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Cancers emerge from an ongoing Darwinian evolutionary process,
often leading to multiple competing subclones within a single pri-
mary tumour1–4. This evolutionary process culminates in the forma-
tion of metastases, which is the cause of 90% of cancer-related deaths5.
However, despite its clinical importance, little is known about the
principles governing the dissemination of cancer cells to distant or-
gans. Although the hypothesis that each metastasis originates from
a single tumour cell is generally supported6–8, recent studies using
mouse models of cancer demonstrated the existence of polyclonal
seeding from and interclonal cooperation between multiple sub-
clones9,10. Here we sought definitive evidence for the existence of
polyclonal seeding in human malignancy and to establish the clonal
relationship among different metastases in the context of androgen-
deprived metastatic prostate cancer. Using whole-genome sequen-
cing, we characterized multiple metastases arising from prostate
tumours in ten patients. Integrated analyses of subclonal architec-
ture revealed the patterns of metastatic spread in unprecedented
detail. Metastasis-to-metastasis spread was found to be common,
either through de novo monoclonal seeding of daughter metastases
or, in five cases, through the transfer of multiple tumour clones be-
tween metastatic sites. Lesions affecting tumour suppressor genes
usually occur as single events, whereas mutations in genes involved
in androgen receptor signalling commonly involve multiple, conver-
gent events in different metastases. Our results elucidate in detail the
complex patterns of metastatic spread and further our understand-
ing of the development of resistance to androgen-deprivation ther-
apy in prostate cancer.

To characterize the subclonal architecture of androgen-deprived me-
tastatic prostate cancer, we performed whole-genome sequencing (WGS)
of 51 tumours from 10 patients to an average sequencing depth of 553,
including multiple metastases from different anatomic sites in each pa-
tient and, in five cases, the prostate tumour (Supplementary Table 1).
We identified a set of high-confidence substitutions, insertions/dele-
tions, genomic rearrangements and copy number changes present in
each tumour sample (Extended Data Fig. 1 and Supplementary Infor-
mation, section 3). To portray the populations of tumour cells within
each patient, we employed an n-dimensional Bayesian Dirichlet pro-
cess to group clonal and subclonal mutations, that is, those mutations
present in all or a fraction of tumour cells within a sample, respectively.
The fraction of tumour cells carrying each mutation was calculated

from the mutant allele fraction, taking into account the tumour purity
and local copy number state, as described previously2,11. Each of the
mutations assigned to a single cluster is present in a fixed proportion of
cells in each sample and hence belongs to a separate subclone, that is, a
genetically distinct population of cells.

By plotting the cancer cell fractions of mutations from pairs of
samples, we determined the clonal relationship between the con-
stituent subclones and found evidence for polyclonal seeding of
metastases, the most striking example of which is seen in patient
A22 (Fig. 1). Each of the plots in Fig. 1a contains a cluster of muta-
tions at (1,1), indicative of truncal mutations that were present in the
most recent common ancestor of both metastases. However, in many
of the plots, there are additional clusters at subclonal proportions in
both samples plotted. For example, the cluster of mutations indi-
cated by the purple circles in Fig. 1a are present in 40% of cells in
A22-G, 62% of cells in A22-H, 37% of cells in A22-J and 92% of cells
in A22-K. A metastasis seeded by a single cell must carry a set of
mutations present in all tumour cells, representing the complement
of lesions in that founding cell. In some cases, this set of mutations
will be subclonal in the originating site. However, mutation clusters
present subclonally in two or more samples can only occur as the
result of multiple seeding events by two or more genotypically dis-
tinct cells. A graphic illustration of the clonal and subclonal clusters
and their representation in all of the 10 samples from A22 is shown
in Fig. 1b. Where one subclone is present in the same or a lower
fraction of cells than a second subclone in all samples, the subclones
are represented as nested ovals when required by the pigeonhole
principle (Supplementary Information, section 4b). In contrast, clus-
ters whose relative cancer cell fractions are reversed in different
samples represent branching subclones and are shown as disjoint
ovals. The full lineage relationship between the subclones can be
depicted in the form of a phylogenetic tree whose branch lengths
are proportional to the number of substitutions in the corresponding
subclone (Fig. 1c).

In 5/10 cases (A34, A22, A31, A32, A24), we found clusters of mu-
tations present subclonally across multiple metastases, suggesting that
polyclonal seeding between different organ sites is a common occur-
rence in metastatic prostate cancer (Fig. 2). Mutations selected from these
clusters (181–429 mutations per patient) were validated by deep se-
quencing (median coverage 4713) of additional aliquots of DNA from
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each WGS sample and additional metastatic and/or prostate samples,
confirming these findings (Extended Data Figs 2–7, Extended Data
Table 1 and Supplementary Information, section 4e).

Analysis of known driver events found in the subclones provides im-
portant insights into polyclonal spread of prostate cancer during ther-
apy. Androgen-deprivation therapy (ADT) is the standard of care for
metastatic prostate cancer and initially induces tumour regression in
most patients. However, ADT inevitably results in castration-resistance
through various mechanisms, including androgen receptor (AR) amp-
lification, increased AR sensitivity as a result of mutation, AR phosphor-
ylation and bypass of the AR pathway12,13. It is currently unknown
whether castration resistance is generally acquired via a single event or
more commonly appears in multiple cells independently. Two of the
subclones implicated with polyclonal seeding in A22 carry different
oncogenic alterations associated with ADT resistance, suggesting that
clonal expansion has been driven by distinct resistance mechanisms:
MYC amplification14 in the purple cluster and a pathogenic AR sub-
stitution15 in the mid blue cluster. Overall, in all five patients with poly-
clonal seeding, subclones carrying either alterations in AR or genes
involved in AR signalling (such as FOXA1), or alternative mechanisms
of castration resistance such as MYC amplification and CTNNB1 mu-
tation16, were found to have re-seeded multiple sites. This suggests that
the tumour cell populations with a significant survival advantage are
not confined within the boundaries of an organ site but can successfully
spread to and reseed other sites (Fig. 2).

Precise relationships between metastatic sites reveal the patterns of
metastasis-to-metastasis seeding. In all seven cases for which the pro-
state tumour was sequenced (A10, A22, A29, A31 and A32; by targeted
deep sequencing in A21 and A34), multiple metastases were more clo-
sely related to each other than any of them were to the primary tumour
(Fig. 2; Extended Data Figs 2–5 and 7; Supplementary Information,
section 4e). In the five cases with polyclonal seeding, this relationship
resulted from multiple subclones shared subclonally by different meta-
stases, raising the possibility of interclonal cooperativity, in agreement
with recent studies using mouse models10,17, or remodelling of meta-
static niches by initial colonising prostate cancer clones, making them
attractive habitats that other clones can colonise later18. Further, for those
patients where multiple metastases from the same tissue type were ana-
lysed (A22, A34, A21), metastases located in the same tissue are more
closely related than those in different tissues, as previously observed in
pancreatic cancer19. Intriguingly, samples within close physical prox-
imity were often more similar to each other than to more distant sam-
ples. This raises the question whether the similarity between metastases
in the same tissue type arises as a result of geographical proximity or
from tissue-specific seeding.

To explore further the relationships between samples, we considered
the order of acquisition of mutations. Starting from the most recent
common ancestor, we observe the accumulation of additional clusters
of mutations representing subsequent ‘selective sweeps’20. Phylogenetic
trees give clear pictures of the order of events, allowing the creation of
‘body maps’ that represent emergence and movement of clones from
one site to another (Fig. 3). The observed representation of subclones
across different sites may be explained by two different patterns of spread:
linear and branching. A22 demonstrates both patterns (Fig. 3a). The
red and light green subclones are present in all metastases and indicate
linear spread from the prostate to the seminal vesicle and thence to the
remaining metastases. The remaining inter-site subclones have a more
complex pattern demonstrating the emergence of branching lineages,
each with demonstrated metastasis-to-metastasis seeding. The stepwise
accumulation of clonal mutations in A21, on the other hand, displays
a simple linear pattern of metastasis-to-metastasis spread (Fig. 3b).
Finally, in A24, a period of sequential metastasis-to-metastasis spread
was followed by parallel polyclonal spread of subclones between mul-
tiple metastases (Fig. 3c). Overall, these patterns of seeding from one
metastasis to the next are seen in 8 out of the 10 patients (all but A12
and A29). We cannot formally exclude an alternative explanation for
the observed patterns, that each of these metastases has seeded from an
undetected subclone in the primary tumour. However, targeted re-
sequencing of a subset of mutations failed to detect any such subclones,
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Figure 1 | n-D Dirichlet process clustering reveals widespread polyclonal
seeding in A22. a, For pairs of metastases, cancer cell fractions (CCF), that is,
the fraction of cancer cells within a sample containing a mutation, are plotted
for all the substitutions detected in the WGS data. Red density areas off the
axes and with CCF . 0 and , 1 reveal the existence of mutation clusters
present at subclonal levels in more than one metastatic site. Mutation clusters
for each sample are indicated with circles coloured according to the subclone
they correspond to (Supplementary Table 3). The centre of each circle is
positioned at the CCF values of the subclone in the two samples. The clusters at
(1,1) correspond to the mutations present in all the cells in both sites (CCF 5 1)
while those on axes refer to sample-specific subclones. For example, light
blue and dark green clusters absent from sample A are positioned on the y axis
when H is compared to A but are moved to (0.60,0.08) and (0.60,0.88) when
H is compared to K. b, Each subclone detected in A22 is represented as a
set of colour-coded ovals across all organ sites (Supplementary Table 3). Each
row represents a sample, with ovals in the far left column nested if required by
the pigeonhole principle (see Supplementary Information). The area of the
ovals is proportional to the CCF of the corresponding subclone. Subclonal
mutation clusters are shown with solid borders. Oval plots are divided into
three types: trunk (CCF 5 1 in all samples), leaf (specific to a single sample)
and branch (present in .1 sample and either not found in all samples or
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node; R., right; Sem., seminal. c, Phylogenetic tree showing the relationships
between subclones in A22. Branch lengths are proportional to the number
of substitutions in each cluster. Branches are annotated with samples in which
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to that subclone. amp, amplification; LOH, loss of heterozygosity; MRCA,
most recent common ancestor. d, Subclone colour key.
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despite a median sequencing depth of 4713 (Supplementary Informa-
tion, section 4e).

Mutations found subclonally in the prostate tumour but clonally in
all metastases expose the metastasizing subclone in four cases: A22, A29,
A31 and A32. In each of these patients, phylogenetic reconstruction
indicates that the metastases are derived from a minor subclone, en-
compassing fewer than 50% of the tumour cells. In three cases (A32,
A10 and A34), more than one subclone from the primary tumour was
involved in seeding of metastases, indicating that multiple subclones
achieved metastatic potential (Supplementary Information, section 4e).
In the case of A31 and A32, driver alterations that could confer selective
advantage on the metastasising subclone(s) were identified (Fig. 2).
In A32, both copies of TP53 as well as one copy of PTEN, RB1 and
CDKN1B21 were inactivated early in tumour evolution (Fig. 2). Addi-
tional aberrations occurred separately in the purple and mid blue sub-
clones to achieve homozygous inactivation of these tumour suppressor
genes via independent mechanisms (Supplementary Information, sec-
tion 4e). In A31, a PPP2R5A deletion and an AR duplication occurred
in the metastasising subclones (purple or orange); interestingly, the pink

cluster showed no evidence of metastatic spread, despite displaying
many important oncogenic alterations including events affecting TP53
and MLL3 (also known as KMT2C; Fig. 2, Extended Data Figs 3a and 8a).

Annotation of oncogenic/putative oncogenic alterations (Supplemen-
tary Information, section 4c; Supplementary Table 2; Extended Data
Table 2) on the phylogenetic trees provides some insight into the se-
quence of oncogenic events that take place during metastatic progres-
sion under ADT. The tumour cells in each patient share a common
clonal origin (Fig. 2, grey clusters). In all patients but one (A34), this
mother clone represents the largest cluster of mutations (range 40–90%
of all mutations) and contains the majority of driver mutations (Figs 2
and 4a, b) similar to previous observations in pancreatic cancer22. In con-
trast, oncogenic alterations disrupting genes important for AR signalling
were rarely on the trunk. All patients had at least one alteration directly
affecting the AR locus or genes involved in AR signalling, with wide-
spread heterogeneity and convergent evolution observed across mul-
tiple samples from the same patient.

In the great majority of cases, aberrations in AR signalling seem to
have occurred after metastatic spread, although A21 and A24 are excep-
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tions. The former has a large tandem duplication including the AR locus
present in all samples, suggesting that this was an early event. The latter
harbours a truncal T878A mutation, which was also detected in two
additional metastases (A24-F and A24-G, interrogated by targeted se-

quencing). Interestingly, a series of complex rearrangements between
chromosomes 2 and X resulting in AR amplification was not detected
in these samples (Fig. 4c). Since ADT selects for such amplification23, it
is likely that spread from the falciform ligament (A24-G) to the right
axillary lymph node (A24-A) took place after ADT, which commenced
2 years and 9 months before death (Fig. 3c). Across the whole cohort,
only one out of 17 AR amplifications was truncal, with the remainder
present only in a subset of metastases. Furthermore, in five patients, AR
copy number had increased on more than one occasion within the
same sample (Fig. 4c and Extended Data Fig. 8), implying continuous
selective pressure on the AR pathway, in line with recent reports of
persistent AR signalling in castration-resistant prostate cancer15.

Our analyses allow us to view with unprecedented clarity the geno-
mic evolution of metastatic prostate cancer, from initial tumorigenesis
through the acquisition of metastatic potential to the development of
castration resistance. A picture emerges of a diaspora of tumour cells,
sharing a common heritage, spreading from one site to another, while
retaining the genetic imprint of their ancestors. After a long period of
development before the most recent complete selective sweep, meta-
stasis usually occurs in the form of spread between distant sites, rather
than as separate waves of invasion directly from the primary tumour.
This observation supports the ‘seed and soil’ hypothesis in which rare
subclones develop metastatic potential within the primary tumour7,
rather than the theory that metastatic potential is a property of the pri-
mary tumour as a whole24,25. Transit of cells from one host site to an-
other is relatively common, either as monoclonal metastasis-to-metastasis
seeding or as polyclonal seeding. Clonal diversification occurs within
the constraining necessity to bypass ADT, driving distinct subclones
towards a convergent path of therapeutic resistance. However, the re-
sulting resistant subclones are not constrained to a single host site.
Rather, a picture emerges of multiple related tumour clones compet-
ing for dominance across the entirety of the host.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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Figure 3 | Metastasis-to-metastasis seeding
occurs either by a linear or by a branching
pattern of spread. a–c, Body maps show the
seeding of all tumour sites from A22 (a), A21
(b) and A24 (c). Sites shown include samples
subject to targeted sequencing (A22-L, A24-F,
A24-G) in addition to WGS samples. Seeding
events are represented with arrows colour-coded
according to Supplementary Table 3 and with
double-heads when seeding could be in either
direction. When the sequence of events may be
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are numbered chronologically. Subclones on
branching clonal lineages are labelled with the
same number but with different letters, for
example, 4a & 4b. See Supplementary Information
section 4e for a detailed discussion of the body map
in these cases. ligam., ligament. GL, Gleason grade;
EPE, extrapostatic extension.

a

60 62 64 66 68 70 72

2

6

10

AR

A24-C
R. diaph.

c

C
o

p
y
 n

u
m

b
e
r

A24-A
R. axillary LN

60 62 64 66 68 70 72

20
15
10
5

AR

Position (Mb) on chrX

A24-E
Xiphoid

60 62 64 66 68 70 72

1

3

5

AR

A24-D
R. rib

60 62 64 66 68 70 72

10

6

2

C
o

p
y
 n

u
m

b
e
r

Position (Mb) on chrX

AR

---E
-C--
ACDE
ACD-

A---

Trunk

b

Trunk
Branch
Leaf

0

2

4

6

8

10

12

14

A
1

0

A
2

2

A
2

9

A
3

1

A
3

2

A
1

2

A
2

4

A
3

4

A
2

1

A
1

7N
o

. 
o

f 
s
u
b

s
ti
tu

ti
o

n
s
 (
×

1
,0

0
0
)

2 0 2 4
No. of events

E
v
e
n
ts

 o
ff

-t
ru

n
k

E
v
e
n
ts

 o
n
-t

ru
n
k

E
R

G
 f

u
s
io

n

N
C

O
A

2
FO

X
A

1
C

TN
N

B
1

c
h
r1

2
p

/C
D

K
N

1B
c
h
r1

6
q

B
R

C
A

2
C

D
K

N
2C

FO
X

P
1/

R
Y

B
P

V
H

L/
FA

N
C

D
2

c
h
r8

q

c
h
r8

p

M
Y

C

c
h
r8

P
TE

N
R

B
1

TP
53

/1
7
p

S
P

O
P

P
D

E
4B

C
D

H
11

M
LL

3

A
R

A10
A22
A29
A31
A32
A12
A24
A34
A21
A17
A10
A22
A29
A31
A32
A12
A24
A34
A21
A17

Figure 4 | Drivers of tumorigenesis are truncal while drivers of castration
resistance are convergent. a, Proportion of trunk, branch and leaf mutations
in each sample. b, Heat map of oncogenic alterations present on the trunk (top)
or off the trunk, that is, on branches or leaves (bottom). Alterations in
oncogenes and tumour suppressors are shown in red and blue, respectively,
with shade indicating the number of events in that patient. Focal deletions and
substitutions/indels are shown with crosses and stars, respectively. Double
crosses indicate homozygous deletions resulting from deletions of both alleles.
c, Continuous selective pressure on AR signalling is observed in the form
of multiple rearrangements resulting in multiple copy number increases at
the AR locus within the same patient. Chromosomal rearrangements are
plotted on top of the genome-wide copy number for each of the 4 WGS samples
from A24. Rearrangements are coloured according to the colour code in
Supplementary Table 3. Arcs above and below the top vertical line indicate
deletion and tandem duplication events, while arcs above and below the second
vertical line are head-to-head and tail-to-tail inversions, respectively.

RESEARCH LETTER

G2015 Macmillan Publishers Limited. All rights reserved

3 5 6 | N A T U R E | V O L 5 2 0 | 1 6 A P R I L 2 0 1 5

www.nature.com/doifinder/10.1038/nature14347


7. Fidler, I. J. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis
revisited. Nature Rev. Cancer 3, 453–458 (2003).

8. Talmadge, J. E. & Fidler, I. J. AACR centennial series: the biology of cancer
metastasis: historical perspective. Cancer Res. 70, 5649–5669 (2010).

9. McFadden, D. G. et al. Genetic and clonal dissection of murine small cell lung
carcinoma progression by genome sequencing. Cell 156, 1298–1311 (2014).

10. Cleary, A. S., Leonard, T. L., Gestl, S. A. & Gunther, E. J. Tumour cell heterogeneity
maintained by cooperating subclones in Wnt-driven mammary cancers. Nature
508, 113–117 (2014).

11. Bolli, N. et al. Heterogeneity of genomic evolution and mutational profiles in
multiple myeloma. Nature Commun. 5, 2997 (2014).

12. Karantanos, T. & Thompson, T. C. GEMMs shine a light on resistance to androgen
deprivation therapy for prostate cancer. Cancer Cell 24, 11–13 (2013).

13. Harris, W.P., Mostaghel, E. A., Nelson, P. S.&Montgomery,B.Androgendeprivation
therapy: progress in understanding mechanisms of resistance and optimizing
androgen depletion. Nature Clin. Pract. Urol. 6, 76–85 (2009).

14. Bernard, D., Pourtier-Manzanedo, A., Gil, J. & Beach, D. H. Myc confers androgen-
independent prostate cancer cell growth. J. Clin. Invest. 112, 1724–1731 (2003).

15. Sharma, N. L. et al. The androgen receptor induces a distinct transcriptional
program in castration-resistant prostate cancer in man. Cancer Cell 23, 35–47
(2013).

16. Francis, J. C., Thomsen, M. K., Taketo, M. M. & Swain, A. b-catenin is required for
prostate development and cooperates with Pten loss to drive invasive carcinoma.
PLoS Genet. 9, e1003180 (2013).

17. Marusyk, A. et al. Non-cell-autonomous driving of tumour growth supports sub-
clonal heterogeneity. Nature 514, 54–58 (2014).

18. Sun, Y. et al. Treatment-induced damage to the tumor microenvironment
promotes prostate cancer therapy resistance through WNT16B. Nature Med. 18,
1359–1368 (2012).

19. Campbell, P. J. et al. The patterns and dynamics of genomic instability in
metastatic pancreatic cancer. Nature 467, 1109–1113 (2010).

20. Maley, C. C. et al. Selectively advantageous mutations and hitchhikers in
neoplasms: p16 lesions are selected in Barrett’s esophagus. Cancer Res. 64,
3414–3427 (2004).

21. Majumder, P. K. et al. A prostatic intraepithelial neoplasia-dependent p27 Kip1
checkpoint induces senescence and inhibits cell proliferation and cancer
progression. Cancer Cell 14, 146–155 (2008).

22. Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of
pancreatic cancer. Nature 467, 1114–1117 (2010).

23. Visakorpi, T. et al. In vivo amplification of the androgen receptor gene and
progression of human prostate cancer. Nature Genet. 9, 401–406 (1995).

24. Ramaswamy, S., Ross, K. N., Lander, E. S. & Golub, T. R. A molecular signature of
metastasis in primary solid tumors. Nature Genet. 33, 49–54 (2002).

25. Lee, Y. F. et al. A gene expression signature associated with metastatic outcome in
human leiomyosarcomas. Cancer Res. 64, 7201–7204 (2004).

Supplementary Information is available in the online version of the paper.

Acknowledgements We thank the men and their families who participated in the
PELICAN (Project to ELIminate lethal CANcer) integrated clinical-molecular autopsy
study of prostate cancer. We thank M. A. Eisenberger, M. A. Carducci, V. Sinibaldi,
T. B. Smyth and G. J. Mamo for oncologic and urologic clinical support; T. Tolonen for
uropathology support; P. Martikainen, M. Vaha-Jaakkola, M. Vakkuri, K. Leinonen,
T. Vormisto, M. Rohrer, A. Koskenalho, J. Silander, T. Lahtinen, C. Hardy, G. Hutchins,
B. Crain, S. Jhavar, C. Talbot, L. Kasch,M.Penno, A.Warner and Y.Golubeva for technical
support; and M.R.StrattonandP.A. Futreal for their commentson themanuscript. This
is an ICGC ProstateCancer study funded by: Cancer ResearchUK (2011-present); NIH
NCI Intramural Program (2013-2014); Academy of Finland (2011-present); Cancer
Society of Finland (2013-present); PELICAN Autopsy Study family members and
friends (1998-2004); John and Kathe Dyson (2000); US National Cancer Institute
CA92234 (2000-2005); American Cancer Society (1998-2000); Johns Hopkins
University Department of Pathology (1997-2011); Women’s Board of Johns Hopkins
Hospital (1998); The Grove Foundation (1998); Association for the Cure of Cancer of
the Prostate (1994-1998); American Foundation for Urologic Disease (1991-1994);
Bob Champion Cancer Trust (2013-present); Research Foundation – Flanders (FWO)
[FWO-G.0687.12] (2012-present). E.P. is a European Hematology Association
Research Fellow.

Author ContributionsD.E.N., C.S.C., R.A.E.,U.M.andG.S.B. co-designed and co-directed
the project and are Senior Principal Investigators of the Cancer Research UK funded
ICGC Prostate Cancer Project. G.G., P.V.L., T.V., D.C.W., U.M. and G.S.B. designed the
study and co-wrote the paper. G.G., P.V.L., B.K., L.B.A., J.M.C.T., K.J.D., M.A. and D.C.W.
carried out bioinformatic analyses. K.K., V.G., C.L. and S.O.’M. carried out laboratory
analysis. E.P., D.S.B., H.C.W., C.S.C., P.J.C. and all authors edited the paper. D.S.B., Z.K.-J.,
H.C.W.,G.G. andD.C.W. coordinated the study.H.M.L.K. andG.H.performedclinicaldata
analysis and curation. W.I. facilitated the initial development of the autopsy study.
M.R.E.-B. provided pathology support. M.N. provided bioinformatics support and
supported project development. The full ICGC Prostate Group created and maintains
overall study direction. For this work the primary affiliation of C.S.C. is The Institute of
Cancer Research.

Author Information Reprints and permissions information is available at
www.nature.com/reprints. The authors declare no competing financial interests.
Readers are welcome to comment on the online version of the paper. Correspondence
and requests for materials should be addressed to G.S.B. (g.steven.bova@uta.fi),
D.C.W. (dw9@sanger.ac.uk) and U.M. (um1@sanger.ac.uk).

LETTER RESEARCH

G2015 Macmillan Publishers Limited. All rights reserved

1 6 A P R I L 2 0 1 5 | V O L 5 2 0 | N A T U R E | 3 5 7

www.nature.com/doifinder/10.1038/nature14347
www.nature.com/reprints
www.nature.com/doifinder/10.1038/nature14347
mailto:g.steven.bova@uta.fi
mailto:dw9@sanger.ac.uk
mailto:um1@sanger.ac.uk


METHODS
Full Methods are available in Supplementary Information.
Statistics. To determine validation rates for mutation calling, the total read depth
and number of mutant reads were determined at each validation locus in validation
bam files. For substitutions with a depth $ 203, a P binomial test of statistical sig-
nificance (error rate 5 1/200) was used to calculate the probability of observing the
number of mutant alleles at each locus given the total number of reads. A validation
call was made where coverage of both tumour and normal samples had sufficient
depth and P , 0.05. The validation rate for substitutions was high. On average 95%
of the substitutions were absent in the matched normal and were hence called so-
matic (Extended Data Table 1). For indels with a depth $ 203, the mutations were

assumed to be present in the matched normal if the mutant allele burden was $ 1%
in the normal. The average validation rate for indels was 86% (Extended Data
Table 1).
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Extended Data Figure 1 | Variants identified in 51 whole-genome
sequenced samples from 10 patients. a–c, Number of insertion/deletions
(a), high-confidence substitutions (b) and chromosomal rearrangements

(c) are plotted across all the samples from the 10 patients that had their whole
genome sequenced.
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Extended Data Figure 2 | Validation of the subclonal hierarchies in A22.
The primary means of validation was a deep sequencing validation experiment
that included selected substitutions and indels from each sample, as described
in Extended Data Table 2 and Supplementary Information section 2b.
In addition, indels and rearrangements identified in WGS represent data
sets orthogonal to the substitution data from which the subclones were
identified. The subsets of samples in which validated substitutions, indels and
rearrangements are found correlate strongly with the subclonal clusters
identified from the clustering of substitutions from WGS, providing support for
the existence of these subclones. a, b, For each patient, hierarchical clustering of
the variant allele fraction (VAF) was performed separately for substitutions
(a) and indels (b). VAFs are represented as a heat map with deeper shades of red

indicating a higher proportion of reads reporting the mutant allele. Above each
heat map, mutations are colour-coded according to the subclone they were
assigned to by Dirichlet process clustering of WGS data in the case of
substitutions or by VAF for indels. Indels that could not be assigned to any
cluster are annotated with black. For A22, additional samples not subject to
WGS were included in the validation experiment. c, For these patients the
phylogenetic tree from Fig. 2 was modified to incorporate these additional
samples. d–f, Number of substitutions assigned to each subclone (d) and
numbers of indels (e) and rearrangements (f) present in different subsets of
samples are plotted as bar charts. g, VAFs from whole-genome sequencing
and validation data, plotted as scatter plots, are very highly correlated.
h, Subclone colour key.
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Extended Data Figure 3 | Validation of the subclonal hierarchies in A31 and
A32. Validation strategy as described in Extended Data Fig. 2. For A31
and A32, hierarchical clustering of the VAF was performed separately for
substitutions (a) and (j) and indels (b) and (k). Heat maps are annotated as
described in Extended Data Fig. 2. Additional samples for A31 and A32 are
incorporated into the phylogenetic trees (c) and (l). Subclones for A31 CD and

A32 CE are annotated in the corresponding 2d-DP plots (d) and (m). Numbers
of substitutions in WGS data assigned to each subclone are plotted in (e) and
(n). VAFs from WGS and validation data, plotted as scatter plots (f) and (o),
are very highly correlated. Number of indels (g) and (p) and rearrangements
(h) and (q) present in different subsets of samples are plotted as bar charts.
Subclone Colour keys for A31 and A32 (i and r) respectively.
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Extended Data Figure 4 | Validation of the subclonal hierarchies in A24
and A34. Validation strategy as described in Extended Data Fig. 2. For A24
and A34, hierarchical clustering of the VAF was performed separately for
substitutions (a) and (i) and indels (b) and (j). Heatmaps are annotated as
described in Extended Data Fig. 2. Indels that could not be assigned to any
cluster (if any) are annotated with black. Additional samples for A24 and A34
are incorporated into the phylogenetic tree (c) and (k). The additional cluster in

A24, supported by rearrangements only, is indicated by a light green branch in
the tree. Numbers of substitutions in WGS data assigned to each subclone
are plotted in (d) and (l). VAFs from WGS and validation data, plotted as
scatter plots (e) and (m), are very highly correlated. Number of indels (f)
and (n) and rearrangements (g) and (o) present in different subsets of
samples are plotted as bar charts. Subclone Colour keys for A24 and A34
(h and p) respectively.
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Extended Data Figure 5 | Validation of the subclonal hierarchies in A10 and
A29. Validation strategy as described in Extended Data Fig. 2. For A10 and
A29, hierarchical clustering of the VAF was performed separately for
substitutions (a) and (h) and indels (b) and (i). Heat maps are annotated as
described in Extended Data Fig. 2. Indels that could not be assigned to any
cluster (if any) are annotated with black. Loci with depth ,20X are coloured
in light blue. The additional sample (D) for A29 is incorporated into the
phylogenetic tree (j). Validation experiment for A10-E, the prostate sample,

gave very low coverage (d). Subclones for A29-A and A29-C are annotated in
the 2d-DP plot (k). Numbers of substitutions in WGS data assigned to
each subclone are plotted in (c) and (l). VAFs from WGS and validation data,
plotted as scatter plots (d) and (m), are very highly correlated. Number of
indels (e) and (n) and rearrangements (f) and (o) present in different subsets
of samples are plotted as bar charts. Subclone Colour keys for A10 and A29
(g and p) respectively.
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Extended Data Figure 6 | Validation of the subclonal hierarchies in A17 and
A12. Validation strategy as described in Extended Data Fig. 2. For A17
and A12, hierarchical clustering of the VAF was performed separately for
substitutions (a) and (i) and indels (b) and (j). Heat maps are annotated as
described in Extended Data Fig. 2. Mutations that could not be assigned to any
cluster are annotated with black. For A12, the C-specific cluster that is not
present in substitutions is shown in very light green. Subclones for A17 AD are

annotated in the 2d-DP plot (c). Numbers of substitutions in WGS data
assigned to each subclone are plotted in (d) and (l). VAFs from WGS and
validation data, plotted as scatter plots (e) and (m), are very highly correlated.
Number of indels (f) and (n) and rearrangements (g) and (o) present in
different subsets of samples are plotted as bar charts. Additional samples for
A12 are incorporated into the phylogenetic tree (k). Subclone Colour keys for
A17 and A12 (h and p) respectively.
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Extended Data Figure 7 | Validation of the subclonal hierarchies in A21.
Validation strategy as described in Extended Data Fig. 2. Hierarchical clustering
of the VAF was performed separately for substitutions (a) and indels (b).
Heat maps are annotated as described in Extended Data Fig. 2. Loci with depth
,20X is coloured in light blue. Additional samples L, N, and Q from FFPE
material had low coverage. The only loci present in these samples were all

truncal. These samples are incorporated into the phylogenetic tree (c).
Numbers of substitutions in WGS data assigned to each subclone are
plotted in (d). Number of indels (e) and rearrangements (f) present in
different subsets of samples are plotted as bar charts. VAFs from WGS
and validation data, plotted as scatter plots (g), are very highly correlated.
Subclone Colour key (h).
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Extended Data Figure 8 | Convergent evolution at the AR locus.
Rearrangements and copy number segments in the vicinity of the AR locus are
shown for A31, A21, A29 and A10. (a) In A31, there are three different AR
amplification events. In orange is a tandem duplication whose existence is
supported by tumour reads in ADEF but not C. However, PCR-gel validation
confirms its existence in the prostate sample C—the faintness of the band
suggesting that this rearrangement is present subclonally in A31-C—as well
as the prostate sample I, which was not subject to WGS. One tandem
duplication is common to both prostate samples (shown in green) while the

other is specific to sample C (dark pink). (b) In A21, there are four different sets
of complex rearrangements, one shared by ACDEGH and the remainder
specific to F, I and J. (c) Rearrangements in the vicinity of the AR locus and
inter-mutation distances for A29 plotted on a log10 scale for lesions specific to
the metastasis (left) and specific to the prostate (middle). Each sample has a
different set of complex rearrangements, which are associated with distinct
kataegis events. (d) In A10, one tandem duplication is shared by CD while four
others are each specific to a single sample.
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Extended Data Table 1 | Validation of mutation calling

To determine validation rate for mutation calling, a custom capture SureSelect design was used to sequence selected coding/non-coding loci to an average depth of 360–2,0003. For loci with sufficient depth
($203), the validation rate (the proportion of somatic variants)was calculated as described in ExtendedData Table 2 and Supplementary Information section3c. On average 95%and 86% of the substitutions and
indels, respectively, were somatic. Validation for rearrangement calls was performed by PCR-gel electrophoresis, as described in Supplementary Information section 3d. PCR-gel experiments yielded a high
validation rate for three of the four patients included in the validation. For A22, there was a high rate of PCR failure. For this sample, we therefore assessed the veracity of the breakpoints by visual inspection of the
associated copy number segments and confirmed that 82% were high-confidence events resulting in visible copy number changes.
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Extended Data Table 2 | Copy number genes

To identify potentially oncogenic events within regions of copy number changes, we intersected the affected genomic segments with genes previously shown to be recurrently amplified/deleted. The ‘Source’
column indicates the literature source of the gene as follows: pan_cancer, The Cancer Genome Atlas (TCGA) Pan-Cancer data set26; prostate, reports of genes specifically amplified/deleted in prostate cancer27,28;
cancer_gene_census, Cancer gene census29, literature, widely reported in cancer literature.
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