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ABSTRACT

Motivation: The current generation of single nucleotide
polymorphism (SNP) arrays allows measurement of copy number
aberrations (CNAs) in cancer at more than one million locations in the
genome in hundreds of tumour samples. Most research has focused
on single-sample CNA discovery, the so-called segmentation
problem. The availability of high-density, large sample-size SNP
array datasets makes the identification of recurrent copy number
changes in cancer, an important issue that can be addressed using
the cross-sample information.
Results: We present a novel approach for finding regions of recurrent
copy number aberrations, called CNAnova, from Affymetrix SNP 6.0
array data. The method derives its statistical properties from a control
dataset composed of normal samples and, in contrast to previous
methods, does not require segmentation and permutation steps.
For rigorous testing of the algorithm and comparison to existing
methods, we developed a simulation scheme that uses the noise
distribution present in Affymetrix arrays. Application of the method
to 128 acute lymphoblastic leukaemia samples shows that CNAnova
achieves lower error rate than a popular alternative approach. We
also describe an extension of the CNAnova framework to identify
recurrent CNA regions with intra-tumour heterogeneity, present in
either primary or relapsed samples from the same patients.
Availability: The CNAnova package and synthetic datasets are
available at http://www.compbio.group.cam.ac.uk/software.html
Contact: sergii.ivakhno@cancer.org.uk
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Different genetic and epigenetic alterations can lead to the
development of cancer by activating oncogenes or inactivating
tumour suppressor genes. Copy number changes are one example
of such alterations, where amplifications or deletions of genes
implicated in cancer progression can cause abnormal cell growth
and proliferation (Chin and Gray, 2008). In the past decade, single
nucleotide polymorphism (SNP) arrays have become a de facto
standard for detecting copy number alterations (CNAs) in cancer

∗To whom correspondence should be addressed.

genomes. The latest versions of SNP arrays, manufactured by
Affymetrix and Illumina, have more than a million polymorphic and
non-polymorphic (NP) probes. For instance, the Affymetrix SNP 6.0
array has >1.8 million probes with roughly equal proportions of SNP
and NP probes.

The high density of SNP arrays and the availability of NP probes
has made SNP arrays the technology of choice for identifying CNAs
in some recently published large-scale oncogenomic studies (Chin
et al., 2008; Weir et al., 2007). In addition to high-density arrays
these studies include a large number of samples. Both the number
of probes and samples create novel data analysis challenges. The
most common problem is the transformation of normalized log-
ratio values into accurate copy number calls at the highest possible
resolution. This so-called single sample segmentation problem has
received much attention, with numerous methods developed for this
task (Colella et al., 2009; Greenman et al., 2009; Nilsson et al.,
2009; Wang et al., 2007). A discussion of segmentation algorithms
for SNP array platforms is available in the Supplementary Material.

Cancer cells usually harbour two types of chromosomal
abnormalities: large scale alterations such as gains and losses
of whole chromosome arms, and more focal amplifications and
deletions. Given the high rate of genomic instability found in
cancer cells, large-scale copy number changes usually represent
passenger mutations and due to their large size do not facilitate
discovery of functional driver events that lead to malignancy (Pinkel
and Albertson, 2005). On the other hand, due to their smaller
size and recurrence, detection of focal CNAs could lead to the
identification of new genes implicated in cancer progression. This
can be facilitated by the availability of high-density/large sample-
size SNP array datasets, where cross-sample frequency information
can be used to identify driver CNAs and distinguish them from
random mutations and probe intensity artefacts.

Several methods for finding regions of recurrent CNAs using
aCGH and SNP microarray data have been described in the literature.
A review and qualitative comparison of different methods can be
found in Shah (2008). A common theme in these methods is that they
require a preliminary segmentation step to find regions of interest
for each sample. For example, significance testing for aberrant
copy number (STAC) starts by creating a binary matrix from the
normalized log-ratios, with zeros designating no change and ones
designating losses and gains (Diskin et al., 2006). It then utilizes
two complementary statistics, footprint and frequency, to define
recurrent CNA regions based on their length and the number of
samples they occur in. A potential problem with this approach is the
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difficulty in selecting the cut-off for defining CNA-spanning probes
from segmented data.

Genomic Identification of Significant Targets in Cancer (GISTIC)
(Beroukhim et al., 2007) is another approach that uses segmentation
information. In contrast to STAC, log-ratios in GISTIC are not
discretized; rather those log-ratios below a threshold are set to zero.
This allows GISTIC to better discriminate between CNA regions of
different copy number. However, it still suffers from ambiguities that
arise from specifying a threshold for log-ratios. To detect significant
CNAs, both GISTIC and STAC use a permutation approach. In this
case, the significance cut-off is strongly dependent on the number
of copy number changes present in the dataset and, depending on
the extent of genomic instability, can increase the number of false
positive (FP) or negative hits. The noise level also influences the
computation of thresholds.

Here, we present a novel approach, CNAnova, for finding
recurrent CNAs, those that appear in multiple samples. The
boundaries of such a CNA are determined by the magnitude of probe
log-ratios across all samples that contain the CNA. CNAnova uses
properties of a control dataset composed of the normal samples to
assess statistical significance of identified CNAs and, in contrast
to previous methods, does not require the data segmentation and
permutation steps. By using the distribution of probe intensities
in normal samples, CNAnova can better assess background probe
variation present in the dataset. We also describe an extension
of the CNAnova framework for identifying recurrent CNAs with
intra-sample heterogeneity. Properties of the method are extensively
tested and compared using both simulated and real data.

2 APPROACH
The CNAnova procedure is composed of several distinct steps
designed to preprocess the data (such as removing probes spanning
germline CNV regions), transform them into a suitable format for
statistical analysis, estimate F- and t-statistics from the ANOVA
model, identify boundaries of the recurrent CNA regions using
the gradient kernel density estimation and find significant regions
through control of the false discovery rate (FDR). The schematic
representation of the method is outlined in Figure 1.

In the following subsections, the implementation of the CNAnova
model is described and characteristic features of the method are
discussed. The strategy for using reference normal samples to
distinguish between somatic copy number changes in cancer, copy
number variation in normal individuals and non-biological probe
effects such as wave artefacts is described.

3 METHODS

3.1 Pseudo-replication and creation of reference
dataset

CNAnova is based on local decomposition of the variance and takes
advantage of the dataset-specific structure generated during the preprocessing
step of the method. First, we discuss the general data representation
framework and then give examples of its extension. We assume that the
dataset is divided into a reference set Nr of samples representing normal
individuals, which serve as a reference for the single-channel array data, and a
set Nc of cancer samples. The normal samples can include matched controls,
where tumour and normal tissues are collected from the same individual, or
they can be derived from a pooled sample or a subset of individuals. In fact,

Fig. 1. Diagram showing the workflow of the CNAnova procedure. The size
of each dataset is shown below its name. Further details are provided in the
text.

the algorithm does not impose specific requirements on having a matched
reference.

The derivation of log-ratio values from single channel normal and cancer
array samples involves pseudo-replication, performed as follows. Each
cancer sample in Nc is associated with the same subset N ′

r ⊂Nr , of size
λ, of normal samples. The subset N ′

r is chosen from samples with the most
robust quality metric, as discussed in the Supplementary Material. The values
in N ′

r are used to calculate log-ratio values, and this make each cancer sample
pseudo-replicated λ times. These samples will have the same distribution of
CNAs as the original cancer sample, but will differ in the background probe
variation arising from differences between original normal samples.

A control dataset is then created following a similar procedure that uses
the samples in N ′

r . The normal samples not in N ′
r are associated with N ′

r ,
thereby insuring that each normal and tumour sample is matched to the same
reference samples. These two procedures create pseudo-replicated sets of
cancer and normal samples.

Finally, after replication we choose a single normal sample from Nr/N ′
r

to make an ANOVA reference sample of size λ using N ′
r that is used to

produce treatment contrasts in the analysis of variance below.

3.2 CNAnova statistical model
The CNAnova model can be thought of as a one-way analysis of variance.
The algorithm first finds the regions of recurrent CNAs in the whole dataset
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and then detects samples with copy number changes. Specifically, ANOVA is
used to compare the means of probe log-ratios between the pseudo-replicated
cancer samples and the reference normal sample, using a sliding widow
along each chromosome. The frequency of copy number changes for specific
chromosomal regions across the dataset is captured by the magnitude of the
F-statistics. The algorithm can be decomposed into the following steps:

(1) Let ρ be the shift parameter that defines successive locations at which
a window is placed. For a chromosome containing t probes, we apply
ANOVA to each of the t/ρ windows.

(2) For each window j, with l probes, we fit the model

Yik =µ+τi +εik, i=0,1,2,...,n; k =1,...,lλ. (1)

where
• n is the number of cancer samples;

• i=0 corresponds to the ANOVA reference sample and i=1,...,n
to cancer samples;

• Yik is the probe log-ratio of the k-th of the set of lλ probes in the
cancer samples;

• µ is the mean of the probes for the normal reference sample in
window j, and τ0 =0;

• For i≥1,τi is the fixed effect for a particular cancer sample i;

• εik are the random error terms such that εik are independent random
variables with E(εik)=0 and V (εik)=σ2.

(3) Derive overall F- and t-statistics for each regression coefficient in the
formula.

(4) Apply the same approach to the normal control samples for assessment
of statistical significance (Section 3.4).

It is important to ensure robustness of the ANOVA model against outliers
and local shifts in the probe distribution, such as those arising from the
wave artefact that is prominent in SNP array data (Diskin et al., 2008;
Marioni et al., 2007). One possible solution is to use robust ANOVA
methods. However, these methods may remove a significant proportion of
probes, which may decrease the number of identifiable CNAs and they
add computational overhead. We adopt an alternative two-stage solution
to the problem. First, we preprocess the data by removing outliers using
modification of the k-nearest neighbour smoothing approach described in
Olshen et al. (2004). Next, we centre the log-ratio distribution on each
chromosome using the mean of all log-ratios in the interquartile range. This
helps to ensure that in the case of no significant copy number changes, the
log-ratios are centred around a zero baseline. In addition to robustness against
outliers it is necessary to verify that autocorrelation and heteroscedasticity
of the variance do not increase the error rate of the method. In the
Supplementary Material, we show that such violation in the distribution of
variances is offset by concomitant changes in means, thereby only marginally
influencing the performance of CNAnova.

A large proportion of probes tested will be altered in at least one sample,
usually as a result of large-scale, single-copy gains or losses arising from
genomic instability. This can lead to large and significant F-statistics for all
the segments spanning the changed regions (even though in most cases they
do not reside within regions of recurrent CNAs). To detect truly frequent
focal CNA regions, we flag low-level copy number gains and losses in the
dataset using smoothing spline normalization. The smoothing parameter is
empirically selected to ensure that the transformation preserves focal CNAs;
this choice depends on the largest detectable recurrent segment and the
number of probes on the chromosome. Although broad regions do not guide
the detection of focal recurrent CNAs, they are incorporated into recurrent
CNAs when they span the regions of recurrence (Supplementary Fig. S1 and
Supplementary section ‘Relevance of spline-correction for identification of
recurrent CNAs’).

Having both spline-corrected and unsmoothed datasets, the estimation of
F-statistics and P-values using CNAnova is carried out as follows. The model
in (1) is first applied to the spline-corrected dataset to derive an F-statistic
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Fig. 2. Application of mean-shift procedure to the distribution of F-statistics
along the chromosome. Solid grey lines indicate the location of mean-shift
minima and dotted line shows the threshold for calling significant F-test
scores. The mean-shift algorithm allows smoothing of the non-significant
spikes and detection of significant changes in the F-statistics.

and to find regions that harbour recurrent CNAs. This is done with the aid of
the mean-shift procedure described in the next section, which delimits CNA
boundaries across all samples. The method then uses coordinates of CNA
segments with the original unsmoothed dataset and re-applies the model.
This time P-values for the regression coefficients τi are used to identify
samples that have copy number changes. Consequently, the two successive
applications of the ANOVA model provide a set of F-statistics of size t/ρ
and a P-value matrix with dimensions t/ρ and n, which help to identify both
the boundaries and sample content of recurrent CNAs.

3.3 Finding boundaries of recurrent CNA segments
The distribution of F-statistics alone is difficult to use to determine the
precise boundaries of CNA regions, due to local discontinuities which might
either split a single region into several or lead to FPs due to local outliers
among the F-statistics. F-statistics, therefore, need to be smoothed to remove
such aberrant values. The problem with local smoothing methods such as
loess is that local least square estimation of means at each point leads to
smooth transition between F-statistics corresponding to CNA and non-CNA
regions, which reduces the precision of correct CNA boundary placement.
An alternative local smoothing approach based on modes can provide
discontinuous demarcation of boundaries for CNA and non-CNA F-statistic
regions. This is in part achieved by the mean-shift procedure (cf. Comaniciu
et al., 2001; Wang et al., 2009), which performs discontinuity-preserving
smoothing of the F-statistic, thereby removing the noise in homogeneous
regions of the chromosome and preserving discontinuities at the same time.
We extend the mean-shift procedure to find boundaries of recurrent CNA
regions by assigning probes with the same mode of the F-statistic to separate
regions on the chromosome (Fig. 2).

Finding boundaries of recurrent CNAs across samples using the mean-
shift procedure requires selection of the appropriate kernel K and bandwidth
parameter h that controls the degree of smoothness. We take K to be an
univariate Gaussian kernel and use SDs of log-ratios to determine h for each
chromosome, as follows:

(1) Using non-overlapping windows of the size 10 000 probes, estimate
the SD of log-ratios, and let S be the set of all such SDs;
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(2) Generate b uniformly distributed parameters σi,i=1,...,b taking
values between the minimum value in S and the first quartile of S;

(3) Apply the mean-shift procedure b times using the Gaussian kernel
with h=σi,i=1,...,b;

(4) Estimate the maximal log-likelihood for each model using
Gaussian mixtures approximation and their corresponding Bayesian
Information Criterion (BIC) values;

(5) Select the model with σ that gives the largest BIC value. Use the mean-
shift modes identified with this model with bandwidth h=σ to find
distinct peaks in the distribution of the F-statistics. Those exceeding
the F-statistic threshold are identified as regions of recurrent copy
number change.

3.4 Defining statistically significant CNA regions
The final step in the process of finding recurrent CNAs includes correction for
multiple testing and assignment of statistical significance to the F-statistics.
For this purpose, CNAnova uses the false discovery rate (Benjamini and
Hochberg, 1995) estimated using the distribution of probes in the normal
samples matched to the common reference set as described in Section 3.1.
Successful estimation of FDR depends on knowledge of the number of
FPs in our rejection regions. For the purpose of identifying significant
F-statistics, we can utilize the distribution of F-statistics in the normal dataset
to estimate FP on the premise that most of the extreme values of the statistic
arising from normal-to-normal comparison will represent local variation in
probe intensities (similar arguments for finding significant P-values of the
t-statistics are discussed below) (Supplementary Fig. S7).

Such an approach is based on the assumption that the normal dataset does
not have germline CNVs, and therefore any occurrences of large F-statistics
will be attributed to non-biological variability in probe log-ratio values. To
circumvent this problem, all probes with median absolute log-ratios >0.5
are not included in the estimation of the F-statistics. The selection of this
threshold comes from the fact that median values higher than 0.5 or lower
than −0.5 could be considered as an indication of potential single copy gains
and losses in the region (see Supplementary Material for further discussion
of threshold selection). After such adjustment, the following maxF procedure
corrects for multiple testing and estimates the threshold for the F-statistics:

(1) Let �r be the set of F-statistics in the reference dataset and �c

in the corresponding cancer dataset. For each window, remove that
F-statistic from �r if the maximal value of the median log-ratios
across all samples in that window is more than the threshold θ (here
set to 0.5);

(2) Sort the remaining F-statistics in �r , and in �c, in decreasing order;

(3) For a chosen FDR cut-off η∈ (0,1), select the smallest value u such
that |{v∈�r :v>u}|/|{w∈�c :w>u}|>η. Use u as the threshold for
calling significant F-statistics.

The maxF procedure essentially estimates the proportion of F-statistics
derived from the subset of normal samples that are below the selected
F-statistic threshold u. Since in most cases they represent FP hits, the
threshold for controlling FDR can be calculated using the FDR formulation.
Given a list of significant regions, CNAnova next finds significant P-values
in order to determine which samples have CNAs. For this, we use the same
steps as in the maxF procedure, but utilize P-values of log-ratios for probes
that fall within CNA boundaries across all normal samples, leading to the
minP procedure.

3.5 Identifying CNAs with intra-patient variability
The CNAnova algorithm can be extended to address additional questions
that arise from the analysis of SNP array datasets. One important task in
cancer research is finding recurrent CNAs that exhibit patterns of intra-patient
heterogeneity. For example, researchers might be interested in identifying
CNAs that are found in metastasis but not in primary cancer, or CNAs

found only in metastasis to specific tissues such as lung. Here, we introduce
an extension of the CNAnova framework based on the fixed-factor nested
ANOVA model for identification of such recurrent CNAs with intra-patient
variability.

The extension is a two-step process. First, samples from the same patient
are grouped together and one-way ANOVA is run to identify recurrent
regions. To insure that any possible decrease in the values of the nested
F-statistics due to enlarged and inhomogeneous cancer samples are recreated
in the normal samples, a similar transformation of merging normal samples
into groups having the same size as the cancer samples is performed. The F-
statistics from the one-way ANOVA allow us to identify regions of recurrent
CNAs. Next, we apply a nested ANOVA model to each window in the regions
previously identified as recurrent using the following model:

Yiuk = µ+τi +θi(u) +εiuk, i=0,1,2,...,nc,

u=1,2,...,nci; k =1,...,lλ, (2)

where

• Yiuk is the k-th probe log-ratio from the set of lλ probes of u-th cancer
sample from individual i;

• nc is the number of cancer individuals;

• nci is the number of samples for individual i;

• i=0 corresponds to the ANOVA-reference sample and i>0 to cancer
individuals;

• µ is the mean of the probe log-ratios for the normal reference sample
in the window, and τ0 =0;

• τi is the non-random between-sample effect for cancer individual i;

• θi(u) is the non-random within-sample effect for cancer individual i. In
our nested CNAnova implementation the reference sample represents
a primary non-metastatic tumour;

• εiuk are the random error terms such that εiuk are independent random
variables with E(εiuk)=0 and V (εiuk)=σ2.

We derive overall F-statistics and P-values of t-statistics for each
regression coefficient in the formula, using the procedures already described
for one-way ANOVA. The focus on only recurrent CNA regions is primarily
guided by the longer running time required for fitting complex linear models.
The P-values for the intra-patient t-statistics derived from the nested model
can then be used to determine the extent of intra-patient variability for
each of the identified recurrent CNAs. The reference group for intra-patient
comparisons can be defined by ordering samples within each group; for
example, we give below the reference group includes primary tumours at
diagnosis that are compared to relapsed samples.

4 RESULTS

4.1 Simulation data
4.1.1 Simulation strategy Due to the absence of an exhaustively
validated dataset for benchmarking algorithms, simulated datasets
are important. However, when trying to generate a simulated dataset
for which the underlying copy number states are known, particular
attention should be paid in preserving the noise distribution of
the real data (Willenbrock and Fridlyand, 2005). This is usually
the hardest part in the simulation process, as the distribution is
composed of many components. These include high-affinity probes
giving rise to extreme outliers, GC content of the genome producing
wave patterns and sample purification steps such as whole genome
amplification giving rise to additional probe intensity artefacts. The
higher density of SNP arrays and the decrease in the number of
probes in the probesets for the latest generation of Affymetrix
arrays further complicate this problem. Our approach used normal
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Fig. 3. Sensitivity versus precision curve comparing CNAnova and GISTIC
in ability to find recurrent copy number alterations in the simulated data.

samples and simulated copy number changes in them. We selected
270 HapMap samples hybridized to Affymetrix SNP 6.0 arrays
(McCarroll et al., 2008) to derive test data with which we could
compare different methods.

The simulation of copy number changes recreates different
possibilities for cross-sample occurrence of CNAs. We started with
the following simulation scenario. First, the frequency of CNAs and
their amplitude were defined by creating CNAs that occur in 1–75%
of data and include from 10 to 300 probes (approximately 3–100 kb).
The positional effect of CNAs, such as occurrence of deletions in
different exons of a gene, was simulated by shifting CNAs around the
middle position in some samples and segments. The procedure was
applied multiple times to chromosome 17 of the HapMap data and
30 regions of recurrent copy number changes of different magnitude
and frequency were simulated (details of the simulation scheme are
listed in the Supplementary Material).

4.1.2 Algorithm comparison We used CNAnova with a default
FDR 0.05 and GISTIC with threshold parameters 0.1 (program
default), 0.25, 0.5, 1 and 1.5 to find recurrent CNAs in the simulated
dataset. Since all simulated CNAs in our dataset have absolute
log-ratio values >0.5, we expect GISTIC with a 0.5 threshold to
have the lowest error rate. Before applying GISTIC, circular binary
segmentation (CBS) (Olshen et al., 2004) was used to segment log-
ratios. We verified that CBS found all simulated CNAs, thereby
ensuring that segmentation errors did not propagate though GISTIC
(Supplementary Fig. S8). True positive rate (TPR; or sensitivity)
and positive predictive value (PPV; or precision) were used to assess
performance of the algorithms.

Results for the overall dataset (Fig. 3) suggest that although
CNAnova and GISTIC share similar precision, CNAnova produces
the best results when both precision and sensitivity are taken into
account. In addition, we found that GISTIC tended to split single
CNA regions into multiple regions, as was observed 1, 3 and 5
times for GISTIC run with threshold parameters 0.5, 1 and 1.5,
respectively. In addition to altering the biological significance of
results after such an artificial splitting (i.e. by missing some genes
or distorting co-occurrence metrics), this may underestimate the
actual frequency of CNAs. In contrast, CNAnova detected all
simulated CNAs without splitting any regions. Both algorithms
have the maximal possible precision of 1 when only CNA regions

Fig. 4. Sensitivity of CNAnova and GISTIC, run with 0.5 threshold, in
identifying recurrent copy number changes of different frequency and
magnitude. Top x-axis label gives the percentage of samples containing a
given recurrent CNA; bottom x-axis label gives the mean log-ratio value
used in simulation.

with >49% of changed samples are taken into account. However,
with decreasing CNA frequency CNAnova starts to show higher
sensitivity. In particular, GISTIC with the optimal 0.5 threshold
cannot detect any samples altered in 5–10% of samples, while
CNAnova detects many such samples (Fig. 4).

To confirm this observation using a larger sample size, we
created an additional benchmarking dataset where only rare low-
frequency CNAs (one copy gain and loss) were simulated. CNAnova
outperformed GISTIC with a 0.5 threshold, this time in both
sensitivity (0.86 versus 0.98) and precision (0.94 versus 0.99).
This trend was observed for rare recurrent CNAs with different
mean values and frequency (Fig. 5). The decrease in the size of
segments with the lowest simulated mean values after applying
the default GISTIC threshold may partly explain GISTIC’s fall
in sensitivity and precision. This underscores the thresholding
limitation of segmentation-based methods and contributes to the
jumpy nature of sensitivity plots. The difference in sensitivity and
specificity between GISTIC and CNAnova becomes less prominent
once the copy number change of rare CNA is increased to include
two copy gains and deletions (Supplementary Fig. S11). However,
GISTIC had a much higher error rate when assessed on simulated
non-significant changes with means (±)0.2/0.3 (29% versus 17% for
CNAnova), suggesting that the method is less robust against outliers
occurring within recurrent CNA regions. In the Supplementary
Material, we compare the performance of CNAnova and GISTIC
using a hypothesis testing framework.

4.2 Acute lymphoblastic leukaemia (ALL) Affymetrix
SNP 6.0 data

To test the performance of CNAnova and GISTIC on real data,
we used a recently published study comprising 94 samples of ALL
and 36 matched normal samples analysed using Affymetrix SNP
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A B

Fig. 5. Sensitivity (A) and precision (B) of CNAnova and GISTIC, run with the thresholds of 0.5 on log-ratio values, in identifying rare recurrent low-level
copy number gains and losses (colour version of the figure is available in Supplementary Material). Top x-axis label gives the percentage of samples containing
a given recurrent CNA; bottom x-axis label gives the mean log-ratio value used in simulation (colour version of the figure is available in Supplementary
Material).

6.0 arrays (Mullighan et al., 2008). The 94 samples were derived
from 47 patients and were grouped into diagnosis–relapse pairs.
The choice of this particular study was guided by the fact that the
authors experimentally confirmed many previously described and
newly identified copy number changes with quantitative genomic
PCR. We used raw .CEL files and carried out all normalization
and summarization steps using aroma.affymetrix (Bengtsson et al.,
2008). The normalized raw probe intensity values were then fed into
the CNAnova pipeline. The data put into GISTIC were derived from
the same pre-processing steps, except that no pseudo-replication
was done. For instance, the same CNV probes were flagged in
the GISTIC data. The segmentation was carried out using CBS
and GISTIC was run with threshold parameters of 0.1, 0.25, 0.5,
1 and 1.5.

The problem of algorithm comparison using real data usually
arises from the fact that many hits are unvalidated. The ALL
dataset has two advantages when compared to other similar
datasets. First is the fact that many copy number changes were
experimentally confirmed. Second, due to the rearrangements of the
immunoglobulin genes in the B-cell lineage, the location of deletions
can be predicted a priori with high accuracy and this can serve as
a positive control to assess the error rate of CNAnova and GISTIC.
These two sets gave us a reference list of CNA regions for computing
sensitivity and precision of the algorithms.

For the segments not overlapping these regions, we used the
following strategy to assess the possibility of a segment being a
FP. We began by looking at the number of probes that were covered
by each segment. Very small segments have a higher chance of
being a FP. This chance further increases if segments do not span
the known annotated genes. Finally, we looked at the log-ratios.

Table 1. Sensitivity and precision for CNAnova and GISTIC on the ALL
dataset reference genes list

GISTIC0.5
PPV

GISTIC0.5
TPR

GISTIC1
PPV

GISTIC1
TPR

CNAnova
PPV

CNAnova
TPR

IGK@ 0.93 0.95 0.94 0.95 0.96 0.93
IGH@ 0.93 0.96 0.91 0.96 0.95 0.92
IGL@ 0.94 0.92 0.91 0.92 0.92 0.93
CDKN2A 0.94 0.96 0.94 0.95 0.95 0.92
CDKN2B 0.93 0.96 0.94 0.95 0.96 0.93
IKZF1 0.93 0.94 0.93 0.96 0.95 0.93
ETV6 0.66 0.83 0.75 0.70 0.83 0.75
PAX5 0.71 0.76 0.77 0.71 0.80 0.76

The segments satisfying the two previous conditions and with
values <0.5 (more than −0.5 for losses) were deemed as false
negative. The rates of sensitivity and precision for CNAnova and
GISTIC on the reference list of genes are shown in Table 1.

Both methods performed well in identifying highly recurrent
rearrangements of immunoglobulin genes in the B-cell lineage.
However, overall GISTIC identified a larger number of gains and
losses even at the ‘biological’ threshold of 0.5 than CNAnova
(Supplementary Fig. S12). Many of these CNAs represent very small
focal copy number changes. For GISTIC with the threshold of 1,
>80% of CNAs encompassed <15 probes and a quarter of all changes
were <4 probes (roughly 2 kb in size, based on the median probe
spacing for Affymetrix SNP 6.0 arrays) (Supplementary Fig. S13).
Most genes residing in these CNA regions have biological functions
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Fig. 6. Example of copy number plots showing the loss of ETV6 in the
relapsed ALL samples identified with fixed-factor nested-design CNAnova.

that do not suggest involvement in ALL progression (i.e. SIRPB1,
PCMTD2 and RBL1 on chromosome 20 and APOBEC3B, VPREB1
and RBL1 on chromosome 22). CNAnova identified 60 recurrent
CNAs (Supplementary Table 1). A large number of recurrent CNAs
were identified chromosome 9, containing amplicons around the
PAX5 and CDKN2A/B genes among others, which confirms the
previous observations about high recurrence of CNAs on this
chromosome (Mullighan et al., 2008).

Compared with simulated data, GISTIC seems to have a higher FP
rate on the real dataset, leading to lower precision at a comparatively
uniform sensitivity rate. Furthermore, at low thresholds GISTIC
splits single continuous regions into several smaller CNAs. For
instance, the number of recurrent CNAs reported by GISTIC with a
0.5 threshold was 177 for the ALL dataset, which is much larger than
the average number of CNAs reported in similar studies using the
same or similar array platforms (Chin et al., 2008; Weir et al., 2007).
These observations allow us to conclude that CNAnova applied to
the noisy Affymetrix SNP 6.0 array data produces a much smaller
number of FPs and does not require the time-consuming process
of selecting an optimal threshold and an appropriate segmentation
method. Having been developed and tested on the Affymetrix
SNP 250K arrays that have only 250K probes and a more robust
probe design, it seems that the noisier and denser Affymetrix SNP
6.0 arrays increase the error rate for GISTIC. This could also
explain why in the analysis of the lung cancer data generated using
Affymetrix SNP 250K arrays, GISTIC was used with a threshold of
0.1 (Weir et al., 2007), while an Affymetrix SNP 6.0 study of human
glioblastoma used GISTIC with a threshold of 1 (Chin et al., 2008).

4.2.1 Identification of recurrent CNAs with intra-patient
heterogeneity We applied the generalized CNAnova approach
to the ALL dataset to find recurrent copy number changes that
were present at diagnosis but not relapse or vice-versa. The model
was developed and tested for its ability to detect recurrent CNAs
with intra-patient heterogeneity. We identified 24 recurrent CNAs
that exhibit patterns of intra-patient heterogeneity (Supplementary
Table 2). These included the CDKN2-cluster, IFNK, ETV6 and

IKZF1, which have been previously reported to have recurrence
at relapse, and sometimes diagnosis (Mullighan et al., 2008), as
well as new genes such as ATF7IP (Fig. 6) on chromosome 12.
Deletions of ETV6, which contains ATF7IP, have been reported
previously (Montpetit et al., 2004); however, we find cases that
have an independent focal deletion of ATF7IP.

5 DISCUSSION
We have presented a novel framework, CNAnova, for using
unsegmented SNP microarray data to identify recurrent copy number
aberrations in cancer. It uses pseudo-replication to increase statistical
power and, in contrast to segmentation-based methods, does not
require permutations to estimate the null distribution of test statistics.
Instead, this distribution is approximated using samples from a
control set representing normal samples.

CNAnova circumvents the need to specify a threshold on
segmented log-ratios for calling probes with copy number changes.
This threshold could be sample, region, dataset and platform
dependent, which makes it hard to determine an optimal value and
can increase the error rate of segmentation-based methods. This is
especially true for the current generation of the SNP arrays, such
as Affymetrix SNP 6.0, that often exhibit wave patterns and other
artefacts.

Another advantage of CNAnova stems from decoupling the
process of identifying cross-sample boundaries of the regions of
recurrent CNAs and pinpointing the actual samples with copy
number changes. This insures that copy number changes with
extreme probe intensity values do not influence CNA detectability
in other samples. High probe intensity values fed into permutation-
based methods such as GISTIC may increase the false negative rate
by increasing the G-score (for GISTIC) in the permuted dataset,
and therefore the overall threshold for calling significant CNAs.
In its later implementation, GISTIC has introduced capping of
segmented log-ratios with extreme probe intensities (Chin et al.,
2008). The comparison with GISTIC suggests that it tends to have
higher error rate than CNAnova when using Affymetrix SNP 6.0
arrays. In addition to the dataset-dependent thresholds derived from
the permutation-based estimation of the null distribution, the higher
error rate could be explained by the fact that GISTIC was originally
adapted for use with lower density arrays and a more robust probe-set
design.

At the same time, dependence on the control dataset requires noise
in the cancer and normal samples to follow approximately identical
distributions. In addition, the number of normal samples should be
sufficient to capture different probe intensity artefacts and patterns of
noise in the (often larger) cancer dataset. Further simulations showed
(Supplementary section ‘Results’) that the algorithm is typically
robust against sample size and noise properties of the control dataset.
Only in cases of extremely low control sample sizes (<10% of the
size of the cancer dataset) the impact on the error rate becomes
significant.

Some conceptual ideas relating to different steps of the CNAnova
framework have been discussed in the literature. Hautaniemi et al.
(2005) derived a parametric mathematical model for protein-based
assays, which was then used to simulate additional data points to
better capture dependencies between variables within the decision
tree. Such an approach resembles our pseudo-replication strategy.
The use of normal control samples to control FDR was proposed
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by Rozowsky et al. (2009) to correct the FP signals in ChIP-seq
data arising from the open chromatin conformation at pol-II sites.
Decomposition of the variance has been recently proposed in the
context of aCGH data analysis by Kim et al. (2009), where CNAs
were associated with cancer tissue types.

The statistical framework of CNAnova can be extended by
incorporating more complex models, as we exemplified with a
two-factor nested ANOVA design for identifying CNAs with intra-
patient heterogeneity. A useful extension could be developed to
identify recurrent CNAs prevalent in a particular tumour subtype
or progression stage. In contrast to clustering, such an approach
can provide an association of individual CNAs with a specific
tumour phenotype. Focus on individual regions rather than clusters
could facilitate the discovery and testing of new candidate genes.
Similarly, additional data and biological annotation, such as gene
expression data or pathway-centred gene sets, could be used to
discover functionally related sets of recurrent CNAs.
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Introduction

In this supplementary material we collect together some additional information and analyses

that support the results in the main text. At the end we include colour versions of the figures

from the text.

SNP array Segmentation Algorithms

The most common problem in the analysis of SNP CGH data is the transformation of

normalized log-ratio values into accurate copy number calls at the highest possible resolu-

tion. This so-called single sample segmentation problem has received much attention, with

numerous methods developed for this task.

• QuantiSNP (Colella et al., 2007) Presently, this is Illumina specific, but that is ex-

pected to change. Ideally suited for the analysis of germline variants.

• PennCNV (Wang et al., 2007) Suitable for either Affymetrix or Illumina data. Can

perform trio calling.

• GADA (Pique-Regi et al., 2008) Applicable to either Affymetrix or Illumina. Includes

cross-sample inference step. Perhaps ideal for detecting germline variants. Matlab-

based implementation.

• SNPchip/VanillaICE (Scharpf et al., 2007) Bioconductor package, can interface with

oligo. HMM-based approach that can be applied to Affymetrix or Illumina. Not

explicitly suited for cancer samples.

• PICNIC (Greenman et al., 2010) Developed for Affymetrix SNP 6.0, particularly for

cancer data. HMM-based approach. Quite heavy in terms of compute time. Benefit

of ASCN calls and LOH. (Matlab/Java)

• genoCNA (Sun et al., 2009) New extension of the PennCNV approach. Simultaneously

identifies copy number states and genotype calls. Adapted to detect copy number

aberrations in cancer samples.
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• CBS (Olshen et al., 2004), GLAD (Hupé et al., 2004), HaarSeg (Ben-Yaacov and Eldar,

2008), and Ultrasome (Nilsson et al., 2009). Applicable to either aCGH or SNP-CGH

platforms. Perform segmentation, without genotype estimation.

Methods

Relevance of spline-correction for identification of recurrent CNAs

Finding recurrent copy number changes in cancer presents an additional challenge of having

to deal with widespread genomic instability, which produces many passenger aberrations

with gains and losses of large chromosomal segments. These segments may contain a large

number of genes; consequently, even if large-scale aberrations are marginally significant for

cancer progression, the original molecular driving event is hard to confirm. Therefore, when

finding focal recurrent CNAs, CNAnova does not use large-scale copy number changes. It

corrects for these large copy number changes by applying smoothing splines before identi-

fying the boundaries of CNA regions.

After inspecting a large number of samples we found that having one degree of free-

dom (df) in the spline function for every 1500 probes has the desirable effect of flagging

aberrations larger than 10 Mb. The degrees of freedom are calculated using this constant

and are different for different chromosomes. Although the distribution of CNA sizes may

vary between different studies, splines in CNAnova are used only to offset infiltration of po-

tentially causative/driver CNAs with large-scale aberrations caused by genome instability.

Exploratory analysis showed that between 1000 and 2500 probes per df produce a similar

smoothing, suggesting the robustness of the constant we selected and its transferability

between experiments.

However, even large-scale aberrations might involve small regions that harbour a func-

tionally significant oncogene or tumour suppressor gene. Consequently, once CNA regions

are identified using spline-corrected data in the first pass of CNAnova (via F-statistics), the

original data are used to identify all samples that have copy number change in a selected

CNA region. In this way information on the focal recurrent CNAs can be used to find

putative driver mutations in regions of large-scale copy number changes. (Figure S1.)
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Figure S1: Application of smoothing splines for identifying and correcting for large-scale single

copy number gains and losses. Two chromosomes (left) with different distributions of copy number

changes were subjected to smoothing spline correction. Results (right) depict the same chromosomes

after correction. Although low-level changes were smoothed out, truly focal high-level CNAs remain

intact.
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Note on the assumptions of CNAnova model

The applicability of the ANOVA procedure is contingent on satisfying two assumptions

about the dataset:

• observations within and between samples are independent;

• variances within and between each of the samples are (approximately) equal (homo-

geneity of variances requirement).

Considering the positive dependencies (autocorrelation) in the log-ratios of adjacent probes

on the chromosome and across samples, the ANOVA model might seem to have severe de-

partures from both assumptions. However, here ANOVA is applied to short probe windows,

therefore making any temporal dependencies on the sub-chromosome scale less prominent

and influential. In most cases, values in each sample window will represent either the

distribution of log-ratios of the non-changed population or a population with some copy-

number changes. Although we do observe autocorrelation in many probe windows (p-values

< 0.05; Durbin-Watson test for autocorrelation), it should be emphasized that CNAnova

uses F-statistics and p-values only in relation to normal samples. For example, although

autocorrelation will cause shrinkage of the within-sample variance and increase in the F-test

statistics (Figure S2), the autocorrelation is equally prominent in the normal samples.

Homoscedasticity of the variance is a more subtle assumption of the CNAnova statistical

model. It clearly does not hold for segments that span breakpoint boundaries. However,

deleterious effects of violating the homoscedasticity assumption in our model are offset by

several factors. First, the large number of groups and equal sample sizes make departures

from homoscedasticity less prominent, especially if they occur in only a few samples for

a particular segment (and usually exact breakpoint locations vary between samples). The

total number of segments exhibiting homoscedasticity depends on the number of recurrent

CNAs, which for most datasets does not exceed 0.005% of tested segments. This insures

preservation of homoscedasticity for most segments in the dataset. Finally, increase in

the variance caused by heteroscedasticity is associated with equally prominent change in

segment means, thereby lowering false negative rate for “homoscedastic” segments. We

used a simulated dataset (see Results section below) to verify these assertions empirically.

Exploratory data analysis using the variance of within-group standard deviations confirmed
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Figure S2: Distribution of the sample variance (window of 150 probes) in the original dataset (left)

and from the sample after probe permutation (right). A more prominent autocorrelation in the

original dataset causes shrinkage of the sample variance.

that only segments spanning CNA boundaries exhibit heteroscedasticity (Figure S3 and

Figure S4).

We have also found correlation between recurrent CNA segments missed by CNAnova

(false negatives, FN) and corresponding standard deviations between false negative and true

positive segments (Welch two-sample t-test, df = 84.34, p-value = 9.86×10−6). In contrast, a

similar two-sample test comparing absolute mean values of false negative and true positive

segments found differences with smaller significance (p-value = 2.26 × 10−3), suggesting

that change in standard deviations predominate over changes in segment means for the

FN segments. We also find higher correlation between segment means and corresponding

standard deviations for false positive segments (0.93) than false negative (0.88). These

observations suggest that segment means appear to be a more important property of the

model that offset negative impacts from heteroscedasticity in the data.

Related to the ANOVA assumptions question is the problem of data transformation. It

might appear that a much simpler strategy would be to remove the log-ratio calculation

step from CNAnova and work with log-intensities instead. Unfortunately, the distribution of

log-intensities is highly skewed, violating an assumption of ANOVA. The mean skewness of
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Figure S3: Distribution of variance of within-group standard deviations for all segments in the

simulated dataset. The red lines show the location of recurrent copy number changes. Figure

shows preferential location of segments exhibiting heteroscedasticity of the variance around recurrent

CNAs.
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Figure S4: Scatter plot of standard deviations and absolute value of means for all segments in

the simulated dataset (left) and for the false positive and negative segments only (right). Most

of the segments are correctly classified due to the counterbalancing effect of the increase in mean

values, which has a clear positive correlation (= 0.98) with the standard deviation. The misclassified

segments are predominantly the ones with very low mean values, which results from the fact that in

the misclassified segments spanning the breakpoint, the majority of probes fall into the region with

normal copy number.
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log-intensities from the normal samples in the AML dataset is -0.43 (2.7 for raw intensities),

compared to only 0.09 for log-ratio values for the same samples. This supports the use of

log-ratios in CNAnova, although log-intensities might prove easier to work with when non-

parametric (non-Gaussian) models are used.

The mean-shift procedure

Mean-shift density estimation theory was first described by Fukunaga and Hostetler (1975)

and expanded in Comaniciu and Meer (2002), who also suggested a versatile application

of the method to discontinuity-preserving smoothing of signals in various application do-

mains such as image analysis. Recently, an application of the mean-shift method to the

segmentation of aCGH data was described by Wang et al. (2009).

Mean-shift uses modes rather than means for data point smoothing, which allows it to

demarcate sharply the boundaries of noiseless signal regions. In CNAnova, the mean-shift

approach attempts to find maxima in the density (pdf) of the F-statistics; at modes of the

pdf, the gradient is zero. The mean-shift vector therefore always points in the direction of

the maximum increase in the density. This is an iterative procedure that shifts each data

point to the density maxima. Its advantage over model-based methods is that as a non-

parametric technique, it does not require prior knowledge of the number of recurrent CNAs

or assumptions about the length distribution. By performing a discontinuity-preserving

smoothing of the F-test statistic, it removes the noise in homogeneous regions of the chro-

mosome and preserves discontinuities at the same time. For the full derivation of the mean

shift procedure and density gradient estimation see Comaniciu and Meer (2002).

From the CNAnova perspective, the key advantage of the mean-shift procedure is the

use of local information based on mode estimation, which differentiates it from traditional

smoothing methods. Each point is assigned to a significant mode located in its neighbor-

hood, which is a local maximum of the underlying density function.
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Results

Details of the simulation scheme

We simulated ten instances of chromosome 17 with spiked-in CNAs in different regions. The

distribution of log-ratio values in each region was sampled from a normal distribution with

means 0.6, 0.65, 0.7, 1.1, 1.15, 1.2 (-0.6, -0.65, -0.7, -1.1, -1.15, -1.2) to recreate one and two

copy number gains/losses and a constant variance of 0.31, inferred from the distribution

of log-ratios in the real CNVs of the HapMap data. To test algorithms for robustness

against outliers present within regions of recurrent CNAs, we selected 6 highly recurrent

CNA regions and simulated non-significant log-ratio changes, 3 with mean 0.2 and 3 with

mean -0.3, in 4 samples that do not have CNAs in those regions.

To insure an unbiased comparison of CNAnova and GISTIC, particular attention was

given to selecting the correct threshold for GISTIC. The selection of the 0.5 threshold

was governed by two key observations. First, this threshold was greater than all simulated

spiked-in CNAs. Second, by running GISTIC with other thresholds we found that thresholds

of 0.25 and 0.1 produce the same number of CNAs (47) as the 0.5 threshold, while increasing

the threshold to 1 and 1.5 reduces the number of identified recurrent CNAs to 19 and 7

respectively, suggesting a large number of false negative hits.

Null hypothesis testing

In part, we attribute the superior performance of CNAnova in detecting rare CNAs to the

fundamental difference in how CNAnova and permutation-based algorithms estimate the

null distribution. When using permutations (as in GISTIC), the null distribution can be

defined in terms of the number of times that copy number changes with a particular cross-

sample frequency occur in the dataset, given that CNAs in the genome are distributed ran-

domly. In CNAnova the null distribution is estimated based on the premise that any local

variation in probe intensities arises from the non-CNA random effects. The null hypothesis

in CNAnova is much more general than that of GISTIC and similar permutation-based algo-

rithms, which allows CNAnova to detect infrequent recurrent CNAs with higher sensitivity.

The null hypothesis also does not depend on the overall rate of genomic instability observed

in individual samples. For example, a large number of CNAs on a particular chromosome
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Figure S5: F-test thresholds for the CNAnova algorithm derived using different permutation strate-

gies or probe distribution in normal samples.

will produce too conservative a null distribution that may lead to many false negative hits

for a permutation-based method. Alternatively, a small number of CNAs will generate low

thresholds and potentially a large number of false positives.

The actual percentage of altered samples within a CNA region provides a more coherent

way of defining functionally interesting recurrent CNAs. For example, CNAs with a fre-

quency of 4%–5% could suggest the presence of rare tumour subtypes. To further test this

hypothesis we used permutation-based estimation of the null distribution to derive thresh-

olds for the F-statistics and p-values used in CNAnova. The simulated cancer dataset was

permuted 100 times, either keeping ties between 5 adjacent probes (the minimal size of

a CNA region) or using probe permutation. To assess the effect of large-scale genomic

instability, we simulated single copy gains of chromosome arms in 10 samples and used

probe permutation on this adjusted dataset. CNAnova was then run to estimate F- and

t-statistics for the null distribution and the ideal threshold was defined as the smallest F-

statistic that gave the lowest error rate in the simulated dataset (Figure S5). The results

suggest that for block-permutation and probe permutation with chromosome arm gains,
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both F-test and t-test thresholds were much higher than the ones obtained with the null

distribution derived from the control dataset of normal samples. As a result of abnormally

high thresholds values, the sensitivity and specificity estimates were much lower and no

CNAs with a frequency below 15% were detected (data not shown). We note that the

permutation-based null distribution can become very liberal if ties between adjacent probes

are not kept. In this case, any correlation of probe intensities along the genome is lost (e.g.,

autocorrelation of probes in regions displaying the wave artefact) and the estimates of the

F-statistics become very low (5.3 in our simulation, compared to 9.35 for CNAnova). For

this reason methods such as STAC (Guttman et al., 2007) use permutation of blocks to

derive the null distribution.

Detection of germline CNVs

One of the CNAnova pre-processing steps involves identifying and flagging CNVs in the

normal control dataset. Because this stage is crucial for insuring that normal germline

variation does not interfere with the detection of somatic cancer mutations, we sought to

test the ability of CNAnova to find regions of previously discovered CNVs. It should be

emphasized that CNAnova will not find all CNVs in normal population. Since it uses a 30-

probe moving window, any CNVs spanning less than 10 probes are unlikely to be detected

by the method and therefore should not be a concern when identifying recurrent CNAs.

We utilized the same 90 HapMap samples used to create the control set for the simulated

dataset, but this time applied CNAnova to all chromosomes of the normal samples. 505

CNVs detected in more than 3% of those samples were used as a reference (McCarroll

et al., 2008). CNAnova was run with segment mean thresholds of 0.3, 0.35, 0.4, 0.45,

0.5 for distinguishing true single copy number changes and random probe variation. We

find that CNAnova achieves 41% sensitivity and 63% specificity on the reference set for

the 0.4 threshold, which gave the best combination of sensitivity and precision. Although

this numbers might appear low, we find that segments missed by the method are either of

low frequency or small size (two-sample t-test, p-values 0.09 and 0.18 respectively). For

example, the median frequency of false negative CNVs was 13% and the median size 6.2 kb,

compared to 37% and 23 kb respectively for true positive CNVs. Although p-values are low,

they are still not significant. However, if we use combined minimal p-values from CNV size
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and frequency t-tests, the relationship becomes marginally significant (p-value 0.06). It is

therefore highly unlikely that any of those missed segments would have been detected as a

recurrent CNAs in cancer samples. After removing CNVs below 5% frequency and 3 kb size

we observe significant improvement in sensitivity and precision (69% and 78% respectively).

These assertions, however, depend on the assumption that normal and cancer samples

come from the same population and have roughly equal sample size. Consequently, the

detection of CNVs will be impeded if the size of the normal dataset is much smaller than

the corresponding cancer dataset.

Impact of pseudo-replication on sensitivity of CNAnova and sample match-

ing

Next, we sought to validate empirically the effect of pseudo-replication on the ability of

CNAnova to detect recurrent CNAs and to determine the appropriate size of λ. The dataset

was simulated as described above, but without matching tumour samples to multiple normal

control samples, or by matching to two, three, four or five samples. We observed a decrease

in dataset-wide precision and sensitivity compared to the case with λ = 5 (0.96 and 0.97

respectively). This decrease was even more pronounced when the recurrence frequency

of each CNA was taken into account. In particular, without pseudo-replication or with

replication involving two or three samples, CNAnova was not able to detect copy number

changes occurring with frequency less than 12%. The ratio of the average F-statistics

for those infrequent segments and the threshold parameter was 3.1, 3.3, 3.3 and 3.4 for

CNAnova without replication and with λ = 2, 3, 4 respectively, and 4.4 when λ = 5. When

comparing distributions of the F-statistic from normal and cancer samples for replicated

(λ = 5) and unreplicated data using the Welch two-sample t-test, we observe that the

pseudo-replication increases the spread between the two distributions (14.1 versus 13.9 for

the two-sample t-test, df = 3119). These results suggest that pseudo-replication increases

the power of the method to detect rare recurrent CNAs, substantiating its use during the

CNAnova preprocessing phase. In addition, λ = 5 produces better results compared to

lower values of λ.

We wanted to make the algorithm as flexible as possible regarding the size and the origin

of normal samples that it can use, making it applicable to cases when only a small number
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of matched normal samples is available. However, we have extended CNAnova to allow it

to use matched normal samples when they constitute the majority of cases. CNAnova use

the following strategy to derive log-ratios for the cancer dataset. It matches each cancer

sample with its paired normal sample when such is available, and selects a random normal

sample for matching unpaired cancer samples. The normal dataset is created by matching

randomly selected normal samples with all other samples. After this matching all other

steps are carried out in exactly the same way as in the standard version of CNAnova.

Applying this method to chromosomes 9 to 13 of the ALL dataset identified a similar set

of recurrent CNAs although they were composed of a smaller number of samples (data not

shown).

Influence of size and noise level of normal samples on the error rate

Since CNAnova uses the distribution of log-ratios in the normal dataset to control the false

positive discovery rate, it is important to check robustness of the method against different

patterns of noise that may be present in the normal dataset. We started by studying the

influence of the changes in the size of the normal (control) dataset on CNAnova performance.

The size of control samples in the simulation dataset was varied from 155 to 20 while holding

the number of cancer samples fixed, and the F-statistic threshold was computed for each

of the comparisons. CNAnova performs comparably well across all control samples sizes

apart from the case when the normal sample constitutes 15% of the dataset (Figure S6a).

Simulation of five independent control datasets of each size also suggests that, although

variability between different simulations of the F-statistic threshold is greater for smaller

sample sizes, it is still adequate for estimation of the false discovery rate (Figure S6b).

In addition to the size, the distribution of log-ratios of normal samples also influences

estimation of the F-statistic threshold: the presence of extreme wave artefacts in normal

samples might lead to a higher false negative rate, whereas uncharacteristically low sig-

nal and amount of noise will increase the number of false positives. We also sought to

investigate the influence of QC characteristics in normal samples on error rate. Five dif-

ferent strategies were devised to select 50 normal samples from a total of 180: (1) samples

with the highest median absolute deviation (MAD) values (the most noisy); (2) samples

with the lowest MAD values; (3) 45% high MAD samples + 5% low MAD samples; (4)
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5% high MAD samples + 45% low MAD samples and (5) an equal proportion of noisy

and noiseless samples. We found few differences between these selection criteria for nor-

mal samples (Figure S6c), indicating that the CNAnova statistical model in combination

with different pre-processing steps make the method relatively robust to variations in the

variances between cancer and normal datasets. However, the HapMap samples have very

good QC characteristics, which may not be the case for other datasets. Consequently, as in

the case of other microarray analysis algorithms, CNAnova will still benefit from rigorous

pre-processing and normalization pipelines that remove very noisy samples.

Because of normalization and CNAnova’s internal post-processing routines, the variation

in the mean values of log ratios between normal and cancer datasets has much less significant

impact on the algorithm’s performance. In particular, zero centering will correct global

differences between means during calculation of log-ratios.

Discussion

Implications of statistical significance estimation of recurrent CNAs in

CNAnova framework

GISTIC permutes the data to estimate the null distribution. It makes an assumption that

all aberrations (including driver aberrations) are passenger mutations, thereby generating a

conservative, high estimate of the background aberration rate. CNAnova, in contrast, uses

the distribution of probe intensities in the control normal dataset (after removing CNVs) to

estimate the null distribution. The approach is based on the premise that the control normal

dataset has the same platform, dataset, sample and other technical biases that are present

in the cancer data. Consequently, it allows estimation of a statistical cut-off that will remove

much of the local variation in probe intensities, such as wave artifacts, but will preserve

true copy number changes. Such an approach offers greater sensitivity in finding recurrent

copy number changes, especially those that have intra-sample frequency less than 10%

and which include heterozygous deletions and low-copy number amplifications. However,

CNAnova does not assign actual significance to the recurrent copy number changes. The null

hypothesis assessed by GISTIC, which assumes that copy number changes in cancer samples

are distributed randomly, allows estimation of the false discovery rate. In CNAnova, the
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Figure S6: (a) Distribution of normal F-statistics from the simulation of different number of normal samples. (b) F-statistic threshold after

comparison with cancer samples for 5 different instances of each simulation. The ideal threshold used in the simulations is the same as in Figure

S5. (c) Distribution of normal F-statistics from the simulation of normal samples with different noise characteristics. See text for details of the

five simulation schemes.
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null hypothesis is that in cancer local changes in probe intensities arise from non-CNA based

artefacts. The significance of recurrent copy number changes is therefore assessed by using

the percentage of samples exhibiting CNAs. It could be argued that such a representation

can provide more informative results for decision making than FDR values. For example, a

new CNA present in 5% of 2000 cancer samples could suggest the existence of new subtype-

specific genes implicated in cancer progression.
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Supplementary Figures

Figure S7: Distributions of F-test statistics from control normal and cancer datasets (sorted in

decreasing order). F-test statistics from the normal dataset are used to control False Discovery Rate

in CNAnova.
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Figure S8: Example of segmentation results after applying circular binary segmentation (CBS)

algorithm to the simulated dataset. Whole chromosome (left) and a subset of chromosome (right)

are shown, lines in red indicate segment means. CBS is able to identify all CNAs in the sample.
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samples containing a given recurrent CNA; bottom x-axis label gives the mean log-ratio value used

in simulation (colour version of Figure 4 in the main text).
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Figure S10: Sensitivity (right) and precision (left) of CNAnova and GISTIC, run with 0.5 threshold, in identifying low-level recurrent number

gains and losses. Top x-axis label gives the percentage of samples containing a given recurrent CNA; bottom x-axis label gives the mean log-ratio

value used in simulation (colour version of Figure 5 in the main text).
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Figure S12: Comparison of the total number of recurrent losses and gains identified by CNAnova

and GISTIC in the ALL dataset by chromosome.
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GISTIC (with different thresholds) and CNAnova using CBS-segmented data.
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