
Copyright � 2006 by the Genetics Society of America
DOI: 10.1534/genetics.105.047472

Inferring Population Parameters From Single-Feature Polymorphism Data

Rong Jiang,* Paul Marjoram,† Justin O. Borevitz‡ and Simon Tavaré*,§,1
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ABSTRACT

This article is concerned with a statistical modeling procedure to call single-feature polymorphisms
from microarray experiments. We use this new type of polymorphism data to estimate the mutation and
recombination parameters in a population. The mutation parameter can be estimated via the number of
single-feature polymorphisms called in the sample. For the recombination parameter, a two-feature
sampling distribution is derived in a way analogous to that for the two-locus sampling distribution with
SNP data. The approximate-likelihood approach using the two-feature sampling distribution is examined
and found to work well. A coalescent simulation study is used to investigate the accuracy and robustness of
our method. Our approach allows the utilization of single-feature polymorphism data for inference in
population genetics.

NATURAL variation is of great interest to a variety
of disciplines, such as evolutionary biology, plant

and animal breeding, human genetics, and population
genetics. For example, it enables us to study the effects
of genetic forces, infer population history, and under-
stand the genetic basis of complex traits. There are
several types of genetic data available to study natural
variation, including restriction fragment length poly-
morphisms (RFLPs), microsatellites, and single nucle-
otide polymorphisms (SNPs).

Microarrays, a high-throughput technology for ge-
nomic DNA/RNA hybridization, play a key role in
functional genomics. Two major applications of DNA
microarrays are expression analysis and genotyping.
With the development of microarray technology and
design, more accurate and robust statistical methods are
needed to analyze the massive amount of data pro-
duced. Detailed examples may be found in Parmigiani
et al. (2003) and Speed (2003), for example.

As a model plant, Arabidopsis thaliana has been
extensively investigated in areas such as plant physiology
and crop breeding. Borevitz et al. (2003) used Affyme-
trix arrays to detect the genomic DNA signal in A.
thaliana and conducted genomewide studies such as
gene clustering, deletion identification, and quantita-
tive trait loci (QTL) mapping. Along with new develop-
ments of array design, other A. thaliana accessions have
been studied. Wolyn et al. (2004) studied the variation

between the accession Kas and the reference Col to map
the light response QTL. Werner et al. (2005) studied
two accessions, Bur-0 and Lz-0, for F2 extreme array QTL
mapping.

The scaled mutation parameter u and the scaled
recombination parameter r are important quantities
in population genetics studies. Watterson (1975) derived
a point estimator of u based on the number of seg-
regating sites, assuming the infinitely many sites muta-
tion model. For r the situation is more complex, but
there are several approaches using SNP data, for ex-
ample, rejection-based methods using summary statis-
tics (Wall 2000) and approximate-likelihood methods
(Hudson 2001; Li and Stephens 2003; McVean et al.
2004).

In this study, we develop methods to model and an-
alyze single-feature polymorphism (SFP) data. Our focus
is on estimating u and r, which will help us explore and
utilize this new type of polymorphism data in more
general settings. First we revisit the microarray experi-
ment in Borevitz et al. (2003) and describe in detail
how we model the statistical procedure to call features.
We show how the number of features called can be used
to estimate u. An approximate-likelihood approach is
proposed to estimate r by deriving the two-feature
sampling distribution by analogy with the two-locus
sampling distribution in Hudson (2001). We assess the
accuracy of this estimator using coalescent simulations.
Finally, we investigate statistical properties of our
maximum-likelihood estimator of r and check the
robustness of our approach by varying demographic
parameters. We also discuss how much information is
lost in SFP data compared with SNP data.
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MODELING

Motivation: Borevitz et al. (2003) studied allelic
variation in ecotypes of A. thaliana. DNA was prepared
independently from three Col and three Ler plants and
hybridized to six Affymetrix expression arrays. We refer
to Col as the reference type and Ler as the accession.
The arrays were set up to match the reference genome
sequence. After the arrays were scanned, the mean
intensity of each probe was spatially corrected, quantile
normalized, and analyzed by the SAM method (Tusher
et al. 2001). A probe was called as an SFP if its hybrid-
ization intensity was detected as being significantly dif-
ferent from that for the corresponding reference probe.
An illustration of SFP calling between two strains is given
in Figure 1. In Borevitz et al. (2003), 3806 SFPs were
called out of 92,924 unique probes and these were used
later for detecting potential deletions and for bulk
segregant analysis.

Although comparing accessions one at a time against
the reference provides only pairwise diversity, we can
combine these pairwise comparisons and produce SFP
data across multiple accessions in a similar way to that in
which we call segregating sites: a feature is called poly-
morphic if there is at least one accession probe at this
position whose hybridization intensity is called statisti-
cally significantly different from that of the reference
probe. We can model this scheme exactly in our sim-
ulations. At this time, 19 accessions are examined in
the Borevitz lab and the SFP data from this group of
accessions plus the reference strain serve as the basis for
our inference of population history for A. thaliana.

We now revisit the procedure for obtaining the SFP
data. There are two main steps in the microarray
experiments: measuring hybridization intensity for each
probe and detecting significant differences of hybrid-
ization intensity with respect to the reference, as
illustrated in Figure 1. The latter is a purely statistical
procedure and we do not attempt to model it at the
sequence level. Nevertheless, we use independent se-
quence confirmation of called SFPs to quantify this step
and include it in our simulations. Below, we describe
in detail how to model the SFP-calling procedure in
coalescent simulations.

The coalescent: Pioneered by Kingman (1982),
Hudson (1983), and Tajima (1983), coalescent theory
continues to prove a useful model for studying neutral
population history. In particular, fast and efficient
coalescent simulations help us to test the fit of different
models to data, especially when analytical results are
hard to obtain. For reviews of coalescent theory and
related inference methods, see Nordborg (2001), for
example. We use the coalescent to model the genealogy
of the accessions and the reference.

The issue of sample size and selection of the reference
sample requires some thought in coalescent simula-
tions. Suppose that 19 accessions plus the reference
(Col) are in the microarray experiment. We simulate
only one haplotype for each ecotype (either accession
or reference), since A. thaliana is highly selfing and
therefore its genome is essentially homozygous (see
Nordborg et al. 2005 for a discussion of this issue).
Therefore, we set the sample size as 20 when we deal
with 20 different ecotypes. Moreover, the reference is
chosen randomly among the simulated haplotypes,
since the strain Col is chosen as the reference merely
because it was the first strain completely sequenced. In
other words, there is nothing special about this strain
compared with other strains. Last, the sample of hap-
lotypes is simulated using the ms program (Hudson 2002)
and then postprocessed to obtain SFP data. We simulate
samples without population structure.

SFP comparison phase: For the simulated data, we
are able to measure the sequence polymorphism at each
probe position for every accession compared to the
reference, instead of needing to measure hybridization
intensity in microarray experiments. For simplicity, we
restrict our mutation model to consider only single-
nucleotide polymorphisms. There are several types of
sequence polymorphism within a 25-bp probe when
comparing an accession to the reference. We classify
them as follows: no difference, one-SNP difference, and
more-than-one-SNP difference. Noting that the chance
of having more than one SNP within a 25-bp probe is
rather small, we take it as an assumption later and
categorize the sequence polymorphism as either ‘‘no
difference’’ or ‘‘one-SNP difference.’’

In simulations, each accession is compared with the
reference at every probe position. If in fact there is more
than one SNP in a given probe, it is treated as having a
one-SNP difference. Consequently, every probe of each
accession is labeled 0 (no difference) or 1 (one-SNP
difference) after comparisons.

SFP-calling phase: In microarray experiments, high
or low hybridization intensities are called significant by a
prespecified statistical procedure, involving results from
multiple hypothesis testing. It is not easy to model this
step without taking into account the array setup and the
distribution of test statistics. On the other hand, we can
characterize the statistical procedure by summarizing
the four types of possible outcome: true positives, true

Figure 1.—Calling an SFP between the reference Col and
the strain Ler. The chip probe is complementary to the corre-
sponding reference target.
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negatives, false positives, and false negatives. Borevitz
et al. (2003) confirmed the SFPs called by comparing
available sequence data between the accession (Ler) and
the reference (Col). They found that there were 117
SFPs called out of 340 polymorphic probes (i.e., true
positives), and 4 SFPs called out of 477 nonpolymorphic
probes (i.e., false positives). Here, polymorphic probes
refer to those accession probes that differ from the
reference probe. We use these numbers to give us the
rates at which false positives (negatives) occur in our
modeling of the SFP-calling procedure.

Different calls can be characterized by two probabil-
ities: sensitivity and specificity, which sometimes are called
the true positive rate and the true negative rate, respectively.
Another useful probability is the false discovery rate
(FDR) (cf. Storey and Tibshirani 2003). For example,
we have a sensitivity of 0.34, specificity of 0.99, and FDR
of 0.03 in the above scenario. Unlike the multiple-
hypothesis testing situation in microarray experiments,
in our simulation scheme we know the exact truth about
the polymorphism at every probe position. Therefore,
we can make calls of SFPs according to the sensitivity
and specificity appropriate for real experiments by
assuming that each call is independent and identically
distributed. Furthermore, as SFPs are quantitative we
can evaluate the effect of different thresholds (trading
specificity for sensitivity, for example) on estimates of
population genetics parameters.

After the SFP comparison phase, each accession can
be viewed as a series of 0’s (no difference) and 1’s (one
SNP difference). If we focus on one particular probe, we
obtain a column of 0’s and 1’s, where the reference is
always labeled 0. After statistical calls, we label an acces-
sion probe 1 if it is called polymorphic with respect to
the reference probe; otherwise we label it 0. In this way,
we can restate the four types of calls: true positives as
1/1, true negatives as 0/0, false positives as 0/1, and
false negatives as 1/0, where the first number indicates
no difference or one-SNP difference in the true sequence
comparison and the second number indicates ‘‘called
polymorphic’’ or ‘‘called nonpolymorphic’’ by the ana-
lytic software. The probabilities for the calls can be cal-
culated on the basis of the sensitivity and specificity. We
say that there is an SFP at the current probe position if
not all accession probes are labeled 0 (by analogy with
the definition of segregating sites).

Simulations: In coalescent simulations, we simulate a
sample of 20 chromosomes (haplotypes) with scaled
mutation parameter u and recombination parameter r.

In Borevitz et al. (2003), the arrays were defined
using probes for the reference strain. Probes were
clustered at the 39 end of known and predicted genes.
Later on, they used a new technology to tile more probes
on arrays and hence enlarge the probe coverage over
the genome. For simplicity in both the analysis and the
simulation study, we consider only nonoverlapping
probes, and we generate evenly distributed probes with

a coverage of 3.3%, the same as that in the experiment
in Borevitz et al. (2003). Moreover, we take the length
of the region to be 100,000 bp, the largest value we can
use while still allowing for fast simulations in our in-
ference method.

In the SFP-calling phase, we denote the sensitivity
by sn and the specificity by sp. Because SFP genotyping
is quantitative, various stringencies are explored. We
consider three combinations of (sn, sp): (0.34, 1.0), (1.0,
1.0), and (0.68, 0.75). The first one is similar to the
estimates from the sequence confirmation in Borevitz
et al. (2003); the second one is the ideal case; and the last
one considers intermediate values of sensitivity and
specificity.

Assumptions: To simplify the analysis while still mod-
eling the essentials of the microarray experiments, we
make several assumptions, some of which are already
described above. Here we emphasize some important
assumptions in modeling the statistical calling proce-
dure. First, calls are independent across the probes for
each accession. Second, at every probe position, we
propose two alternatives for dealing with calls across
accessions: (1) independent calling, i.e., each accession
probe is called independently from other probes; and
(2) dependent calling, i.e., samples with the same true
state have the same call across sequences for a given
probe. An example illustrating the calling of SFPs is
given in the appendix.

The intuition for independent calling comes directly
from the setup of the microarray experiments, in which
each accession is hybridized to the reference probes. On
the other hand, dependent calling comes from the bio-
logical intuition that probes of the same sequence tend
to have similar hybridization intensities as well as similar
calls. The truth is likely somewhere between the two.

SOME ANALYTICAL RESULTS

Expected number of SFPs: Our main result about the
expected number of SFPs is that it is approximately
linear in the mutation parameter u. As a result, the
number of SFPs called serves as a good candidate
summary statistic to estimate the mutation parameter.
Standard coalescent simulations show that the proba-
bility of having more than one SNP within a 25-bp probe
is rather small for small u, e.g., �2% for u¼ 2/kb and 5%
for u ¼ 4/kb. Assuming the above, we can derive an
approximate formula for the expected number of SFPs,
given the experimental parameters such as the sensitiv-
ity and specificity, dependent/independent calling, etc.
See the appendix for more details.

We plot the expected number of SFPs vs. the mutation
parameter in Figure 2, using probe coverage of 3.3%.
We present four cases: different combinations of sensi-
tivity and specificity in dependent calling (cases 1, 2, and
3) and independent calling (case 4). When the muta-
tion parameter is small the simulation results fit well
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with the theoretical predictions for each case. The in-
dependent calling case with ideal sensitivity and speci-
ficity (both ¼ 1.0) is not shown because it is essentially
the same as dependent calling case 2. The independent
calling case with sensitivity as 0.68 and specificity as 0.75
is not shown because the number of SFPs called in every
data set is equal to the number of probes, since the
probability to call each probe as an SFP is �1 when sn ¼
0.68 and sp ¼ 0.75 in a sample of size 20. In other words,
such a poor specificity introduces too many false posi-
tives, which makes the number of SFPs uninformative
for u.

Two-feature sampling distribution: Hudson (2001)
studied the two-locus sampling distribution and derived
an approximate-likelihood approach to estimate r using
SNP data. We denote by {A1, A2, . . . ,AS} the configura-
tion vector at the segregating sites 1, 2, . . . , S, where S is
the total number of SNPs. Analogously, we denote by
{B1, B2, . . . ,BF } the configurations in the SFP sample, Bi

being the configuration vector for the ith SFP called,
and F is the total number of SFPs called. We derive an
approximate likelihood for our SFP sample and use a
maximum-likelihood approach to infer r. For simplicity,
we derive the two-feature sampling distribution under
dependent calling. (The derivation under independent
calling is straightforward, although there are more
possibilities involved. We do not present it here.)

First, we review the two-locus sampling approach.
Hudson (2001) considers pairs of segregating sites,
whose configuration is denoted by n ¼ (n00, n01, n10,

n11), where nij is the number of times the combination ij
(i ¼ 0, 1 and j ¼ 0, 1) is observed at the two given
segregating sites. Recall that 0 stands for wild type and 1
for mutant in the SNP matrix. The probability of this
pair conditional on both loci being segregating is
denoted by qc(n; r, u), and the limit for small mutation
rate is denoted by qcðn; rÞ ¼ limu/0qcðn; r; uÞ. The ap-
proximate likelihood of the sample is then given by

LsðrÞ ¼
YS�1

i¼1

YS
j¼i11

qcðnij ; rÞ; ð1Þ

assuming that pairs are independent of each other.
Similarly, we define pc(m; r, u) to be the probability of

a pair of SFPs, m, having configuration (m00, m01, m10,
m11), with similar interpretation to that in the SNP
setting. Here the subscript c indicates that it is condi-
tional on two features with one segregating site in each.
Unlike the derivation of the two-locus sampling distri-
bution, there are several possible two-locus SNP pairs
(n) that give rise to the same two-feature SFP pair (m).
These are illustrated in the appendix.

By summing over all possibilities of SNP configura-
tions, reference types, and calling operations we obtain

pcðm; rÞ ¼
X

n

X
r

qcðn; rÞPðr Þbðm jn; rÞ: ð2Þ

Here r denotes the reference type, i.e., 00, 01, 10, or 11,
soP(00)¼ n00/s, where s is the sample size, for example.
Moreover, b(m jn, r) is the probability of obtaining the
SFP pair m from the SNP pair n and reference type r.
Note that if the SNP pair n can be transformed to the
SFP pair m then in general there is one and only one
combination of calling operations at the two probe
positions. Its probability is given by P(Ci) P(Cj) if the
calling operation at the first site is of type Ci and the one
at the second site is of type Cj, i, j ¼ I, II, or III. For
example,PðC1Þ ¼ Pð1/1; 0/0Þ ¼ Pð1/1ÞPð0/0Þ ¼
spsn.

We can now write the approximate likelihood of the
SFP sample as

Lf ðrÞ ¼
YF�1

i¼1

YF
j¼i11

pcðmij ; rÞ; ð3Þ

where mij is the configuration vector for the pair of the
ith feature and the jth feature. Once the two-feature
sampling probability pc(m; r) is tabulated, we can
compute the approximate likelihood rapidly for a grid
of r-values and report the maximum-likelihood estima-
tor. Note that the above approximate-likelihood calcu-
lation assumes independent pairs of features, while
Hudson (2001) assumes independent pairs of segre-
gating sites.

Modification of the two-feature sampling distribu-
tion: Given the SFP data alone, we are not able to tell if

Figure 2.—The expected number of SFPs, E[F], plotted
against u for 3.3% probe coverage. Circles denote the esti-
mated values from simulations. Theoretical lines are drawn
according to formula (A6) (see the appendix). Four cases
are shown: dependent calling with (sn, sp) as (0.34, 1.0) (case
1, solid line), (1.0, 1.0) (case 2, dashed line), and (0.68, 0.75)
(case 3, dotted line) and independent calling with (sn, sp) as
(0.34, 1.0) (case 4, dashed-dotted line).
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there is a SNP within a particular feature or not, due to
the existence of false positives. However, by studying the
pattern of the feature pairs where there is no SNP inside
(i.e., false positives), we can modify the above two-
feature sampling distribution.

Under the completely dependent calling assumption,
the false positives have one common pattern in the
resulting SFP matrix, i.e., all 1’s but one 0 for the
reference probe. Consequently, to help avoid false
positives being included in the likelihood computation,
we require that there are at least two 0’s in the
corresponding column in the resulting SFP matrix for
every feature considered.

We can readily utilize this to find estimators of r. We
label this approach modified. At the same time, we also
compute approximate maximum-likelihood estimates
(MLEs) from two other approaches using SFP data: one
using all SFPs called without any restriction (labeled
simple) and the other using only SFPs having exactly one
SNP inside (labeled real). Comparing these two with the
modified likelihood approach, we show that the mod-
ified version yields better performance and good ro-
bustness under various combinations of sensitivity and
specificity.

RESULTS

In this section we provide results from simulation
studies.

Estimating u using the number of SFPs: Here we use
an approximate-likelihood approach similar to that of
Weiss and von Haeseler (1998). We are interested in
estimating the mutation parameter u on the basis of the
observed number, F ¼ f, of called SFPs. For a particular
value u we generate a large number of coalescent repli-
cates and approximate the likelihood L(u) by the propor-
tion of replicates that have approximately f called SFPs,

LðuÞ � B�1
XB
i¼1

I ðFi ; f Þ;

where B is the number of replicates, Fi is the summary
statistic in the ith run with parameter u, and the
indicator I(Fi, f ) is 1 if |Fi � f | , d. In estimating u we
set B ¼ 250,000 so that we obtain reliable estimates of
the likelihood. We repeat this scheme for a range of
u-values chosen on an evenly spaced grid and then report
the one with the maximal (approximate) likelihood as
the estimate of the true u. The results depend on the
predetermined tolerance d. In this approach the re-
combination rate r is a nuisance parameter. We accom-
modate this by simulating each data set with r chosen
uniformly over [0, 100].

To assess the adequacy of this procedure, we consider
three combinations of (u, r), namely (200, 20), (400,
40), and (600, 60). For each (u, r) combination, we
simulate 1000 data sets and record the summary statistic

f for each of them. Then we apply our method to obtain
the corresponding estimate of u. For each parameter
set, we calculate the mean and the root (relative) mean
square error (RMSE) to assess the performance of our
approach. Table 1 shows the results, assuming 3.3%
probe coverage.

Overall, the estimates in Table 1 show no bias. How-
ever, for a given specificity the smaller the sensitivity is,
the larger the RMSE becomes. Moreover, the specificity
at a level of 0.75 has the largest RMSE and decreases the
power of the inference method. Also we note that the
RMSE tends to be smaller as u increases, but it is not
clear why the independent case with sensitivity 0.34 and
specificity 1.0 has smaller RMSE than the corresponding
dependent case.

Estimating r using two-feature sampling distribu-
tions: Once more we compared three scenarios, (u, r)¼
(200, 20), (400, 40), and (600, 60), and simulated 1000
data sets for each combination. For each simulation, we
calculate the composite approximate likelihood of the
SFP sample using Equation 3 for a range of r-values
chosen on an evenly spaced grid between 0 and 100 and
report the one with maximal likelihood as the estimate
of r. We report the mean, the RMSE, and the fraction of
times the estimate falls within a factor of two of the true
parameter (cf. Wall 2000). We see from Table 2 that we
obtain reasonable estimates of r. Due to many false SFPs
being called, the simple approach underestimates r

when the specificity is moderately large, e.g., 75%. On
the other hand, the real approach is impossible to apply
in reality since the state of SNPs within each called
feature is not observed. The modified approach ex-
cludes false positives and hence makes the estimator
more robust to changes in sensitivity and specificity. In
the following section, we use the modified version when
we refer to the likelihood approach using the two-
feature sampling distribution.

Robustness of approach: To investigate the robust-
ness of the likelihood approach using the two-feature
sampling distribution, we consider the following three
scenarios: (a) population growth, (b) population sub-
structure, and (c) gene conversion. For a, we set the
starting time point of population expansion to 0.44 (in
coalescent units) and the exponential growth rate to

TABLE 1

Estimates of u

Calling (sn, sp) u0 ¼ 200 u0 ¼ 400 u0 ¼ 600

Dependent (1.0, 1.0) (200, 0.29) (401, 0.23) (596, 0.18)
Independent (0.34, 1.0) (200, 0.33) (396, 0.25) (597, 0.23)
Dependent (0.34, 1.0) (205, 0.46) (409, 0.31) (608, 0.28)
Dependent (0.68, 0.75) (203, 0.59) (408, 0.34) (613, 0.28)

The two numbers within the parentheses denote the mean
and the root (relative) mean square error (RMSE) from the sam-
ple of posterior estimates, respectively. Probe coverage is 3.3%.
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2.1, the maximum-likelihood estimates for this scenario
obtained in Plagnol et al. (2006). For b, we choose two
settings to test: two equal-sized subpopulations with
scaled migration parameter 1.5 (results not shown) and
four equal-sized subpopulations with scaled migration
parameter 3.0, chosen to achieve average Fst-values of
�0.25 (Hudson et al. 1992). In each case the sample was
assumed to be divided equally between the subpopula-
tions. For c, we use the estimates in Plagnol et al. (2006)
to set the mean length of a conversion tract to 100 bp
and the ratio of conversion to crossing-over rates to 4.

Table 3 lists estimates of r for these three scenarios.
We see that we can still estimate r if there is exponential
growth, gene conversion, or population structure, pro-
vided that we have good estimates of the demographic
parameters. Moreover, we can see that we tend to
overestimate r when population growth or gene con-

version is present, while there is little bias in the case of
population structure.

We emphasize that these scenarios are intended to be
exploratory rather than exhaustive. A more extensive
test of robustness would examine the effects of changes
to mutation, migration and recombination parameters,
sample size, and different minor allele frequencies used
in obtaining the two-locus sampling distribution.

To address the model misspecification question, i.e.,
what happens if we analyze data under the wrong model
or with the wrong sensitivity and/or specificity, we show
the effects of using incorrect sensitivity or specificity
in Table 4. The main observation is that both our
approaches suffer in this case. We show that dependent
modeling is more appropriate for SFP experiments (cf.
Figure 3) in the discussion.

We generated test data under u¼ 200 and r¼ 20 for a
100-kb region with particular sensitivity and specificity
(Table 4, a and b, column 1) and then estimated either u
or r with different sensitivity and specificity. For exam-
ple, given the true value of u ¼ 200 we estimated u with
three different combinations of sensitivity and speci-
ficity, and we see that only inference using the true
parameters (numbers on the diagonal in Table 4a)
provides accurate estimates. On the other hand, we also
generated the two-feature sampling distribution with
parameters similar to the real experimental setting, i.e.,
sensitivity ¼ 0.50 and specificity ¼ 0.98, and then used
this lookup table to estimate r in the test data sets
generated with different sensitivity and specificity. For
the data sets generated under sn ¼ 0.34 and sp ¼ 1.0,
most of the estimates returned are 0, and we label this
case ‘‘NA,’’ i.e., not applicable. For the other two cases,
the estimates seem to be unaffected.

In summary, one needs to obtain reliable estimates of
sensitivity and specificity, for example, by sequence
comparison, for successful inference.

TABLE 2

Estimates of r

Type r0 ¼ 20 r0 ¼ 40 r0 ¼ 60

Modifieda (25, 0.90, 0.85) (46, 0.57, 0.91) (63, 0.38, 1.0)
Modifiedb (25, 1.1, 0.81) (43, 0.62, 0.89) (59, 0.41, 1.0)
Modifiedc (27, 1.1, 0.79) (48, 0.62, 0.88) (65, 0.40, 1.0)
Simpleb (27, 1.2, 0.80) (44, 0.60, 0.89) (57, 0.41, 1.0)
Simplec (3, 0.85, 0.99) (16, 0.77, 0.98) (41, 0.56, 1.0)
Realb (22, 1.1, 0.84) (38, 0.62, 0.91) (50, 0.46, 1.0)
Realc (20, 0.95, 0.87) (37, 0.60, 0.94) (52, 0.46, 1.0)

The three numbers within the parentheses denote the
mean, the root (relative) mean square error, and probability
that the estimate falls within a factor of two of the true param-
eter, respectively. Three combinations of (sensitivity, specific-
ity) are examined:

a (1.0, 1.0).
b (0.34, 1.0).
c (0.68, 0.75).

TABLE 3

Robustness of estimates of r

Scenario r0 ¼ 20 r0 ¼ 40 r0 ¼ 60

Growtha (27, 1.0, 0.81) (45, 0.60, 0.90) (55, 0.43, 1.0)
Growthb (26, 0.80, 0.84) (48, 0.58, 0.90) (61, 0.35, 1.0)
Growthc (29, 1.0, 0.80) (49, 0.62, 0.88) (62, 0.38, 1.0)
Gene conversiona (28, 1.0, 0.79) (48, 0.65, 0.86) (60, 0.40, 1.0)
Gene conversionb (28, 0.85, 0.81) (51, 0.60, 0.87) (64, 0.38, 1.0)
Gene conversionc (30, 1.0, 0.76) (52, 0.65, 0.84) (66, 0.40, 1.0)
Subpopulationa (22, 1.1, 0.86) (41, 0.58, 0.92) (55, 0.42, 1.0)
Subpopulationb (21, 0.74, 0.90) (41, 0.49, 0.95) (58, 0.36, 1.0)
Subpopulationc (23, 0.92, 0.86) (43, 0.57, 0.91) (59, 0.38, 1.0)

Notation is as in Table 2. See text for details. Simulations are run under dependent calling, with probe cov-
erage of 3.3% and three combinations of (sensitivity, specificity):

a (0.34, 1.0).
b (1.0, 1.0).
c (0.68, 0.75).
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DISCUSSION

We have shown that single-feature polymorphism data
can be used effectively to infer aspects of the population
history of A. thaliana. Single-feature polymorphisms, as a
new type of polymorphism data, have certain advantages
over other types of polymorphism data. By exploiting the
high-throughput nature of arrays, large amounts of
polymorphism data can be produced in an economic
and efficient way. Given recent advances in the technol-
ogy, the probe coverage over the genome of interest can
be easily increased (Borevitz and Ecker 2004). New

commercially available tiling arrays cover the reference
strain Col with very small spacing (10 bp) between
probes. This will help expedite the exploration of natural
variation at the genomewide scale.

By taking account of the transformation from SNPs to
SFPs, one could apply most of the methods developed
for SNP data to SFP data. For example, the product of
approximate conditional-likelihood (PACL) approach
in Li and Stephens (2003) could be applied by adding
one more step reflecting SFP calling after simulating the
SNP sample. Moreover, we could use sliding windows
across the genome to study variation in mutation rate
and recombination rate using SFP data, as well as to find
recombination hot spots, provided that there is a rea-
sonably dense probe coverage of the region of interest
(Fearnhead et al. 2004). Other statistics defined for SNP
data, such as Tajima’s D and the inbreeding coefficient,
might be derived in an analogous way and used to study
natural selection and/or population structure. One
appealing and challenging task is to develop methods
for using SFPs for fine-mapping purposes. For example,
methods such as the spatial clustering scheme in Molitor

et al. (2003), based on haplotype sharing, can be adopted
by defining a new metric that takes into account the
uncertainty due to SFP calling (Kim et al. 2006).

When considering how best to improve microarray
experiment technology and design in our context, we
first observe that increasing the specificity leads to larger
improvement in accuracy than increasing the sensitivity.
This is because the inference is considerably affected
by false positive calls. Thus controlling the false discov-
ery rate in any statistical approach that calls SFPs is
important. To improve modeling of the SFP calling
procedure, one could allow for the existence of multiple
SNPs within a probe when deriving analytic formulas. In
fact, the proportion of probes having more than one
SNP in our simulations ranges from 4 to 12% as u

increases from 200 to 600, while Nordborg et al. (2005)
reports that less than one-sixth of the true positive SFPs
have more than two alleles. Moreover, the rate at which a
probe hybridizes is likely affected by the position of the
SNP within the 25-bp region (Borevitz et al. 2003).

It is also important to study the effect of the de-
pendent/independent calling schemes. To investigate
this, we obtained 406 SFP loci and their corresponding
SNPs by comparing SFP calls with the available sequence
data for the 16 accessions in our experiment. We then
calculated the correlation between the SNP and SFP calls
at each SFP locus. Figure 3 gives a histogram showing that
the degree of correlation is close to 1, which is very similar
to the histogram obtained from simulations under de-
pendent calling (histogram not shown). On the other
hand, simulations show that for independent calling with
parameters matching real experiments, there is sub-
stantial mass to both the left and the right of 0 (histogram
not shown). Therefore, the mass at 1 tells us that calling is
generally quite dependent.

Figure 3.—Histogram of correlation coefficients between
SFPs and underlying SNPs for the 406 called features in a real
experiment.

TABLE 4

Model misspecification effect in dependent model with 3.3%
probe coverage

Inference

Simulation (0.34, 1.0) (1.0, 1.0) (0.68, 0.75)

a. True u ¼ 200
(0.34, 1.0) (204, 0.46) (609, 2.2) (987, 3.9)
(1.0, 1.0) (60, 0.71) (201, 0.27) (446, 1.2)
(0.68, 0.75) (14, 0.92) (8, 0.96) (207, 0.54)

Inference

Simulation True (sn, sp) (0.5, 0.98)

b. True r ¼ 20
(0.34, 1.0) (25, 1.2, 0.81) NA
(1.0, 1.0) (25, 0.90, 0.85) (25, 0.91, 0.85)
(0.68, 0.75) (27, 1.1, 0.79) (22, 0.80, 0.88)

Test data are generated with sensitivity and specificity listed
in the Simulation column and estimates are listed under dif-
ferent (sn, sp) used in Inference. See text for details. Notation
in a is the same as in Table 1 and notation in b is the same as in
Table 2.
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Finally, we have performed a further simulation study
to address how much information is lost in inference
when using SFP data rather than SNP data. We first
simulated coalescent samples of 20 haplotypes, in a
100-kb region. Then SFPs were generated from the SNPs
under dependent calling, with coverage 70%, sensitivity
50%, and specificity 95%, as in the current experimental
setup. Moreover, we selected candidate SNPs from the
SNP sample at a density of 1/10 kb with minor allele
frequency .10%. To estimate the recombination pa-
rameter r, we applied the two-locus/feature sampling
distributions on the selected SNP pairs and called SFP
pairs, respectively. The results in Table 5 indicate that
SFPs slightly outperform SNPs in this case: the SFPs have
a smaller RMSE and a larger proportion of estimates lying
within a factor of two of the true r than those of the SNPs.
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TABLE 5

Estimates of the population recombination rate r in a
100 kb region

r SFP SNP

20 22 0.59 0.92 22 0.78 0.89
40 45 0.48 0.94 42 0.59 0.91
60 66 0.28 1.00 52 0.44 1.00

The SNP case has density one every 10 kb and the SFP case
has 70% coverage, 95% specificity, and 50% sensitivity under a
dependent calling scheme. In each of the SFP and SNP cate-
gories, first column gives the average estimate, the second the
RMSE, and the third the proportion of estimates lying within
a factor of 2 of the truth.

APPENDIX

An illustration of the SFP-calling procedure: Under
independent calling, true/false positive/negative calls
are independent between accessions at a given probe
position, while there are only four possibilities under
dependent calling, i.e.,

I. 1/1 and 0/0;
II. 1/0 and 0/1;

III. 1/1 and 0/1;
IV. 1/0 and 0/0.

Here we illustrate a case in which SFP calling is
assumed to be dependent across accessions. Suppose we
have four accessions plus the reference and are in-
terested in a region of three distinct probes. We simulate
a sample of five haplotypes, noting again that A. thaliana
is mostly homozygous and there is little within-strain
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variation for each accession. The haplotypes are repre-
sented by the five rows in Figure A1, where 0 denotes
wild type and 1 denotes mutant. The top row is chosen
randomly as the reference, and the other four are
accessions. Assuming that there is exactly one SNP
within each probe, this results in the haplotypes shown
in the left part of Figure A1, labeled ‘‘SNP.’’ We then
undertake the SFP comparison phase by comparing the
accessions with the reference (the top row). In this
phase we use 1 to indicate a location that is different
from the reference probe and 0 otherwise. By doing so
we get the middle matrix, labeled ‘‘*.’’ Note that only the
first column has been changed since the chosen
reference contained the derived mutation in this case.
Finally, we apply the SFP-calling phase to the middle
matrix to obtain the SFP matrix on the right, where 1
denotes a called significant difference between the
accession probe and the reference probe and 0 anything
else. This illustrates a calling operation of type III at the
first probe position, type I at the second probe position,
and type II at the last probe position. Calling operations
of type I represent true calls, so every comparison
remains the same. Calling operations of type II in-
troduce false negatives and false positives, which flip 0’s
to 1’s and vice versa. Type III introduces only false
positives, which flip 0’s to 1’s. When the sensitivity and
specificity are both 1.0, i.e., the ideal case, the middle
matrix is the same as the SFP matrix.

The expected number of SFPs: Denote the probe
configuration by P ¼ ðP1;P2; . . . ; Pnp

Þ, where np is the
number of probes, and Pi¼ 1 if the ith probe is called an
SFP or 0 otherwise. Recall that an SFP is called at the ith
probe if and only if at least one accession is called
polymorphic with respect to the reference. Denote the
total number of SFPs called by F. Then we have
F ¼

Pnp
i¼1 Pi and

E½F � ¼ E
Xnp

i¼1

Pi

" #
¼

Xnp

i¼1

E½Pi � ¼
Xnp

i¼1

PðPi ¼ 1Þ; ðA1Þ

where E[�] stands for mathematical expectation and
P(�) stands for probability.

Conditional on the number of SNPs within a partic-
ular probe, the probe set P can be partitioned into two
parts, probes containing one SNP and probes without
SNPs, denoted by P1 and P0, respectively. That is,
P ¼ P1 [ P0. Following Equation A1, we have

E½F � ¼
X
i2P1

PðPi ¼ 1Þ1
X
j2P0

PðPj ¼ 1Þ

¼ a jP1j 1b jP0j ; ðA2Þ

where jAj denotes the size of the setA,a ¼ PðPi ¼ 1 j P1Þ,
andb ¼ PðPi ¼ 1 j P0Þ. Recall that we assume that probes
are called independently.

Next, we compute the probabilities a and b. First,
consider a probe with one and only one segregating site
inside. The mutation within the probe partitions the
sample into two groups, the wild-type group and the
mutant group. For example, there are three wild types
and two mutants in the first probe in Figure A1 (the first
column in the SNP matrix). Let qnb denote the proba-
bility of obtaining b mutants out of n individuals, which
is given in Griffiths and Tavaré (1998). Recall that an
SFP is called if and only if at least one 1 appears in the
resulting SFP matrix (the right part in Figure A1). In
other words, the only way of not calling an SFP is to have
true negative calls and false negative calls at the probe
position, by applying calling operation IV (1/0 and
0/0) on each accession probe (cf. the middle section in
Figure A1). Conditioning on which group the reference
is chosen from, we have

a ¼

Pn�1
b¼1 qnb ½ð1 � ð1 � snÞn�bsb�1

p Þbn
1 ð1 � ð1 � snÞbsn�b�1

p Þn�b
n �; independent calling;

1 � ð1 � snÞsp; dependent calling:

8><
>:

ðA3Þ
For a probe containing no SNP, the chance of being

called an SFP is determined by the specificity. There-
fore, we have

b ¼ 1 � sn�1
p ; independent calling;

1 � sp; dependent calling:

�
ðA4Þ

Finally, assuming that there is at most one SNP within
a probe, we can determine the size of the set of probes
with SNPs; i.e., jP1j ¼ S , where S is the number of
segregating sites or SNPs. Following Equation A2, we
obtain

E½F j S � ¼ a jP1j 1b jP0j ¼ aS1bðnp � SÞ; ðA5Þ

where np is the total number of probes. Furthermore, we
have

E½F � ¼ E½E½F j S�� ¼ npb1 ða� bÞE½S �

¼ npb1 ða� bÞ npLp

L

� �Xn�1

k¼1

1

k
� u; ðA6Þ

Figure A1.—Example of transforming SNP data to SFP
data. Four accessions plus the reference on the top row. Three
probes with exactly one SNP within each probe. See text for
the meanings of 0 and 1 in different matrices.
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where the last term is given under the infinite-sites
mutation model (Watterson 1975), and Lp is the
length of a probe (i.e., 25 bp) and L is the total length
of the region in base pairs.

Obtaining two-feature SFPs from SNPs: Figure A2
illustrates how different SNP configurations can lead to
the same SFP configuration. Suppose that we have a
sample of 19 accessions plus the reference, i.e., the
sample size is 20. Suppose further that calling is
completely dependent across accessions. We focus on
a particular pair of features, where we assume there is
one and only one segregating site within each feature.
First we explain the top part in Figure A2, where there
are 3 00’s, 5 01’s, 7 10’s, and 5 11’s at the two segregating
sites in the sample. Assume that the type of the ref-
erence is randomly chosen to be 00. Then after the SFP
comparison phase, all the combinations remain the
same in the * matrix. Furthermore, if both calling op-
erations at the two features are of type I, i.e., true
positive/negative only, we again obtain the SFP config-
uration m¼ (3, 5, 7, 5). For the case where the reference
is not of type 00, we look at the middle section in Figure
A2. Suppose that we have a different SNP configuration,
n ¼ (5, 3, 5, 7), and the type of the reference is 01. Thus
in the SFP comparison phase, the original combination
00 becomes 01 compared to the reference 01, and 01
becomes 00, etc. As can be seen, the * matrix will lead to
the same SFP configuration, m ¼ (3, 5, 7, 5), if we have

both calling operations of type I. Similarly, we can see in
the bottom part of Figure A2, where the reference is
again 00 but now the second feature uses a calling
operation of type II, how a different SNP configuration
can give rise to such an SFP configuration by taking
appropriate calling operations at the two features.

Although there are four possible calling operations
altogether, only the first three lead to an SFP in the
resulting sample, since, assuming completely depen-
dent calling, operation IV changes the column of that
probe to all 0’s. For given sensitivity and specificity, we
can write down the probability for each calling opera-
tion, e.g., P(CI) ¼ snsp.

We noted earlier that under the completely depen-
dent calling assumption, the false positives have one
common pattern in the resulting SFP matrix, i.e., all 1’s
but one 0 for the reference probe. To see this, start from
a probe without any SNP in it. After the SFP comparison
phase, the probes at this position are all labeled by
0, since there is no polymorphism among them. In the
SFP calling phase, if one of the accession probes is
called significantly different, i.e., 0/1, then the rest of
the accession probes are also called significantly dif-
ferent, under dependent calling. Thus this probe is
called as an SFP, however, a false positive. On the other
hand, the only SNP configuration that could give rise
to the above pattern is (0, 1, 1, . . . , 1) (without loss of
generality, we label the first one as wild type and the
rest as mutants). In this case the reference is most likely
to be chosen from the mutant group, in which case this
column becomes (1, 0, 0, . . . , 0) after the SFP compar-
ison phase. Furthermore, the only operation that can
change this column to the pattern of false positives is
of type III, i.e., (1/1 and 0/1). This is the only situa-
tion that a probe with segregating sites can lead to the
same pattern as a false positive. However, the probability
of obtaining only one wild type in the infinite-sites
model is very small, in particular when the sample size
is large.

Consistency of MLE of r: The consistency of the
maximum-likelihood estimates of r cannot be shown for
the general setting in the two-feature sampling distri-
bution. However, it can be shown that if we modify the
approach by insisting that all pairs of features be within a
certain distance we would obtain consistent estimates of
r, as in the modified approach of the two-locus sampling
distribution. The key point of the additional restriction
is that linkage disequilibrium decays inversely to the
distance between two sites. The proof in Fearnhead
(2003) can be adopted without substantial change. The
adjustment is in Lemma 5, in which we need to sum over
all possible two-loci SNP configurations to compute the
covariance coefficients between two features. Recall that
there are only four possibilities in the modified two-
feature sampling derivation and nine possibilities in the
simple two-feature sampling derivation. Thus, the con-
clusion holds in the SFP setting.

Figure A2.—Example of different two-locus configurations
that can lead to the same two-feature configuration. The sam-
ple size is 20 and the number within the parentheses indicates
how many such combinations are present in the sample. The
type of reference is 00 (top), 01 (middle), or 00 (bottom). See
text for more details.
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Statistical properties of the two-feature sampling dis-
tribution: One way to study the statistical properties of
the maximum-likelihood estimate r̂ is to consider the
minimal contrast, i.e., the expectation of log

r0
ðpcðm; rÞÞ,

over the distribution of m conditional on polymorphism
at both features (cf. Hudson 2001). That is, we consider

Er0
½logðpcðm; rÞÞ� ¼

X
m

pcðm; r0Þlogðpcðm; rÞÞ: ðA7Þ

The plots of the above function (not shown here) show
that the likelihood curve has a peak at a position close to
the true value r0, which enables the maximum-likeli-
hood approach to work.

To study the asymptotic variance of the maximum-
likelihood estimate of r0, we compute the second
derivative of the function in (A7) with respect to r,
evaluated at the r0, assuming k pairs of features are
considered. That is, we compute

Varr0;kðr̂Þ �
1

�kð@2=@r2ÞEr0
ðlog pcðm; rÞÞ j r¼r0

: ðA8Þ

An approximation of the above is plotted in Figure A3.
The curves of estimated variance in both the SNP case
and the SFP case are similar; however, there is smaller
variance in the SNP case than in the SFP case, since
there is more randomness in the latter. The asymptotic
plot shows that features separated by r in the range of 2–
15 are best for estimating r, as is observed also in
Hudson (2001).

Note that the difference between the scales in Figure
A3 and the corresponding figure in Hudson (2001) is
due to different conditionings on the two sites when

obtaining the two-locus sampling distribution. Hudson

(2001) restricted to those sites where the minor allele
frequency is .10%, where we require just that both sites
are segregating. In other words, the minor allele
frequency is .5% (i.e., 1 of 20) in our scheme. Since
the ages of SNPs are related to their frequencies, SNPs
with larger frequency tend to be older than those with
smaller frequency, so they are more informative about
recombination than rarer SNPs. As a result, condition-
ing on the minor allele frequency.10% leads to smaller
variance of MLEs than those conditional on minor allele
frequency .5%.

Figure A3.—Estimates of the asymptotic variance of log r̂
based on k independent pairs of polymorphic sites. Top line,
from the two-feature sampling distribution; bottom line, from
the two-locus sampling distribution.
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