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Introduction
Pancreatic cancer is highly lethal, with a five-year
survival rate of less than 5% [1]. The most common
form of pancreatic cancer is pancreatic ductal adeno-
carcinoma (PDA), accounting for over 250,000 deaths
worldwide annually [2] and ranked as the fourth
leading cause of cancer mortality in the USA [3].
The poor survival of PDA patients has been attributed
to the advanced stage of disease presentation and
ineffective therapeutic options. Approximately 20%
of PDA patients are diagnosed with localized disease
and are candidates for surgical resection with curative
intent; however, the majority of these patients
unfortunately relapse within several years and carry
a five-year post-operative survival of only 20% despite
additional treatment with adjuvant chemotherapy
[4, 5]. The current worldwide standard treatment for
advanced and surgically unresectable pancreatic
cancer is the chemotherapeutic agent gemcitabine;
however, this intervention only modestly improves
patients’ symptoms and has little measureable effect
on overall survival [6]. Despite tremendous efforts,
only the EGFR inhibitor erlotinib has been approved
as an additional agent for PDA patients, albeit for an
incremental increase in median overall survival of
only two weeks [7]. Therefore the development of
new therapeutic approaches for PDA patients that
are based upon the underlying biological complexity
of this disease is of the utmost importance. The
formulation of new treatment strategies for PDA
patients requires a detailed understanding of the gen-
etic and epigenetic alterations in PDA tumors and the
biochemical signaling networks that are active in this
disease. By collectively integrating such information,
a multimodal molecular network (MMMN) can be
established for PDA and used to probe the biological
vulnerabilities of this nefarious malignancy.

The proposed progression model
of pancreatic cancer
The first integrative model of colon cancer progres-
sion proposed by Fearon and Vogelstein correlated
the anatomical and histopathological progression
from a pre-invasive intestinal polyp to invasive colon
cancer with the accumulation of genetic and epigen-
etic mutations thought to be causal events in these
processes [8]. Subsequently, similar models have been
postulated for other cancers, including pancreatic
cancer [9]. PDA histologically arises in the ductal
exocrine compartment of the pancreas due to the
presence of pre-invasive neoplasms in small ducts.
However, the precise nature of the originating cell
type for PDA is unknown and may include either
pancreatic progenitor cells or mature epithelial cells
that dedifferentiate [10]. The cell of origin for PDA is
hypothesized to progress through a series of pre-
invasive histopathological states – termed pancreatic
intraepithelial neoplasms (PanINs) – prior to the
acquisition of invasive and metastatic characteristics.
Additionally, pre-invasive cystic pancreatic neo-
plasms distinct from PanINs develop in either the
large pancreatic ducts and are termed intraductal
papillary mucinous neoplasms (IPMNs), or periph-
eral small ducts and are classified as mucinous cystic
neoplams (MCNs). Both IMPNs and MCNs can be
found in close proximity to invasive PDA in resected
specimens, suggesting but not proving that PDA can
also develop from these precursor neoplasms. Since
PanINs appear to be the predominant precursor, we
will focus on these pre-neoplasms for the remainder
of the review. Although PanINs of different grades are
often conceptualized as discrete steps in PDA pro-
gression, it is much more plausible that they represent
static pictures of a continuously evolving process.
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While normal pancreatic ductal epithelial cells are
cuboidal with uniformly small round nuclei, the
epithelial cells of grade 1 PanINs are characterized
by a transition to a columnar appearance and con-
comitant accumulation of apical cytoplasmic mucin.
More severe grade 2 PanINs harbor cells with less
prominent mucin, abnormally shaped nuclei and loss
of polarity. Finally, grade 3 PanIN exhibit all charac-
teristics of grade 2 and in addition have cells budding
into the ductal lumen that occasionally form cribri-
form structures that bridge across the lumen of the
duct. Grade 3 PanINs are generally considered to be
carcinoma in situ, which makes them an attractive
therapeutic target.

Molecular genetics of pancreatic
cancer
Despite its poor prognosis, the molecular genetics of
pancreatic cancer progression are remarkably well
defined (Figure 26.1). The most common mutation
found in pancreatic cancer is point mutation of the
KRAS2 gene that produces a constitutively active
form of the Kras protein. Active GTP-bound Kras
can be self-inactivated through its intrinsic weak
GTPase activity resulting in a GDP-bound state. Kras
is physiologically activated by a variety of growth
factor receptors, most often receptor tyrosine kinases,
which promote the membrane recruitment and
activation of guanine nucleotide exchange factors
(GEFs) that catalyze the exchange of GDP for GTP.
Conversely, Kras inactivation is attained through the
recruitment of GTPase-activating proteins (GAPs)
that dramatically accelerate intrinsic Kras GTPase
activity. Oncogenic mutations in Kras invariably
occur at amino acids 12, 13, or 61 [11] and produce
a constitutively active GTP-bound Kras molecule that
is unresponsive to GAP-mediated inactivation. Kras
mutations are present in approximately 40% of
PanIN-1 and over 90% of invasive pancreatic cancers,
suggesting that oncogenic Kras is an initiating factor
for pancreatic cancer [12, 13]. Furthermore, KRAS2
is amplified in approximately 25% and overexpressed
in the majority of end-stage cancers. Intriguingly,
expression of an oncogenic allele of Kras in the
developing murine pancreas promotes the full spec-
trum of pancreatic cancer, including all grades of
PanIN, with complete penetrance [14].

In addition to Kras, mutations in three key tumor
suppressor genes (TSG) are frequently found in

sporadic pancreatic cancer. Over 90% of all pancreatic
cancers harbour p16INK4A mutations including
intragenic mutations followed by LOH (40%), homo-
zygous deletions in the 9p21 locus (40%), and pro-
moter hypermethylation (15%) [15–17]. p16INK4A

inhibits cdk4/6/cyclin D-mediated phosphorylation
of Rb, and thus controls the G1-S transition. Because
these mutations are first observed in grade 2 PanINs,
this suggests that p16INK4A mutations promote pro-
gression rather than initiation of pancreatic cancer
[18]. This hypothesis is further supported by the
observation that familial atypical multiple mole mela-
noma (FAMMM) syndrome kindreds with germline
mutations in p16INK4A have an increased risk for
pancreatic cancer but are not predisposed to early
development of the disease [19]. Furthermore, bialle-
lic deletion of the CDKN2A locus in the developing
murine pancreas fails to elicit any phenotype; how-
ever, in conjunction with a mutant Kras allele results
in the development of rapidly invasive PDA [20].

Similar to p16INK4A, mutations in TP53 are found
in 55 to 70% of invasive pancreatic cancers [21, 22].
p53 regulates apoptosis and cell cycle arrest through a
variety of downstream pathways, and its deletion
provides a clear advantage to preinvasive neoplastic
cells. Indeed, p53 mutation may allow cell survival in
the presence of genomic instability that will otherwise
trigger apoptosis. TP53mutations occur relatively late
in pancreatic carcinogenesis and are not detected
until grade 3 PanIN [23, 24]. The importance of
TP53 mutation can be assessed by studying patterns
of Li–Fraumeni syndrome, an autosomal-dominant
hereditary disorder that greatly increases the suscepti-
bility to cancer and is linked to germline mutations of
TP53. Although there is little evidence suggesting that
Li–Fraumeni patients with germline TP53 mutations
are predisposed to the development of pancreatic
cancer, this is likely because these patients often
die of other cancers prior to the development of
pancreatic malignancy [25]. Mice lacking p53 are
not predisposed to PDA and appear to have normal
pancreata; however, in conjunction with mutant Kras
this leads to invasive PDA [26].

Deletion of DPC4/SMAD4 at the 18q21 locus
occurs in over 50% of all invasive pancreatic cancers
[27], and is found in a higher fraction of tumors from
patients with advanced disease [28] and portends a
poor overall prognosis [29, 28]. Dpc4/Smad4 is a
transcriptional regulator that forms heterodimers
with other Smads and is required for a subset of TGFβ
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signaling. Its loss in high-grade PanIN supports its
role in progression rather than initiation of pancreatic
cancer [24, 30].

The multimodal molecular network
(MMMN) and pancreatic cancer
Because the molecular genetics of pancreatic cancer is
relatively well understood, the MMMN for pancreatic
cancer is perhaps more defined than for other
cancers. Indeed, recent global sequencing projects at
the level of genomic copy number alterations and
exomic sequencing have revealed that the aforemen-
tioned “four peaks” of pancreatic cancer represent the
only mutations present in over 20% of all PDA cases
[31]. Considering these and other results, the muta-
tions and signaling pathways associated with the

different steps of pancreatic cancer progression are
fairly well understood.

The frequency and early occurrence of oncogenic
mutations in KRAS2 makes it the obvious candidate
as the gatekeeper of PDA. This is supported by the
fact that mutations in Kras occur in practically every
pancreatic cancer and that there is no pathological
phenotype in the absence of this mutation in mouse
models. Therefore a Kras module may be considered
a critical event in pancreatic cancer initiation. This
module could also encompass upstream receptor
tyrosine kinases (RTK) that potentiate Kras signaling
or downstream effector molecules such as the Raf/
MEK/ERK, PI3K/Akt, or RalGEF/Ral axes. Genomic
amplification or overexpression of the RTKs EGFR,
ERBB2, ERBB3 and their ligands EGF and TGFA can
also occur in low-grade PanIN, suggesting that the
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Figure 26.1 Histological and molecular patterns of pancreatic cancer progression. Distinct pathophysiological stages of pancreatic are
shown along with the most common genetic alterations prevalent for each stage of disease progression. (A black and white version of this
figure will appear in some formats. For the color version, please refer to the plate section.)
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EGF pathway may also be important for PDA initi-
ation [32–34]. Indeed, the small molecule inhibitor
erlotinib, which inhibits EGFR kinase activity, is the
only targeted therapeutic approved for the treatement
of PDA [7]. Although mutations in the Raf/MEK/
ERK pathway are exceedingly rare, mutations in
PIK3CA and AKT2 are found in 11% and 20% of
pancreatic cancers, respectively [35–37]. These obser-
vations suggest that although the initiator module is
predominantly associated with an activating Kras
mutation, other mutations in the other pathways
may serve to enhance specific aspects of this signal
transduction pathway.

As previously mentioned, mutations in the major
tumor suppressor genes appear later in pancreatic
cancer progression. The earliest of these events is
mutation of p16, which first occurs in PanIN-1B/2
and could therefore be considered a part of an
intermediate module leading to the loss of cell cycle
checkpoint controls. The predominant role of p16 in
regulation of cdk4/6-cyclinD complexes suggests that
amplification or overexpression of either kinase may
be functionally equivalent to p16 inactivation. Muta-
tions in RB, which could convey a similar proliferative
advantage, are not found in pancreatic cancer. How-
ever, there is some evidence that pancreatic tumors
express lower levels of pRb [38]. Although the only
known function of p16 is regulation of cdk4/6, it is
intriguing to note that FAMMM kindreds harboring
mutations in CDK4 that render the kinase resistant to
inhibition by p16 are not predisposed to pancreatic
cancer [39]. This suggests that p16 may have an
additional, as yet undiscovered, role in regulating
pancreatic homeostasis.

Deletion of DPC4/SMAD4 is another
intermediate-to-late module that promotes PDA pro-
gression. TGFβ signaling, of which Smad4 is a critical
regulator, has been implicated in immune evasion,
epithelial to mesenchymal transition, and invasion
[40]. Deficiencies in Smad4 may be mimicked by
amplification or overexpression of inhibitory Smads
such as Smad7 [41]. Alternatively, deletion or muta-
tion of TGFβ receptors may elicit similar phenotypes.
Indeed, incorporating either of these genes in murine
pancreatic cancer models promotes accelerated
disease [42, 43].

TP53 mutation, as assessed by the nuclear accu-
mulation of the protein product, does not appear
until PanIN-3 and therefore can be considered as a
late module in the MMMN framework [24].

Pleiotropic effects of p53 mutation make it unlikely
that one or even two mutations in downstream
effector genes could recapitulate the multitude of
p53-dependent activities, although mutations in genes
that regulate p53, such as HDM2 and ARF, have been
reported. A polymorphism in the promoter of Hdm2,
an E3 ligase that directly regulates p53 protein levels,
results in elevated Hdm2 protein levels, reduced p53
function, and an increased risk for tumor progression
[44]. Mutations in CDKN2A often affect both p16
as well as p14ARF, a negative regulator of Hdm2
(and consequently positive regulator of p53). Interest-
ingly, neither of these mutations result in increased
p53 protein levels and therefore would not score
positively by immunohistochemistry. Therefore
mutations in these genes may significantly increase
the number of PDA tumors that are deficient in this
critical pathway.

Mutations in the BRCA2 pathway occur in fam-
ilies predisposed to developing pancreatic cancer [45,
46]. BRCA2 mutations promote genomic instability
and may thereby accelerate tumorigenesis through
widespread chromosomal aberrations and genomic
instability [47–49]. In conjunction with p53 loss of
function, BRCA2 mutations abrogate gatekeeper and
caretaker functionality of the late MMMN module
and subsequently allow cell survival under mutagenic
conditions.

Impact of high-throughput genomic
approaches on systems biology of PDA
The construction of an MMMN implicated in
pancreatic cancer progression was enabled by apply-
ing two separate experimental strategies to study the
cancer genome. The first strategy involved now
standard molecular biological approaches to identify
oncogenes and tumor suppressor genes in PDA spe-
cimens. The second approach involved recent high-
throughput genomic (HTG) techniques that allow the
analysis of thousands of genes simultaneously. It is
this second set of HTG approaches that holds the
most promise for the discovery of new genetic aber-
rations and epistatic interactions between mutations
in PDA. The ultimate aim of oncogenomic research is
to identify and catalog both genetic and epigenetic
changes in cancer at the genome-wide level in both
temporal (e.g., oncogenic progression) and spatial
(e.g., metastasis-specific mutations) dimensions.
The construction of such a catalog will be pivotal for
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selecting patient-tailored treatment programs [50].
From the MMMN network’s perspective, the compre-
hensive oncogenomic information can be utilized to
build exploratory and predictive mathematical
models for detecting interactions between different
genetic and epigenetic alterations and elucidating
their impact on temporal and spatial progression of
pancreatic cancer. Here we provide some examples of
how new genomic approaches gave novel insights into
the systems biology of pancreatic cancer.

By application of HTG techniques, current
research efforts can be grouped into two categories:
those that use only one HTG approach to profile
molecular aberrations and those that apply several
HTG techniques simultaneously to comprehensively
characterize genomic, epigenomic, and physiological
changes in cancer. The first category usually includes
proof-of-concept applications, new technologies, and
studies where an answer to a specific question is the
primary concern. It includes early gene sequencing
efforts to identify point mutations in either a specific
protein family, such as protein kinases, or all protein
coding sequences in several different cancers [51, 52].
Since the number of PDA samples in most previous
studies was usually limited, most of the conclusions
concerned broad mutation patterns in different
cancers. For instance, Greenman et al. sequenced
coding exons from 518 protein kinase genes in
210 diverse human cancers [51] and later (see below)
Jones and colleagues [31] sequenced protein coding
genes of 24 pancreatic cancers. When analyzing such
datasets the most challenging computational task lies
in identifying driver point mutations among a large
number of passenger aberrations. Each somatic muta-
tion in a cancer genome, whatever its structural
nature, may be classified according to its conse-
quences for cancer development. “Driver” mutations
confer a growth advantage on the cells carrying them
and have been positively selected during the evolution
of the cancer. They reside, by definition, in the subset
of genes known as “cancer genes.” The remainder of
mutations are “passengers” that do not confer growth
advantage, but happened to be present in an ancestor
of the cancer cell when it acquired one of its drivers.
Most algorithms developed to identify relevant
mutations utilize the proportion of synonymous to
non-synonymous changes for particular nucleotide
position to define the baseline for driver mutations.

Use of single nucleotide polymorphism (SNP)
and oligonucleotide microarrays for copy number

analyses is another widely used approach that can
detect both copy number changes (CNCs) and copy
neutral allelic losses, such as uniparental disomy.
In one of the earliest applications to PDA, cDNA
microarrays containing 14,160 cDNA clones were
used to define copy number alterations in a panel of
24 pancreatic adenocarcinoma cell lines and 13 pri-
mary tumor specimens [53]. The high frequency of
genomic instability in PDA, in part due to loss of p53,
can make it difficult to identify driver CNCs. The
authors of the paper developed a prioritization
scheme for identifying minimal common regions,
which used cross-sample information to find genes
most frequently altered in many cancer samples.
Sixty-four regions of recurrent copy number changes
were identified by this approach that harbored genes
known to play important roles in the pathogenesis of
pancreatic adenocarcinoma, including the tumor sup-
pressors p16INK4A and TP53 and the oncogenes MYC,
KRAS2, and AKT2.

Since the most informative copy number changes
for functional validation of candidate genes are focal
high-level amplifications and homozygous deletions,
the prominent trend in array comparative genomic
hybridization (aCGH) manufacturing was to increase
the number and density of features on microarrays.
For example, in 2003 Affymetrix, one of the largest
SNP array producers, released the Mapping 10
K array, a high-density oligonucleotide array suitable
for genotyping and estimation of copy numbers of
10,000 SNPs. Following that, Affymetrix has released
platforms that interrogate 100 K and 500 K SNPs.
More recently, Affymetrix made available Genome-
wide SNP 5.0 and Genome-wide SNP 6.0 arrays,
which in addition to SNPs interrogate a large number
of non-polymorphic (NP) loci. The 6.0 chip interro-
gates 900 K SNPs and 900 K NP loci. Following the
trend of applying denser arrays to study copy number
changes in cancer, Harada et al. used Affymetrix 100
K SNPs arrays to profile 27 microdissected PDA
samples [54]. With increased resolution, these arrays
allowed more precise delineation for the physical
boundaries of chromosomal breakpoints in PDA.
For example, homozygous deletions at 9p21.3
(45 kb) and high-level amplifications in three regions
of 8q: 8q24.13–q24.21 (2.2 Mb), 8q24.22 (177 kb), and
8q24.23–q24.3 (2.7 Mb) (19% of cases) were identi-
fied. SCAP2 (SKAP2, 7p15.2) was the most frequently
amplified gene (63% of cases), which has not been
described in any type of cancer. Increased copy
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number was also identified for MYC (8q24.21, 48%),
NCOA3/AIB1 (20q13.12, 44%), KRAS (12p12.1, 44%),
ERBB2 (17q12, 41%), and EGFR (7p11.2, 33%) genes.
On the other hand, two tumor suppressor genes,
CDKN2A and CDKN2B, were included in the locus
of 9p21.3 that was deleted at the highest frequency
(63% of cases). Genetic losses were also found in
genes such as DCC (18q21.1, 48%), SMAD4 (18q21.1,
33%), MAP2K4 (17p12, 30%), TP53 (17p13.1, 26%),
and RUNX3 (1p36.11, 22%). As can be seen from this
study, high density arrays allowed finding both
common (i.e., MYC) and PDA-specific (i.e., SKAP2)
genes implicated in pancreatic cancer progression.

Jones and colleagues [31] undertook a large-scale
HTG survey of mutations in 24 pancreatic cancers,
providing the largest genome-wide search for new
candidate genes reported to date. This study deter-
mined the sequences of more than 23 thousand tran-
scripts representing 20,661 protein-coding genes and
also searched for homozygous deletions and amplifi-
cations in the tumor DNA using Illumina Human1M-
Duo SNP arrays. PDA tumors were found to contain
on average 63 genetic alterations, the majority of
which were point mutations. A core set of 12 cellular
signaling pathways and processes were each found to
be genetically altered in 67 to 100% of the tumors.
Different modes of genetic alterations in these path-
ways were identified. First were those pathways in
which a single, frequently altered gene predominated,
such as KRAS signaling, and the regulation of the
G1/S cell cycle transition. Some pathways had a few
predominant altered genes, such as TGFβ signaling.
A large number of pathways had many different
altered genes such as integrin signaling, regulation of
invasion, homophilic cell adhesion, and small guanine
triphosphatase (GTPase) dependent signaling. Unfor-
tunately, it is still unclear how pair-wise interactions
within and between different pathways influence
cancer progression. Larger sample size will be needed
to identify and explain the functional consequences of
interactions between different genetic mutations.

The use of DNA microarrays for studying gene
expression among different phenotypic categories in
PDA was the first oncogenomic technique to be
applied to this type of cancer [55]. Buchholz et al.
[56] conducted a large-scale expression profiling
analysis of microdissected cells from normal pancre-
atic ducts, PanINs of different grades, and PDA from a
total of 51 patients with pancreatic cancer using whole-
genome oligonucleotide microarrays representing

21,329 genes in the form of optimized oligonucleotide
probes. Differentially expressed genes between differ-
ent stages were organised into functional categories
such as development, structure, and signal transduc-
tion according to the Gene Ontology annotations with
further divisions into subtypes based on tumor inva-
siveness. For example, within the “structure” category,
clusters of benign/hyperplastic tissue-specific genes
and dysplastic/neoplastic tissue-specific genes were
readily distinguishable: while the former included
the matrix metalloproteinases 3 and 17 (MMP3,
MMP17) as well as laminin gamma 3 (LAMC3), the
latter encompassed fibronectin 1 (FN1), keratin 16
(KRT16), plastin 3 (PLS3), matrix metalloproteinase
7 (MMP7), and collagen type III alpha-1 (COL3A1).

An alternative to the CNCs detection application
of SNP arrays is their use in genome-wide association
studies (GWAS) that aim to identify cancer suscepti-
bility alleles [7]. Such studies provide an ample
ground for the development of various statistical gen-
etics methods for identifying association of single
alleles or a subset/combination of alleles with cancer
phenotype. Indeed, a GWAS study has confirmed the
linkage of ABO blood types to the risk of developing
PDA [57].

The second category represents oncogenomic
studies that use multiple sources of HTG information.
The most prominent example in this category is a
recently published paper from the the Cancer
Genome Atlas pilot project applied to glioblastoma
[58]. The large-scale multidimensional analysis in this
study assessed DNA sequence changes, copy number
aberrations, chromosomal rearrangements, and DNA
methylation. Much smaller studies attempted to use
gene expression data from DNA microarrays to pin-
point functional consequences of copy number
changes in PDA. For example, Heidenblad et al.
carried out copy number analysis of 29 pancreatic
carcinoma cell lines using aCGH arrays and com-
pared the results with matching transcriptomic pro-
filing data [59]. They showed that a strong association
between DNA copy numbers and mRNA expression
levels is present in pancreatic cancer, and demon-
strated that as many as 60% of the genes within highly
amplified genomic regions display associated
overexpression. Another study by Fu and colleagues
exemplified the advantage of using several HTG tech-
nologies for finding candidate cancer genes. These
authors used representational oligonucleotide micro-
array analysis (ROMA) to identify copy number
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changes in pancreatic cancer xenografts, and validated
these findings using FISH, quantitative PCR, Western
blotting, and immunohistochemical labeling. With
this approach, they identified a 0.36-Mb amplification
at 18q11.2 containing two known genes, GATA-6 and
cTAGE1. However, combined genetic and transcrip-
tional analyses showed consistent overexpression of
GATA-6 in all carcinomas with 18q11.2 gain, as well
as in the majority of pancreatic cancers examined
(17 of 30 cancers, 56.7%) that did not have gain of
this region. By contrast, overexpression of cTAGE1
was rare in these same samples suggesting GATA-6 is
the true target of this copy number increase.

For ultimate understanding of oncogenic
pathways in PDA and for development of targeted
therapeutics, not only the use of different genomic
technologies, but also utilization of appropriate model
systems will be required.

Cancer cell lines in general are invaluable for
studying the genetics of PDA, and some recent studies
showed that the cancer genomes of a panel of human
cancer cell lines reflect the genomic diversity of
human cancers [60]. However, cell line models are
limited by their inability to recapitulate tumor–
stroma interactions. The mouse has become a model
system of choice to study PDA and many other types
of cancer [61]. Substantial functional genomic evi-
dence corroborates extensive use of this model organ-
ism. For example, Maser et al. compared genomes of
mouse tumor cells with genetically engineered
chromosomal instability to the genomes of various
human cancers and showed that there is a significant
non-random number of syntenic events [62]. The
observations suggest that mouse and human cells
can experience common biological processes driven
by orthologous genetic events during transformation.
In our laboratory, mouse models of pancreatic cancer
are used to find syntenic copy number changes with
human PDA tissue samples (as assessed by several
aCGH/SNP array platforms), followed by functional
validation of potential candidate genes. Similar
approaches have proven invaluable in prioritizing
genes functionally relevant to melanoma, prostate
cancer, and hepatocellular carcinoma [63–65].

Informatics support for systems
biology of PDA
The vast and diverse information on various patho-
genic alterations in the PDA MMMN requires

elaborate IT support for data storage, retrieval, pre-
processing, and analysis. Both PDA-specific and gen-
eral cancer databases exist for storage and curation of
HTG data. Cancer-specific databases store specialist
knowledge of alterations in one particular cancer by
combining diverse data types into one database
schema, while general cancer databases allow inter-
cancer comparisons. Pancreatic Expression database
is an example of the earlier approach [66]. It is a data
management system based on the BioMart technol-
ogy, which stores pancreatic gene expression data
alongside the human genome, gene and protein anno-
tations, sequence, gene homologs, SNP, and antibody
data. Interrogation of the database can be achieved
through both a web-based query interface and
through web services using combined criteria from
pancreatic-cancer specific (disease stages, regulation,
differential expression, expression, platform technol-
ogy, publication) and/or public data (antibodies,
genomic region, gene-related accessions, ontology,
expression patterns, multi-species comparisons, pro-
tein data, SNPs).

The Oncomine database, which stores more than
28 thousand gene expression and aCGH microarrays
from 41 cancer types (with more than 200 microarrays
representing PDA) is the most comprehensive general
cancer microarray database [67]. Oncomine creates a
set of differentially regulated genes in a particular set
of experiments, commonly referred to as gene signa-
tures, and then compares this set with sets from other
experiments using several different strategies includ-
ing differential expression, correlation, meta-analysis,
and COPA score. For instance, the COPA score is
calculated by searching for gene expression profiles
that display the most profound overexpression in a
subset of tumors using rank-ordered statistics.
A separate module, Molecular Concept Data, com-
pares gene signatures with independently derived
gene sets representing molecular pathways and other
biological concepts.

Development of new mathematical tools for
comparing and analyzing modules and other entities
in the PDA MMMN network is another active area of
research spawned by the rapid accumulation of HTG
data. There are four different approaches that can be
considered for mining MMMN of PDA:

1. Making prognostic and predictive estimates of
pancreatic cancer progression based on the
HTG data
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2. Finding whether genes altered in some way
between different pancreatic cancer phenotypes
have overrepresentation of a particular set of
features, i.e., genes in the same signaling
pathway

3. Defining the topological properties of the
network, such as identity of hubs or connectivity
patterns

4. Integrating different HTG data types to gain
comprehensive insight into pancreatic cancer
progression.

Again, oncogenomic databases provide both data and
programmatic access that make such approaches pos-
sible. For instance, data generated by the TCGA con-
sortium can be retrieved and analyzed using extensive
sets of database queries [68].

Development of appropriate visualization
schemes is also a highly relevant activity for identi-
fying patterns and relationships between genome-
wide distribution of genetic aberrations in PDA.
Pathway diagrams, networks, and gene signatures
are frequently used for identification and visualiza-
tion of various biological relationships and a number
of customizable software tools are available for this
purpose [69, 70]. Often it is necessary to create a
custom data representation scheme. For example, we
use copy number aberration image maps to find

regions of recurrent copy number changes in differ-
ent tumor samples and associate them with cancer
phenotype (Figure 26.2).

Future directions in PDA systems
biology research
Recent technological improvements in next-
generation sequencing provide a great opportunity
for rapid advancement in our understanding of
genome-wide patterns of somatic aberrations in
PDA. The following example illustrates the impact
of sequencing technologies on oncogenomic research.
Researchers reported approximately 100,000 somatic
mutations from cancer genomes in the quarter of a
century since the first somatic mutation was found in
HRAS. With projected advancements in next-
generation sequencing technologies, over the next
few years several hundred million more will be
revealed by large-scale, complete sequencing of cancer
genomes [71]. With sufficient genome coverage,
sequencing allows comprehensive detection of major
mutation types, including copy number changes,
point mutations, and genomic rearrangements, which
could not have been possible with microarray
technologies (Figure 26.3). For example, recent
sequencing of an AML genome identified ten non-
synonymous somatic mutations, of which only two

Grouping of patient by
cancer phenotypes helps to

uncover CNCs associated
with particular subgroup

Amplitude distinguishes 
CNCs of verious sizes and 

CNCs frequency assist 
identification of recurrent 

copy number changes
Number of CNCs 

per chromosome helps 
identify mutation hotspots

Image map of copy number changes in cancer
(CNCs) identified using high density SNP arrays

Figure 26.2 Example of an image map
of recurrent copy number changes
(CNCs) in cancer. Each box represents a
CNC event in a particular sample. The size
and color of boxes represents amplitude
of copy number changes (i.e., gains
versus high-level amplifications) and their
size. The samples can also be associated
with different cancer phenotypes
(metastatic status in this example). (A
black and white version of this figure will
appear in some formats. For the color
version, please refer to the plate section.)
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Figure 26.3 Comprehensive categorization of genetic abnormalities in cancers using next-generation sequencing technologies. The
example shows part of a catalog of somatic mutations in the small-cell lung cancer cell line NCI-H2171. Individual chromosomes are depicted
on the outer circle followed by concentric tracks for point mutation, copy number, and rearrangement data relative to mapping position in the
genome. Arrows indicate examples of the various types of somatic mutation present in this cancer genome. (Reprinted from [71] with
permission from the publisher.) (A black and white version of this figure will appear in some formats. For the color version, please refer to the
plate section.)
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were previously known AML-associated mutations.
The other eight somatic mutations detected were all
single base changes, and none had previously been
detected in an AML genome. Moreover, four among
these eight somatic mutations occurred in genes not
previously implicated in cancer pathogenesis, but
whose potential functions in metabolic pathways sug-
gest mechanisms by which they could act to promote
cancer, thereby providing new avenues for explor-
ation of diagnostic and therapeutic approaches for
AML treatment [72].

Sequencing of the lung cancer genome, albeit at
low coverage to robustly detect point mutations, in
addition to copy number changes identified 103
somatic rearrangements to the base-pair level of reso-
lution. The other advantage of sequencing is that it,
on the contrary to microarray technologies, provides
an unlimited dynamic range for detecting copy
number changes in cancer.

Finally, characterization of the cancer cell tran-
scriptome and active set of transcription factors, com-
bined with genomic aberration profile, will build a
comprehensive picture of cancer cell physiology. Fur-
ther single-cell sequencing will uncover subclones

carrying drug-resistance mutations and allow recon-
struction of cancer cells’ lineage [71].

We therefore expect in the next few years the
appearance of a number of reports that categorize
PDA genomes using next-generation sequencing. Ana-
lyses of genomic information will be only the first step
in our understanding of the molecular genetics of PDA
progression. The vast amount of new data will create
new and exciting opportunities for systems biology
research. Mining DNA sequence datasets will require
application of statistical methodologies at two distinct
levels. First, there will be a growing need for methods
to facilitate discovery of recurrent “driver” mutations.
Once the driver mutations are identified, the second-
level analysis will focus on the interactions between
driver mutations present in different individuals. For
example, structurally different mutations inactivating
protein phosphatases or activating protein kinases
could lead to functionally identical cellular responses
(i.e., constitutive kinase activity). The use of pathway-
based information derived from literature curation
and other data sources will be pivotal for reconstruct-
ing MMMN PDA networks from sequencing data, and
proposing novel therapeutic approaches.
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