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A novel representation of the linear birth process with immigration is analysed. The state space 
of the process is the collection of permutations of the integers, written in a particular cyclic form. 
The stochastic structure of the model is particularly simple to describe. The results serve to explain 
the combinatorial structure of some sampling formulae that arise in the study of neutral mutations 
in population genetics. 

linear birth process * Yule process 

1. Introduction 

The linear birth process with immigration may be described briefly as follows: 
At the points of a Poisson process of rate 0 an immigrant enters the population, 
and initiates a family that evolves according to the laws of a linear birth (Yule) 
process of rate 1 ; families initiated at different times evolve independently. Define 
{ I ( t ) ,  t 20} to be the population-size process, I ( t )  being the total number of 
individuals alive at time t. It is well known that I ( t )  has a negative binomial 
distribution: 

P (  I( t )  = n) = ('+:-') e-e*(l -e-')", n =o, 1 , .  . . , (1.1) 

cf. Kendall (1949). 
In this note, we describe a novel (and more detailed) representation of the birth 

process. with immigration in which we use as our state-space the collection of 
permutations of positive integers, written as a product of cycles in a particular way. 
Our description gives a complete history of the families in the process; the order 
in which the cycles are written corresponds to the order in which the families arose 
in the population, the sizes of the cycles represent the number of individuals in 
each family, and the cycles themselves tell how each member of a family is related. 
This explicit representation in terms of cycles of a permutation serves to explain 
and simplify much of the combinatorial structure of the process. 
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2. The process 

An informal description of our process runs as follows: suppose that the popula- 
tion currently has n - 1 members, labelled 1,2, . . . , n - 1 in order of their appearance 
in the population. The next individual, n, to appear in the population is either an 
immigrant, in which case n starts a new cycle, or it is an offspring of the existing 
individual j ,  where 1 S j  S n - 1. In this case, the new state is formed by inserting 
the integer n in the cycle in which j belongs, immediately to the left ofj. As successive 
individuals enter the population, we build up the history of the process in the form 
of permutations written as a product of cycles. For example, if the current state of 
the process is the permutation (731)(4852)(96), then the oldest family contains 
individuals 7,3,1; 7 is a child of 3, and 3 of 1. The second event that occurred in 
the process was the immigration of individual 2; individual 4 is the offspring of 2, 
5 is also an offspring of 2, and 8 is the offspring of 5. The youngest individual, 9, 
is an offspring of 6, who is himself an immigrant. 

More formally, the state-space of our process can be described as follows. Let n 
be a permutation of the first n integers, say n = i l  i2 . * * in. We write 17 as an ordered 
product clcz ck of cycles of a particular form. We adopt the convention that the 
first cycle of 17 starts with il and Jinishes with the integer 1. If j is the smallest 
integer not included in the first cycle, the second cycle starts with 4 and ends with 
j ,  and so on. For example if n = 9  and 17=615784239 then we write 17= 
(64721)(583)(9) as a product of cycles. (The conventional representation of this 
particular permutation as a product of cycles would be (16472)(358)(9). Our 
definition of a cycle makes the stochastic process of interest much easier to describe; 
in any event the two types of cycle representation are in an obvious one-to-one 
correspondence so no confusion need arise.) For n 2 1, Y,, will denote the collection 
of permutations of the first n integers written in this ordered cycle form. It will be 
convenient to let (0) denote the permutation of no elements. Y = UnSl Y,, u{(O)} 
will denote the collection of all permutations. 

The birth process with immigration may be represented as a Markov process 
{17( t ) ,  t k 0; n(0) = (0)) on Y which has transition rates (qmV, T # 7 )  determined 
as follows: if T = (0), then 

i 

4 

8 if 7=(1) ,  
0 otherwise. 

(2.la) - 
If T E Y,,-,, n > 1, and T has the form T = c1 ci 9 ck, then 

where 

ci = (nl  nl( i ) )  and c {  = ( n ,  * nj-,nnj . - nl(i)) .  

(2.lb) 

(2.lc) 
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Finally, 

qmm = -( n - 1 + e). (2.ld) 

Now define I( t) for t 3 0 by 

I ( t )  =number of integers 3 1  in n(t). 
i Then {I( t ) ,  t 3 0) is precisely the linear birth process with immigration alluded to 

in the introduction. Its structure is determined by a sequence of independent random 

from (2.ld) that p,, has density 
6 variables {p,,, n = 0,1, . . .); p,, is the waiting time of {I( t ) }  in state n, and it follows 

d,, if t > 0, d,, = n + 8. (2.2) 

I( t )  > n if, and only if, po+ * + p,, G t, and the distribution of I( t) is given by (1.1). 
As might be expected, {I( t), t 3 0) plays the role of the time-scale of {n( t ) ,  t 3 0); 

a new integer is added to the permutation at the times at which I( t) changes state. 
Furthermore, standard theory applied to (2.1) shows that the jump-chain of 
{n( t ) ,  t 3 0) is a Markov chain {U,,, n = 0,1,2, . . .} on Y with U,, E Y,, no = (0 )  and 
one-step transition probabilities given by 

P ( n , = ( l ) l n o = ( o ) ) =  1; (2.3a) 

whereas if n > 1, then 

and 

P(n, ,  = c, * * 

(2.3b) 

(2.3~) 

the conventions in (2.1~) applying. 
It will be convenient to let I T (  denote the number of cycles in the permutation 

T, and to let x(,,) = x(x + 1) . (x+ n - 1). The complete stochastic structure of the 
process is contained in: 

I 

Theorem. (a) P(nn = T) = B k / O ( , , )  if T E  Y,, and [ T I  = k;  
(b) {U,,, n = 0,1,. . .) and { I ( t ) ,  t 3 0) are independent processes; 
(c) P ( n ( t ) = ~ ) = ( O ~ / n ! ) e - ~ ' ( l - e - ' ) "  ~ ~ T E Y , ,  and I ~ l = k .  

I 

Proof. (a) Notice first that from a given T E Y,, it is possible to reconstruct precisely 
the cyclic representation of the population at each of its previous sizes by successively 
removing the integers n, n - 1,. . . , 1 from T. Let nj be the smallest integer in the 
j th cycle of T. Recall that n, = 1. Individuals 1, n 2 ,  . . . , nk are the "founding fathers" 
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of the k families in a; these are the only immigrants. Given these, the path to a is 
uniquely determined. Hence it follows from (2.3a) through (2.3~) that 

e 1  1 1 e 
e e + i  e + 2  e+n2-2 e+n2-1  

p ( n ,  = a) =- - -. . . 

e . . .  1 1 
X- 
e+n, e + n 2 + 1  e + n , - i  

1 1 x-. . . 
8 + n k  8 + n - i  

ek  -- - 
4,) 

To prove (b), we use an argument analogous to that of Kingman (1982). Condi- 
tional on the jump chain the sojourn times are independent, the sojourn time in 
state a having an exponential distribution with parameter -qrr determined by 
(2.ld). If n,, = a then -qrn = d,, and so the conditional distribution of p,, given 
n, = a does not depend on a; its conditional distribution is the same as its 
unconditional distribution (2.2). It follows that the joint conditional distributions 
of {I( t ) ,  t 3 0) given {D,,, n = 0,1, . . .) are the same as its unconditional distributions. 
{I( t), t 2 0) and {U,,, n = 0, 1, . . .} are therefore independent. 

To establish (c), note that under the given conditions 

P ( n ( t )  = a) = P ( n ,  = a) - P ( I (  t )  = n ) ,  

so the result follows from (a), (b) and (1.1). 

3. Some special cases 

A number of results in the literature may be obtained as special cases of the 
permutation process. For example, we have the following proposition. 

Proposition 

P(n, has k cycles, the first of size n ,  , . . . , the kth of size n k )  

ek  n !  -- - 
e(,) n k ( n k + n k - l ) . '  ' ( n k + n k - l + * . * + n l ) '  

Proof. To get the required probability, we need to sum P(n, = a) over all a E r, 
the set of permutations in Y, with k cycles, and ordered cycle sizes n , ,  . . . , nk. 
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Since P(n,, = T )  depends on T only through [ T I ,  the required probability is 

ek -- - x the number of permutations in r 

We let { A (  t), t 3 0) denote the process of age-ordered family sizes obtained by 
collapsing {n(t), t 2 0) by ignoring which particular individuals are in which cycles. 
The distribution of A ( t )  follows immediately from (3.1), (1.1) and the theorem as 

if n , + . . * + n k = n .  
The result of (3.2) appears in Tavari (1987); the asymptotic behavior of the family 

sizes is there analysed by point-process methods. The probability distribution in 
(3.1) appeared in Donnelly and Tavari (1986) in the context of population genetics 
models; it is the probability that a sample of n genes from a stationary infinitely-many 
neutral alleles model (with mutation parameter e) has k alleles, n, of the oldest 
allele,. . . , nk of the youngest allele. This distribution is closely related to the Ewens 
Sampling Formula (Ewens, 1972), which would arise in the present context as the 
distribution of the numbers in the families when the age-ordering of the families is 
ignored. The jump-chain {I&,, n = 0, 1, . . .}, or versions of it, appears in other guises; 
for example, it is a detailed description of the so-called 'Chinese restaurant process' 
described by Aldous (1985). See also Hoppe (1984), Watterson (1984), and Donnelly 
(1986) for related material. 

The distribution of In,, I immediately also follows: 

P(lnf l (  = k) = 2 P(Ufl  = T )  
all ,T with I r l = k  

ek  -- - x the number of n-permutations with k cycles 

Sf: being a Stirling number of the first kind. 
The counting techniques in the previous examples can also be used to find the 

joint distribution of the number of individuals in the r oldest families, the marginal 
distribution of the number of individuals in the rth oldest family, and the conditional 
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joint distributions of the family sizes given the total number of families. Of course, 
these results can be reinterpreted in terms of the structure of permutations. For 
example, if the immigration parameter is 8 = 1, then it is clear that is a random 
permutation of the first n integers (that is, each such permutation has probability 
l / n ! ) .  From (3.1), it follows that the probability that a random permutation of the 
first n integers has k cycles, n,  in the first cycle, n2 in the second,. . . , n k  in the kth 
cycle is 

1 
n k ( n k - k n k - 1 )  * ' '  (nk+' * '+n,)' 

cf. Vershik and Shmidt (1977). 
It is, of course, tempting to use these methods to analyse birth processes with 

immigration (and non-linear rates) and birth-and-death processes with immigration. 
To a certain extent this can be done, but the results are extremely complicated. 
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