nk − 1�ra−t�n − ek�

+ ∑
k�nk=1

∑
j�j =k�nj>0

θ�nj + 1�rak−t�n − ek + ej�

+ ∑
k�nk=1

θrak−t�n�
}
g�t�n�dt�

(6.1)

where ak = �a0� a1� � � � � ak−1� ∞� ak+1� � � � � ad�. The recursion follows lines
back in time, replacing an age ak by ∞ once it has been determined. It can
happen that an allele has an age greater than the TMRCA if that type is
the same as the type of the MRCA; if n = 1, with one type A1 and a0 < a1,
one needs to consider the time to the mutation after the MRCA, which is
exponential with rate θ/2. The recursion is similar to that obtained for the
Ewens’ (1972) labeled sampling formula and the marginal distribution of the
allele configuration without ages is

n!θd

n1 · · ·nd · θ�θ+ 1� · · · �θ+ n− 1� �

A Monte Carlo method similar in construction to that in Section 4 can then
be used to find the age distribution of a sample of n; see Griffiths and Tavaré
(1994c) for related material. The algorithm used in the construction can be
changed by scaling the terms in the recursion. The implementation here seems
to have a lower simulation variance when based on b�n� = r�n�θ�n�/n!θd. The
mean and standard deviation of the ages of the alleles in the Melanesian data
set are shown in Table 5, these values being estimated from three million runs
of the simulation algorithm. The standard deviation of the younger ages are
large relative to their mean.

6.2. Variable population size. The algorithm in Section 4 for computing
age distributions can be extended to a population with deterministic variable

Table 5
Ages of Melanesian alleles*

frequency 25 16 7 4 3 1 1 TMRCA
mean age 4.4 3.4 2.0 1.4 1.1 0.5 0.5 8.0
s.d. age 3.3 3.0 2.4 2.0 1.8 1.2 1.2 4.3

*Time in units of 100,000 years.
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population size. We assume that in coalescent units, the population size a time
t back from the present time satisfies N�t� = N�0�ν�t�� t ≥ 0. For example,
exponential growth of a population (forward in time) at rate ρ can be modeled
by taking ν�t� = exp

(− ρt�� t > 0.
The analogous representation is to consider a Markov process with a jump

density from t to an event at s > t when there are n ancestors of

(
n

2

)
λ�s� exp

(
−
(
n

2

) ∫ s
t
λ�u�du

)
� s > t�

where λ�t� = 1/ν�t�. The transition probabilities are derived similarly to be-
fore; however if a transition is made at time s, then the coalescence coefficient
in (3.1) becomes �nk − 1�λ�s�/��n − 1�λ�s� + θ�, so the type of a transition
made now has a probability depending on the time at which it occurs. The
functional constructed by scaling coefficients depends on s also, and in (4.5)
F = ∏τ−1

�=0 f�T���� n���� s����� where 	s���� � = 0� � � � � τ−1
 are the event times.
More detail about variable population size appears in Slatkin and Hudson
(1991) and Griffiths and Tavaré (1994c).

6.3. Varying mutation rates. In this section we show that when there are
different mutation rates in different regions of the sequence, the joint distri-
bution of ages depends only on the total mutation rate. We incorporate varying
mutation rates as follows: suppose there are k different regions in the sequence
with mutation rates θ1� � � � � θk, and overall mutation rate θ = θ1 + · · · + θk.
We interpret this to mean that, given a mutation has occurred, it is of type
i with probability θi/θ. The extension of (3.1) is to replace θ/�n − 1 + θ� by
θi/�n− 1 + θ� for mutations of type i. Then q0�Ta�n� is the probability when
sites are arranged into these k types. Let q0

θ�Ta�n� denote the probability
when all sites have an equal rate. If there are s1� � � � � sk sites of the k types,
then

q0�Ta�n� =
( k∏

1

(
θi
θ

)si)
q0
θ�Ta�n��

and it follows that the conditional distribution of ages given the tree �T�n�
depends on θ1� � � � � θk only through θ. An extension of the argument implies
that if rates are variable, and the types of the sites are unspecified, then the
conditional age distribution still only depends on the total rate θ. The same
result holds if the population size varies deterministically.

6.4. The number of ancestors time t ago. Let Zn� Zn−1� � � � �Z2 be the co-
alescence times in a sample of n sequences. Our interest is in the conditional
distribution of these times, given the gene tree �T�n�. Of course the uncondi-



AGE OF MUTATIONS 587

tional times are distributed as points in a death process of rate µk = (
k
2

)
, but

the conditional distribution is much more complex. A representation analo-
gous to (4.4) holds,

P
(
TA�n�Zn ≤ zn� � � � �Z2 ≤ z2

)
= E�T�n�

[
τ−1∏
�=0

f
(
T����n���)I{Z′

n ≤ zn� � � � �Z
′
2 ≤ z2

}]
�

(6.2)

where Z′
n� � � � �Z

′
2 are the “coalescence” times in the Markov process.

The conditional distribution of 	An�t�� t ≥ 0
, the number of ancestors of
the sample time t ago, is easily related to the conditional distribution of co-
alescence times. E�An�t� � T�n� is shown in Figure 3 for various values of
t for the β-globin data. Since the tree is drawn with mutations separating
lines, the number of ancestors at a particular time is less than or equal to the
number of edges across the tree.

6.5. Unrooted trees. When the ancestral labeling of the sites is unknown,
the data may be represented by an unrooted tree [cf. Griffiths and Tavaré
(1995)]. The unrooted tree of the Melanesian data appears in Figure 10. Circles

Fig. 10. Unrooted Melanesian tree.
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without labels are inferred individuals in the genealogy. Sites such as 5, 6, 7, 8
are now ordered between individuals for convenience, rather than age-ordered
as in rooted trees. There are s+1 rooted trees T0� � � � �Ts corresponding to an
unrooted tree with s mutations, and the likelihood of the unrooted tree Q,
say, is

p0�Q�n� =
s∑

j=0

p0�Tj�n��(6.3)

The conditional distribution of ages of sites is∑s
j=0 Pj�A0 ≤ a0� � � � �As ≤ s � Tj�n�p0�Tj�n�

p0�Q�n� �(6.4)

An empirical distribution of ages conditional on �Q� n� is a mixture
weighted by the simulated functionals. For example, if α�k�

ji is the simulated
age in the tree Tj of site i on the kth of rj replicates, with functional Fjk,
then

Ê�Ai � Q�n� =
∑s

j=0
∑rj

k=1 α
�k�
ji Fjk∑s

j=0
∑rj

k=1 Fjk

�(6.5)

7. Discussion. In this paper we have developed a technique for approxi-
mating the distribution of the ages of mutations in a gene tree under a partic-
ular model of DNA sequence evolution. It is possible to extend this model to
allow for recombination along the sequences [Griffiths and Marjoram (1996)].
In this case, there can be multiple ancestors of a given sequence. The compu-
tational approach used here may also be used to study similar problems when
the population of interest is subdivided, and migration is allowed between
“islands” [Bahlo and Griffiths (2000)]. Software is available at the mathe-
matical genetics web site at http://www.stats.ox.ac.uk/. Finally, while we
have focused on the ages of mutations, the same approach may be exploited
to study conditional properties of other functionals of the coalescent process,
given sample data.

Acknowledgment. We thank Rosalind Harding for helpful comments.

REFERENCES

Bahlo, M. and Griffiths, R. C. (2000). Gene trees in subdivided populations. Theoret. Population
Biol. To appear.
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