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O fly, where art thou?
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In this paper, the design of a real-time image acquisition system for tracking the movement of
Drosophila in three-dimensional space is presented. The system uses three calibrated and
synchronized cameras to detect multiple flies and integrates the detected fly silhouettes to
construct the three-dimensional visual hull models of each fly. We used an extended Kalman
filter to estimate the state of each fly, given past positions from the reconstructed fly visual
hulls. The results show that our approach constructs the three-dimensional visual hull of each
fly from the detected image silhouettes and robustly tracks them at real-time rates. The
system is suitable for a more detailed analysis of fly behaviour.
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1. INTRODUCTION

Trajectory modelling is an effective way to understand
the behaviour of many dynamical systems (Turchin
1998; Gruen & Akca 2005; James 2007). In animals,
trajectories can be used to explain complex behaviour
patterns such as migration, foraging, territorial aggres-
sion and mating. An intuitive way to generate
trajectories is to use sensors to detect and track animals
over a period of time. Over years, many approaches
have been used to track animals of different shapes and
scales. Large animals have been fitted with sensors
giving us telemetry data about their locations (Preisler
et al. 2004). Stereo photography has been used on static
images to reconstruct positions of birds in a flock
(Ballerini et al. 2008). Algorithms were also developed
to study the movement and schooling behaviour of
fishes (Parrish & Turchin 1997). At the insect level,
ants and bees have been tracked with cameras to
provide valuable data for developing multi-agent
modelling tools (Balch et al. 2001; Feldman & Balch
2004). Tracking algorithms have even been applied for
monitoring the location of drug molecules inside cells,
since understanding this is important for the develop-
ment of new drugs (Murphy 2004).

As a model organism, the fruit fly Drosophila
melanogaster plays a vital role in our understanding of
biological processes. Flies are interacting insects, exhibit-
ing a multitude of behaviours such as grooming, flight,
foraging, fighting, mating and egg laying. Therefore,
understanding the behaviour of a group of insects is an
important but challenging problem: they are fast moving
address for correspondence: Molecular and Compu-
logy Program, Department of Biological Sciences,
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and are virtually indistinguishable. Many attempts
to solve this problem have been made in recent years
by either watching for wing movements of tethered
flies (Graetzel et al. 2006) or analysing trajectories of
free flying flies. Most approaches are limited to filming a
single fly (Tammero & Dickinson 2002), which is not
suitable for explaining complex behavioural traits such
as courtship. Among the approaches that track multiple
insects, a large number of them project their three-
dimensional tracks onto one plane. Some approaches
use a single camera to film the insects, prohibiting
the three-dimensional reconstruction due to lack of
depth information.

In order to overcome these limitations, we have
developed a method for detecting and tracking fly
movement using three calibrated and synchronized
cameras. Our method produces the real-time three-
dimensional tracks of a group of flies suitable for further
analysis of flight behaviour.We synchronize the multiple
camera views to minimize the effects of occlusions and
improve the estimation of three-dimensional reconstruc-
tion.Asa test,weused thefly tracking systemproposed in
this paper to study the behaviour of flies in a real
biological experiment. In that study, it was found that
hydrogen peroxide feeding and conditional expression of
superoxide dismutase transgenes dramatically altered
specific fly behaviours that were not possible to detect
without using our system (Brown et al. submitted).

Our paper is broken down into the following
sections. Section 1.1 presents a brief survey of related
literature on vision-based tracking of insects and visual
hull reconstruction. Section 1.2 provides an overview of
the proposed system. Section 2 introduces the algorithm
to construct a visual hull of the fly body. Section 3
reviews the extended Kalman filter (EKF) approach to
state estimation and its application to tracking flies.
J. R. Soc. Interface (2008) 5, 1181–1191
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Figure 1. Three-dimensional visual hull from two-dimensional
silhouettes.
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Figure 2. Outline of the fly tracking system.
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Section 4 describes the experimental set-up in detail.
Section 5 demonstrates our visual hull construction and
rendering algorithms in a real-time fly tracking system.
Section 6 provides a conclusion and describes some
future directions of this work.
Figure 3. Three-dimensional chessboard used for camera
calibration.
1.1. Previous work

Analysing and tracking insect motion and behaviour
have been active areas of research for the last few years.
Many algorithms originally intended for tracking
people have been extended to insects. These methods
are often not reliable since insects are fast moving and
are virtually indistinguishable. Also, these methods are
based on non-interacting objects, which make them
unsuitable for tracking and analysing the behaviour of
interacting insects such as flies. The classic algorithms
in this class of non-interacting target tracking include
the nearest neighbour approaches (Deriche & Faugeras
1990; Parrish & Turchin 1997), Bayesian multiple
hypothesis tracker (Cox & Leonard 1994) and data
association methods such as the joint probabilistic data
association filter (Rasmussen & Hager 2001). Among
the approaches suitable for tracking multiple insects,
the analysis has been carried out by either tracking or
limiting the insect movement to a two-dimensional
space. A combination of colour- and motion-based
methods was used to track ants in the two-dimensional
space (Balch et al. 2001). Their system was susceptible
to errors owing to occlusion, clumping and motionless
ants. A system to track and analyse the behaviour of
honeybees using human trainable models was also
proposed (Feldman & Balch 2004). These methods are
video based, and are therefore not capable of dis-
tinguishing between models of behaviour, which are too
similar. The accuracy of this behaviour recognition
method is highly dependent on the size of the training
set. Some tracking methods limit filming to a single fly,
which is not suitable for explaining complex beha-
vioural traits such as courtship (Graetzel et al. 2006).
J. R. Soc. Interface (2008)
Simulated models of fish schooling were used to study
aggregate behaviour, since it was difficult to generate
tracking information of groups of fishes for more than a
few seconds (Parrish et al. 2002). When tracking
information was available, schooling behaviours could
only be identified based on their paths (Parrish &
Turchin 1997). In order to overcome these limitations,
we used a visual hull approach to construct the three-
dimensional models of each fly. This model provides a
more accurate description of the fly and is better suited
for identifying the patterns of behaviour than the video-
based methods mentioned above.

The visual hull concept introduced by Laurentini
(1994) falls under the classification of shape from
silhouette methods (Baumgart 1974). It describes the
maximal three-dimensional geometric model con-
structed from all possible object silhouettes (figure 1).
Since it is not possible to extract all possible silhouettes
of an object, the visual hull is computed using a finite
number of them. As the number of silhouettes
increases, so does the rendered quality of the recon-
structed object model. Optimal viewpoints to take
silhouette images for the three-dimensional shape
reconstruction were discussed by Shanmukh & Pujari
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(1991). Visual hulls are most commonly reconstructed
by projection of silhouettes in a three-dimensional
grid of volume elements or voxels (Potmesil 1987;
Szeliski 1993). An octree data structure was proposed
to speed up the construction of the visual hull model
(Potmesil 1987). A method using splines instead of
polygonal meshes was proposed to improve the shape
of the model (Sullivan & Ponce 1998). Another method
for constructing the visual hull models using voxels
was proposed, but the processing was done off-line
(Moezzi et al. 1996). An algorithm constructing an
exact polyhedral representation of the visual hull
was presented by Matusik et al. (2001), but exhibited
performance unsuitable for real-time tracking
of Drosophila.

There is a wealth of literature on the use of visual
hulls for recognizing different behaviours in humans and
its advantages over traditional video-based methods
(Mikic et al. 2001; Werghi & Yijun 2002; Cohen & Li
2003; Chu & Cohen 2005). These methods construct the
visual hulls and infer human postures and gestures using
different underlying statisticalmodels. They do however
have some shortcomings that make them unsuitable for
use in a real-time fly tracking system like ours. These
methods construct the visual hull of only a single object
and infer behaviours from that. They also offer no
tracking algorithms since the single object is present in
the view of all cameras at all times. Also, they do not
run at real-time rates and cannot infer behaviours due
to interactions (e.g. courtship and mating in flies). Our
system overcomes all of the above-mentioned short-
comings by constructing the visual hulls of multiple flies
and tracking them even during occlusions over a period
of time at real-time rates of 60 frames sK1. Our approach
therefore not only provides three-dimensional path
information for multiple flies but also is better suited
for identifying complex behaviours comprising physical
motions of the flies, for example wing extension or
arcing of the body, or egg laying.
1.2. Proposed system

The first step in vision-based tracking is to detect and
separate moving objects in images using background
subtraction techniques (Stauffer&Grimson1999;Khan&
Shah 2000; Xu & Ellis 2001). A three-dimensional model
of the object can then be reconstructed from the set of
two-dimensional image silhouettes. This classical
approach to three-dimensional reconstruction is known
as the shape from silhouette method. Popular approaches
to three-dimensional model construction from image
silhouettes use volumetric techniques that often produce
visual artefacts in the three-dimensional model (Potmesil
1987; Szeliski 1993; Dyer 2001). This is a significant
drawback when low-resolution approximations of the
object are needed for real-time applications such as fly
tracking. There are other approaches to constructing
the three-dimensional models that are view dependent.
One of the popular methods in this class, view ray
sampling, constructs a three-dimensional model from a
discrete set of viewing rays (Matusik et al. 2000). In this
paper, we have developed algorithms for rendering
polyhedral visual hulls of the flies in real time. This
J. R. Soc. Interface (2008)
representation has significant advantages over other
three-dimensional reconstruction methods. It is view
independent and needs to be computed only once for a
given set of input silhouettes. This enables us to freeze a
particular frame and change the viewing angle to better
study the three-dimensional fly model for any clues of its
behaviour. It can be constructed even when flies are
occluded in an individual camera view, which is a
common occurrence as they cross paths. (Note that a
minimum of two views are required to construct the
visual hull.) It can be computed and rendered quickly on
current graphics hardware, and is ideal for real-time
applications such as fly tracking.

Once the three-dimensional object model is gener-
ated, it is then possible to track it in explicit three-
dimensional coordinates. Vision-based object tracking
typically involves an iterative method to estimate the
state of the moving object from the past state
measurements. We use a 6 d.f. EKF for state estimation
to track the flies in the three-dimensional space. An
outline of our system is illustrated in figure 2.
2. GENERATING THE THREE-DIMENSIONAL
FLY MODEL FROM VIDEO

The major purpose of this work is to develop an
algorithm for detecting flies from camera images and
tracking them over time, enabling us to understand
their movement behaviour. Tracking the flies in the
three-dimensional space required reconstructing the
three-dimensional models of each fly in the vial. Three
calibrated and synchronized cameras were used to
capture fly image silhouettes to reconstruct the three-
dimensional model. The cameras were calibrated using
a set of 20 feature points (see §2.1). This method of
reconstructing the three-dimensional models from the
two-dimensional silhouettes is known as the visual hull
reconstruction. The two-dimensional fly image silhou-
ettes were detected using a Gaussian background
subtraction technique (Wren et al. 1997). These
silhouettes were used to compute the visual hull of
the fly. The following is a detailed description of the
steps for generating the three-dimensional fly model.
2.1. Camera calibration

To estimate the epipolar geometry between the three
cameras, we calibrated them using a set of 20 feature
points on a multi-planar chessboard (figure 3). Each
square grid in the chessboard has a length of 1 cm. The
method proposed by Tsai (1986) was used for the
calibration process. Projection matrices mapping image
coordinates to three-dimensional coordinates and vice
versa were generated for each camera. In order to test
the accuracy of our mapping, we reprojected three-
dimensional positions of test points on the chessboard
to image (silhouette) coordinates using the projection
matrices and compared them with the true two-
dimensional image coordinates. The difference in pixels
between the two points in the x - and y-directions is
shown in the reprojection error plot (figure 4). Standard
deviations in the x - and y-directions were found to be
0.12403 and 0.11649 pixels, respectively.
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Figure 4. Reprojection error plot (units in pixels) for test
points used in calibrating the three cameras.

Algorithm 1

Three-dimensional fly visual hull reconstruction
(i) Compute the silhouette cones for each input two-

dimensional polygonal fly silhouette s
(ii) Perform a pairwise intersection of each pair of

silhouette cones and save the set of polygons
(iii) Intersect the polygon sets computed in step (ii) to find

the faces of each fly visual hull
(iv) Merge these faces to form the three-dimensional

geometric model known as the visual hull for each fly

Figure 5. Silhouette detection of a single fly in the vial. The
green boundary is the detected edge of the fly, light red region
outside the green boundary is the shadow region eliminated
from the final dark red silhouette.

(a) (b)

Figure 6. (a) Flies as seen by the three cameras and (b) the three-dimensional visual hull reconstruction of the two flies in the vial.
The visual hulls are constructed even when the flies are not visible in each camera view. Note. A minimum of two views are
necessary for visual hull construction.
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2.2. Silhouette detection

The first step to building the visual hull is to find the flies
in the images. This was done using a background
subtraction technique where intensity values and var-
iance of each pixel in the background image was
calculated and fit to a Gaussian model. Flies could then
be identified since their pixel intensities exceeded a
threshold level based on the model fit from the back-
ground (Wren et al. 1997). The drawback of this method
is that it detected flies along with their shadows, since
theywere cast on the background and segmented out.For
a shadow pixel, the colour difference between the
foreground and background pixels is small, since the
difference lies mainly in the intensity values. Therefore,
by comparing the intensity difference of the foreground
and background pixels, we can eliminate shadows. Also,
since our experiments were performed indoors, shadows
had blurred edges. These facts were used to eliminate
shadow regions, giving us accurate fly image silhouettes
(Chu & Cohen 2005). The error probabilities of pixels in
the image being classified as silhouette or non-silhouette
pixels are mentioned in §6. These silhouettes computed
by the real-time background subtraction algorithm were
used for reconstructing the visual hull models. The
algorithm is easy to implement and fast enough for
extracting silhouettes at 60 frames sK1, which is the
J. R. Soc. Interface (2008)
frame rate atwhich our cameras capture images. Figure 5
shows a demonstration of our silhouette detection
algorithm on a single fly.
2.3. Visual hull reconstruction

The three-dimensional shape of the fly can be approxi-
mated by reconstructing its visual hull (Laurentini
1994). In our system, the visual hull is generated using
the set of two-dimensional silhouette images of the fly
from different calibrated camera views. A minimum of
two views is required to construct the fly visual hull.
Our algorithm uses polygonal representations of the
image silhouettes to compute the visual hull similar to
Matusik et al. (2001). The set of these two-dimensional
polygons representing each silhouette s consists of a



Table 1. Three-dimensional tracking accuracy of EKF on a
randomly chosen sequence of 60 s from test data of 30 min.

actual
flies
detected

correct
tracks

per cent
correct

fram-
e rate

1 1 1 100 60
2 2 2 100 60
5 5 5 100 60
7 7 6 86 45
10 10 8 80 35
13 11 8 62 15
15 12 6 40 5

Algorithm 2

Tracking flies using the EKF
Initialization

(i) Initialize with state X̂ i;0ZE½Xi;0�
Pi;0ZEðXi;0KE½Xi;0�ÞðXi;0KE½Xi;0�ÞT

Prediction

(ii) Predict the current state ~Xi;kZmðX̂ i;kK1Þ
(iii) Compute the conditional error covariance

~Pi;kZMi;kPi;kK1M
T
i;kCQi;kK1

Update
(iv) Compute the Kalman gain matrix

Di;kZHi;k
~Pi;kH

T
i;kCRi;k

Gi;kZ ~Pi;kH
T
i;kD

K1
i;k

(v) Compute the measurement ~Y i;kZhð ~Xi;kÞ
(vi) Apply measurement correction to the state estimate

X̂ i;kZ ~Xi;kCGi;kðY i;kK ~Y i;kÞ
(vii) Apply measurement correction to the error

covariance Pi;kZðIKGi;kHi;kÞ ~Pi;k

Recursion
(viii) Repeat steps (ii)–(vii) for next time points for each

fly i

Figure 7. Experimental set-up of three cameras on the circular
rig. Flies are placed in the vial in the centre.

(a)

(b)

(c)

Figure 8. (a–c) Detection of fly silhouettes in two-dimensional
camera images. This bounding box representation around the
detected fly silhouettes shows the accuracy of the silhouette
detection algorithm in distinguishing between flies when they
are clumped together, as shown in (a).
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set of edges joining consecutive vertices. Projection
matrices mapping the coordinates of the two-dimen-
sional image silhouette space to those of the three-
dimensional is known for each camera. Given the
polygonal representation of the image silhouettes and
the associated camera projection matrices, the visual
hull is computed by taking the intersection of the
silhouette cones. This produces a three-dimensional
J. R. Soc. Interface (2008)
polyhedral structure whose faces lie on those of the
original silhouette cones. Algorithm 1 summarizes the
steps involved in computing the visual hull.

This method produces polygonal meshes of the
visual hull for each frame. Graphics hardware accel-
eration allows us to render these meshes at speeds fast
enough to reconstruct all the flies in the vial in real
time. Images of the flies from the three cameras and the
reconstructed visual hull of the two flies in the vial are
shown in figure 6.

3. TRACKING FLIES

The next step is to use an EKF (Julier et al. 1995) to
track the flies, giving us spatial information for further
analysis of fly movement.
3.1. Extended Kalman filtering

Tracking an object involves optimizing the state
estimate from input measurements. Flies are small
fast moving insects that invariably change direction
while moving. They often cross paths and interact with
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each other. Predicting their motion is therefore a
challenging problem and nonlinear methods are
required to accomplish the task. For nonlinear dyna-
mical systems, a variety of Bayesian techniques can be
used to optimize the state estimate. Commonly used
approaches include the EKF, unscented Kalman filter
(Stenger et al. 2001a) and the particle filter (Stenger
et al. 2001b). Since our detection algorithm detects flies
at 60 frames sK1, we can assume Gaussian error
distributions; this enables us to use the EKF. However,
increasing the number of flies beyond 10 (table 1) causes
significant error since the measurement function is
highly nonlinear. A discussion on increasing the
number of flies while maintaining the tracking accuracy
is provided in §6. We now give a brief overview of the
EKF state estimation equations. For a complete
derivation of the Kalman filter equations, refer to
Maybeck (1979) and Welch & Bishop (1995). The EKF
extends the linear assumption of the following basic
Kalman filter equations to systems with a nonlinear
measurement process:

Xi;k ZmðXi;kK1ÞCwi;kK1; ð3:1Þ

Yi;k Z hðXi;kÞCvi;k : ð3:2Þ

We describe the state-space model for estimating the
state of each object i with the process equation (3.1)
and the measurement equation (3.2). Here, X is the
current state of the system and Y is the measurement of
the system at time point k,m is the process model of the
system, h is a nonlinear measurement model, and w and
v are the process and measurement noise, respectively.
The basic assumption of the EKF is that the process
and measurement noise of the system should be
independent, white and Gaussian with mean zero and
covariance matrices Q and R, respectively. Since the
state of each object Xi,kK1 is unknown, we use X̂ i;kK1,
the a posteriori estimate of the state at the previous
time point kK1, to solve the process and measurement
equations (3.1) and (3.2).

In order to use the EKF for state prediction of a
nonlinear system, partial derivatives of the processmodel
m and measurement model h need to be computed. This
linearizes the system, and the current state can be
estimated. The basic Kalman filter equations (3.1) and
(3.2) therefore result in the following EKF process and
measurement equations (3.3) and (3.4):

Xi;k Z ~Xi;k CMi;kðXi;kK1KX̂ i;kK1ÞCwi;kK1; ð3:3Þ

Yi;k Z ~Y i;k CHi;kðXi;kK ~Xi;kÞCvi;k : ð3:4Þ
Here, ~Xi;k and ~Y i;k are the approximate state and
measurement values mðX̂ i;kK1Þ and hð ~Xi;kÞ for each
object i, M and H are the partial derivative matrices of
the process model m and measurement model h.
Algorithm 2 summarizes the process of performing state
estimation of multiple flies using the EKF.
3.2. Tracking flies using EKF

Using algorithm 2, we apply the EKF for the real-time
three-dimensional tracking of multiple flies. The visual
hull computed from multiple two-dimensional image
J. R. Soc. Interface (2008)
silhouettes gives us the position of each fly in the three-
dimensional space [x, y, z] and orientation [a, b, g],
which forms the measurement Y of the system. In order
to find the three-dimensional spatial position of the fly,
we sample points on the surface of the visual hull. Each
of these sampled points belongs to the same cluster or
the visual hull and a simplified K-means clustering
algorithm can be used to find the centroid (MacQueen
1967). The objective then is to estimate the state of
each fly in every frame. In our system, the fly state
includes the object’s spatial three-dimensional position
[x, y, z], orientation [a, b, g], translation [x0, y 0, z0] and
rotation [a 0, b 0, g 0]. Since we use 60 frames sK1 high-
speed cameras, we can assume that the flies have
constant velocity between consecutive frames. Thus,
the state X of a fly is defined by a 6 d.f. representation
denoted by [x, y, z, a, b, g, x0, y 0, z0, a 0, b 0, g0]. The
partial derivative matrices M and H of the process
model m and measurement model h can be written as

M Z

1 0 0 0 0 0 t 0 0 0 0 0

0 1 0 0 0 0 0 t 0 0 0 0

0 0 1 0 0 0 0 0 t 0 0 0

0 0 0 1 0 0 0 0 0 t 0 0

0 0 0 0 1 0 0 0 0 0 t 0

0 0 0 0 0 1 0 0 0 0 0 t

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

2
666666666666666666666666664

3
777777777777777777777777775

and

H Z

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

2
66666666664

3
77777777775

;

where t is the time between consecutive frames.
4. METHODS

4.1. Experimental set-up

All tracking experiments were performed with flies
housed in standard 25!75 mm vials. The bottom end of
the vial contained food stained with blue colour (Kroger
brand), and the open end was closed with a cotton ball.
The vial was placed in the centre of the circular camera
rig 70 cm in diameter.The three cameras are positioned
facing downwards to eliminate the possibility of back-
ground movement giving us false fly silhouettes
(figure 7). The imaging of the tracking set-up consisted
of three calibrated and synchronized Point Grey Flea
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digital cameras mounted on the camera rig at a distance
of 15 cm from the vial. Each camera was fitted with an
Edmund Optics 8 mm megapixel fixed focal lens. The
cameraswere connectedwith off-the-shelf FW800PCI-E
cards to a computer running two Intel Dual-Core Xeon
Processors (2.8 GHz per core) with 4 GB RAM and an
NVIDIA Quadro 3450 PCI-E video card. The cameras
were calibrated as described earlier (see §2.1). The
tracking algorithm was implemented in MICROSOFT

VISUAL CCC using OpenGL, OpenCV and VXL
libraries, optimized for a multi-threaded environment.
Details of the tracking set-up and source code for the
visual hull reconstruction and tracking algorithms will
be made available on request.
4.2. Video acquisition parameters

The 8 mm fixed focal lens had an aperture range of
F1.4-16C and was set at F8 for all three cameras. The
camera resolution was set at 640!480 to achieve 60
frames sK1. Since flies are housed in vials, masking
images are used to specify regions of interest for
detection and tracking in each frame. The Point Grey
MULTISYNC software is used to synchronize the image
acquisition of multiple cameras across different 1394a
and 1394b buses. This ensures a timing correlation
between cameras on separate buses and preserves the
frame rate.
5. EXPERIMENTAL RESULTS

Our system reconstructs the three-dimensional visual
hulls of each fly at a maximum of 60 frames sK1, which
is the frame rate of our cameras. The actual frame rate
of rendering the visual hull varies with the complexity
of the object and the polygonal input silhouette profiles.
To increase the frame rate of the visual hull reconstruc-
tion, the polygonal complexity can be lowered using a
less refined input silhouette.

In figure 6, we demonstrate a rendering of a three-
dimensional polyhedral visual hull fly that was
captured in real time from our system. We can increase
the accuracy of the reconstruction by sacrificing the
frame rate. Since the purpose of generating the visual
hull in our paper is to obtain three-dimensional
trajectories of the flies, we can sacrifice on the quality
of the rendering. A discussion on improving the quality
of the rendered visual hull for behaviour recognition can
be found in §6.

In figure 5, we show the silhouette detection of a
single fly in the vial. The fly is visible from all three
camera views. The green boundary indicates the
detected edge of the fly. The light red region outside
of the green border is the shadow region eliminated
from the final dark red silhouette. To analyse more
rigorously the silhouette detection method, we calcu-
lated error probabilities of pixels in the image being
classified as silhouette or non-silhouette pixels. Since
shadow pixels are removed from the final silhouette
using methods described in §2.2, they fall under the
category of non-silhouette pixels. The probability that
a silhouette pixel was incorrectly marked as a non-
silhouette pixel was estimated to be 0.028 and the
J. R. Soc. Interface (2008)
probability of a non-silhouette pixel being marked as a
silhouette pixel was estimated to be 0.011.

In figure 8, we present more results of silhouette
detection of flies in the images captured by the three
synchronized cameras. The bounding boxes around the
detected fly silhouettes in the images show that the
silhouette detection algorithm is able to distinguish
between flies even when they are clumped together
(figures 8a and 9).

In order to measure the accuracy of our fly detection
algorithm, we conducted an experiment where we
varied the number of flies in the vial at intervals of
30 s for 1 hour (Feldman & Balch 2004). We also
recorded the fly detection algorithm’s count (this is
the number of visual hulls constructed) at each of these
30 s intervals. The comparison is shown in figure 10.
The correlation between the number of flies detected
by the algorithm and the number of flies actually
present was 0.98 (figure 10b). For this experiment, we
made sure that the flies were visible in at least two of
the three camera views, necessary for visual hull
construction. For situations where flies are occluded
from two or more camera views, the EKF is used
to estimate their centroid positions (results of which
are discussed below). These results suggest that
our detection algorithm is robust and efficient in
distinguishing between multiple flies with partial
occlusions and clumping.

In figure 11, a three-dimensional trajectory of a single
fly tracked using the EKF is shown. Our tracking system
generates similar real-time trajectories for multiple flies
in the vial.Wealso show the two-dimensional trajectories
as viewed from each camera in figure 9. The flies move
at a fast pace, flying and hopping from one end of the vial
to the other, frequently crossing paths. Thus, predicting
the motion of these insects is a challenging problem. The
EKF is used to make sure that each fly is tracked even
during periods of occlusion, and that there are no gaps in
fly trajectories at any time. Our tracking system
generates trajectories of the moving flies in real time at
a maximum speed of 60 frames sK1, but performance is
dependent on the number and grouping of flies in the vial
(table 1). Extensions to the hardware and tracking
algorithms to create better visual hulls and track more
flies are discussed in §6.

Accuracy of our EKF tracking approach is demon-
strated by comparing a simulated ground-truth path of
an object with the EKF estimated path (figure 12). In
order to validate our EKF tracking approach, we
collected test datasets with varying numbers of flies
(Khan et al. 2005). Each test dataset recorded a video
of fly activity for 30 min at 60 frames sK1. Then, 60 s
intervals were chosen from each 30 min dataset. The
starting point of each 60 s interval was chosen using a
random number generator in R (R Development Core
Team 2007) to eliminate any bias in our tracking
accuracy results. We analysed the total number of flies
detected and tracked using the EKF from the start to
the end of the sequence without errors in each of the
60 s intervals. The tracking correctness was evaluated
by comparing the EKF estimated trajectories against
the actual paths of the flies similar to figure 12. Since we
construct the visual hulls for each fly in every frame, we
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can reliably use the centroid of that three-dimensional
fly rendering as the actual position of a fly in that frame.
The actual path was therefore constructed by joining
the centroid positions of a fly for each frame in the 60 s
interval. For the cases where flies crossed paths or
interacted with each other, to remove any uncertainty
J. R. Soc. Interface (2008)
about where the fly moved in the next frame, we
visually inspected the video sequence to identify the
correct movement. The results of this experiment are
summarized in table 1. We also present the tracking
errors of the dataset consisting of two flies (figure 13).
The flies in this dataset were tracked at 60 frames sK1
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Figure 14. (a) Single fly as seen by six cameras and (b) the three-dimensional visual hull reconstruction of the fly.
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for 60 s, generating 3600 frames (table 1). The tracking
error refers to the difference between the actual
centroid position and the EKF estimated position of
the fly in each frame. The frames with higher tracking
errors (between the red bars in figure 13) are those
where the fly was occluded in one or more camera views.
In figure 13a (fly 1) occlusion A was in camera 3, B in
camera 1, C in cameras 1 and 3, and in figure 13b (fly 2)
J. R. Soc. Interface (2008)
occlusion D in camera 1, E in cameras 1 and 2, F in
cameras 1 and 2 and G in camera 1. Our approach
is robust and efficient at tracking up to 10 flies
simultaneously. The results show that as we increase
the number of flies beyond 10, the tracking efficiency
reduces. Also, the frame rate of our system falls below
real-time rates, which is critical if we are to build on this
system for behaviour analysis. A discussion of the steps
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that are taken to improve the tracking efficiency while
increasing the fly numbers is provided in §6.
6. CONCLUSION

We have presented an approach for real-time tracking
of multiple flies using three calibrated and synchronized
cameras. The system constructs the three-dimensional
visual hulls of each fly from the detected fly silhouettes.
The reconstructed fly visual hulls are used by an EKF
to generate a posteriori nonlinear state estimates of all
the flies in the vial. The novelty of the system lies in the
fact that we can not only track multiple flies in the
three-dimensional space, but also use the reconstructed
three-dimensional visual hulls to identify physical
motions of flies, which in turn can be used to identify
specific behaviours.
6.1. Future work

Several extensions of this work are currently being
implemented. We are working on mixture Kalman
filters (Chen & Liu 2000) to build on the EKF
approach used currently. It is a sequential Monte
Carlo method and is more effective in dealing with
computational difficulties of nonlinear systems. It will
enable us to maintain the tracking accuracy of the
EKF while increasing the number of flies in the vial.
We are also working on algorithms to further analyse
the behaviour of flies. The underlying assumption here
is that there is a direct correlation between fly
movement and behaviour. We are therefore working
on algorithms to match trajectories formed by multiple
flies to better understand whether behaviour of flies
varies under different conditions. Another extension to
our work is to use the three-dimensional visual hulls to
identify specific patterns of behaviour in flies. We do
this by grouping together the sequence of motions
(wing extension, body arcing, etc.) identified from the
three-dimensional fly visual hull. For this purpose, we
are expanding our hardware set-up to six cameras,
giving us more accurate fly silhouette information that
will undoubtedly improve the visual hull reconstruc-
tion and aid towards behaviour recognition. Figure 14
shows a more detailed fly visual hull with higher
polygonal complexity taken using six cameras. Finally,
we are also working on algorithms to identify the
fluorescence of green fluorescent protein and its
analogue red fluorescent protein in flies. This will
enable us to correlate specific gene expression with fly
behaviour, a key step in understanding the inner
workings of the fruit fly.

D.G. and S.T. were supported in part by NIH grant R01
GM67243. J.T. was supported by NIH grant AG11833. S.T. is
a Royal Society Wolfson Research Merit Award holder.
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