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Permutation-valued Markov processes provide a convenient way to describe the genealogical 
structure of certain population models that allow immigration or mutation. Distinct cycles of the 
permutation correspond to binary branching trees that describe relationships among members of 
a particular family (or copies of an allele in the genetics setting), and the ordering of the cycles 
corresponds to families (or alleles) in the order of their appearance in the population. Building 
on the simple combinatorial structure of the Yule process with immigration, we describe the 
tree-valued processes that arise from linear birth and death processes and a population genetics 
model of Moran. This approach simplifies and explains much of the combinatorial structure of 
such processes, and relates genealogical (or time-reversed) processes with those running forward 
in time. 

infinite alleles models * random permutations * genealogy 

1. Introduction 

In this paper we study several permutation-valued processes that describe the familial 
and mutational structure of some classical models from population genetics and 
population growth. The recent work of Kingman (1982a, b) has made it abundantly 
clear that explicit study of the genealogy of individuals provides a natural and 
powerful way to study many types of population genetic process. In simple terms, 
the method involves sampling from the population at a given time, and then tracing 
back its ancestry to time zero. The effects of mutation are then superimposed on 
this structure. This technique is essentially retrospective. In contrast, in our approach 
the state-space of the process is extended to include ancestral and mutational 
relationships; the process drags its history along with it into the future. This idea 
leads to simple, direct methods for calculating many quantities of interest for such 
processes. 

The results in the following sections were motivated by earlier work of Joyce and 
TavarC (1987), who studied a permutation-valued formulation of the classical linear 
birth process with immigration. To fix the terminology and the ideas, we will describe 
this representation below. We begin, however, by giving our notation for permuta- 
tions. 
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A permutation of the first n integers is a one-to-one onto function from the set 
{ 1,2, . . . , n} to itself. We denote by S,, the set of such permutations. We will typically 
write a permutation p E S,, as an ordered product of cycles in the following way: If 
p = clc2 - + ck, then c1 is the cycle containing the integer 1, c2 contains the smallest 
integer not in c, and so on. For consistency with Joyce and TavarB (1987), we will 
find it convenient to read permutations from right to left. For example, p = (5 3 2 4 1)  
is interpreted as the permutation 1 + 4+ 2 + 3 + 5 + 1, so that p (  1)  = 4, p(2) = 3, 
p ( 3 )  = 5, p(4) = 2, p ( 5 )  = 1. If p and q E S,, then the composition p q  of p and q is 
defined by pq( I) = p (  q( I)), so that we are also composing permutations from right 
to left. Let p,  q E S,,. We say that p is conjugate to q in S,, if there exists a permutation 
SES,, such that p = s q s - ' .  The partition of a permutation PES,, is a vector 
(a,,  a 2 , .  . . , a,,) where ia, = n and ai is the number of cycles in p containing i 
elements. Conjugacy is an equivalence relation; two permutations are in the same 
conjugacy equivalence class if they have the same partition. It will sometimes be 
convenient not to display the singleton cycles (for example the permutation 
( 5  3 1)(2)(4) might be written (5 3 l ) ) ,  and we will sometimes write p ( k )  =pk. 

The Yule (or linear birth) process with immigration may be represented as a 
permutation-valued Markov process {n( t) ,  12 0). Informally, suppose that the 
population at time t has rn - 1 members in k families, and that n( t )  = clc2 ck E 

S,,-l. The next individual, rn, that appears in the process is either an immigrant, in 
which case the set state is c1 - . ck( rn), or it is an offspring of the existing individual 
labelled j. In this case, the new state is formed by inserting the integer rn in the 
cycle in which j belongs, immediately to the left of j. This state-space of permutations 
provides complete details of the family relationships through which the process has 
passed. 

The jump-chain of n(-) is a Markov chain {e,, rn = 0,1,2,  . . .} on S = U:&,, 
with e,,= (0), the permutation of no elements. When the birth-rate is 1 and the 
immigration rate is e,. the jump-chain evolves as follows. Let { Y,, Y 2 , .  . .} be a 
sequence of independent random variables, such that Y, is S,-valued and is 
concentrated on transpositions (cycles of length 2). Let I,,, be the identity in S,,,, 
and let i m : S m + S m + ,  be in the inclusion map im(p)=c ,c2  ck(rn+l) if p =  
clc2 * ck. Let Y, = Il and for rn > 1, let Y,,, be distributed as: 

P [  Y, = ( r n  k ) ]  = l / ( m  - 1 + 0) if 1 s k < rn, 

P [  Y,,, = I,,,] = e/(rn - 1 +  e). - 
Then {n,, rn = 1,2 , .  . .} is generated by: 

l?'=Z', - n,+, = i,(ZI,,,) Y,,,,, , rn = 2 , 3 , .  . . . 
Multiplying the permutation a,,, on the right by the transposition Y,,,+l puts the 
next individual into the process in just the right way. 
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It will be convenient to let IpI denote the number of cycles in the permutation p, 
and we define x(,,,, = x(x+ 1) - * (x+  rn - 1). We will need the distribution of fin, 
which is given in Joyce and TavarC (1987): 

P [ f i ,  = p ]  = ek//e,,,  if p E S,  and IpI = k. 

This result provides an alternative method for studying the Ewens Sampling 
Formula (Ewens, 1972), and properties of certain urn models that arise in the study 
of neutral mutation in population genetics theory (Donnelly, 1986; Hoppe, 1987). 
A beautiful review of the interplay between these ideas appears in Ewens (1990). 

In this paper, we extend the range of applicability of these ideas to several other 
models. In Sections 2 and 3, we describe a permutation-valued version of the 
infinitely-many-neutral-alleles Moran model, and derive in Section 4 a basic property 
of genealogical trees sampled from such a process. Section 5 studies the case of no 
mutation and relates the results to the coalescent (Kingman, 1982a, b). In Sections 
6 and 7 we study corresponding properties of the linear birth-and-death process, 
both with and without immigration. 

2. An &-valued Moran model 

In Section 1 we saw that a permutation of length n describes the entire family 
history of the first n individuals in a birth with immigration process. A graphical 
representation of this family history may be described by a collection of family 
trees. Each time a birth occurs a branch is added to the branch of the parent. Each 
time an immigration occurs a new tree is started. Each permutation p gives rise to 
a unique set of trees. Figure 1 shows the tree associated with the permutation 
p = ( 5  3 1)(4 2). 

We use the convention that when a birth occurs and a branch of the tree splits 
into two, the branch to the left is that of the child and the one to the right is the 
branch of the parent; compare Fig. 1. Although the time scale is removed we still 
have the relative order in which the individuals arose in the popuation. One can 

5 3 1 4 2 

Fig. 1. Trees for birth with immigration. 
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therefore view the collection of trees associated with an n-permutation as a descrip- 
tion of the genealogy of n individuals. 

We may use an analogous idea to describe the genealogical and mutational 
structure of the infinitely-many neutral alleles Moran model in continuous time. 
The original version of this process may be described as follows (see Moran, 1958; 
Kelly, 1979). Individuals die at rate p, and when a death occurs an individual, 
chosen at random from amongst the remaining n - 1 individuals, gives birth. The 
offspring is of the same type as his parent with probability 1 - u and is a mutant 
with probability u. Since the transitions in this process occur at the points of Poisson 
process with rate np, the stationary distribution of the process is the same as that 
of its jump chain. For this reason we will concentrate on the embedded discrete-time 
version of the model, in which generation k +  1 is determined from generation k in 
the following way: the population has n individuals, from which one is chosen at 
random to die. A new individual is then born to one of the remaining n - 1  
individuals. The individual is of the same type as his parent with probability 1 - u 
and is a mutant with probability u. The infinitely-many alleles assumption means 
that when a mutation occurs the mutant individual is a novel type that has not 
previously existed in the population. 

The state space of the jump-chain will be S,, and a sample path of the process 
will be a collection of permutations p1 , p z ,  . . . , a permutation pk E S, representing 
the history of the n individuals alive at time k. For instance, if n = 5 the permutation 
(531)(42) is interpreted the following way: The oldest allele is represented by three 
individuals, the second oldest by two, and the second oldest allele arose before the 
line of descent of the first type split; see Fig. 1 again. 

We use the same convention for labelling the individuals on the tree as we did 
in the birth-with-immigration process but we interpret trees differently. In the birth 
process case the individual labelled 1 was the oldest individual in the population. 
In the present setting the individual labelled 1 need not be the oldest individual in 
the population, but he is a direct descendent of the oldest mutant. 

The permutation-valued Moran model may be viewed as follows: When an 
individual dies remove his branch from the tree, relabel all the individuals so that 
the new tree (with one less branch) is consistent with our permutation description, 
and is described by a permutation of the first n - 1 integers. Then split one of the 
remaining branches in two or start a new tree. This is done by placing integer n to 
the left of his parent or in a cycle by itself to the right. Each branch is equally likely 
to be removed and with probability u the new branch is a mutant (which starts its 
own tree) or with probability (1  - u )  the new branch is added to one of the remaining 
trees. The following examples may be instructive. 

. 

. 

Example 1. The tree corresponding to p = (5 3 1)(4 2) appears in Fig. 1. If individual 
4 is chosen to die, the resulting tree with the branch associated with 4 missing is 
given in Fig. 2(a). We now relabel the branches in a way that is consistent with the 
permutation process, giving us the permutation (4 3 1)(2); see Fig. 2(b). Notice that 
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4 3 1 2 

Fig. 2. Trees after a death I. 

the label of individual 5 changes to 4. Suppose that the newborn individual is the 
nonmutant offspring of the individual currently labelled 1. We then place 5 to the 
left of 1. The new permutation is (43  5 1)(2), and its tree is given by Fig. 3. In 
summary, if individual 4 dies and individual 1 has a non-mutant offspring, then the 
permutation (5 3 1)(4 2) becomes (4 3 5 1)(2). 

Example 2. Again suppose that p = (5 3 1)(4 2), but now assume that individual 1 
dies. The tree with branch 1 removed and after relabelling appears in Fig. 4. Notice 

4 3 5 1 2 
Fig. 3. Trees after a birth I. 

4 1 3 2 
Fig. 4. Trees after a death 11. 
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5 4 1 3 2 
Fig. 5 .  Trees after a birth 11. 

that all individuals labelled 3 and above in Fig. 1 have their labels changed. Suppose 
that the individual now labelled 4 has an offspring. The new tree is given by Fig. 
5.  The permutation (5  3 1)(4 2) has become (5  4 1)(3 2). 

3. Results for the Moran model 

We can now describe the structure of the model in detail. We use conjugation to 
relabel a population described by a permutation. Conjugation will leave the family 
sizes the same but will change the labels of the individuals. Recall that each individual 
is represented by a branch on a tree, such a branch being either a 'left branch' or 
a 'right branch'. When a birth occurs and the tree splits by convention we make the 
branch to the left that of the child and the branch to the right that of the parent. 
Thus right branches have smaller labels than their corresponding left branches; 
compare Examples 1 and 2. If a left branch with label k is removed, then we rotate 
the labels from k to n, so that label n becomes n - 1, n - 1 becomes n - 2, . . . , k + 1 
becomes k, and k becomes n. Define s k  E S,  by 

Then s;' = ( k +  1 k + 2  * n - 1 n k) and s k l p k  will relabel p in the way that 
was described above. For example if p = (3 5 1)(4 2), s3 = (5  4 3) then s;' = (4 5 3) 
and s;'ps, = (5  4 1)(3 2). 

Now suppose a right branch with label k is removed from p E S,. In order to be 
consistent with the previous conventions, we rotate the labels from p k  up to n, so 
that n becomes n - 1, . . . , p k  becomes n. The resulting permutation is si:pspk. 

The individual that dies is replaced by a new individual who always takes the 
last label, n. To achieve this, define f i :  S,  + S,  by 
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n̂  removes the nth integer from the permutation p and places it in a singleton cycle 
by itself. For example if n = 5 and p = (5 2 1)(4 3), then n^(p)  = (5 1)(5 2 1)(4 3) = 

(2 1)(4 3)(5) = (2 1)(4 3). It is clear that 

n^( P) = ( n P n  ) P = P( n P-' ( n  ) 1- 

hk(p) = n^(s;'ps,), 

(4) 

Define hk : Sn + S, by 

where r = max{k, pk). 

The permutation hk(p) arises from p after relabelling following the death of 
individual k. 

Suppose first that k>pk. After relabelling, n + p ,  in si'psk, implying that 
n^(sk'psk)=(nPk)Sk'PSk by(3).Ifk<pk thenk+n inS~~pSpk,SOby(4), n ^ ( S i i p S p k ) =  
s;:ps,,(kn). Hence an alternative way of writing hk is the following: 

(pk n)(sk'psk), Pk< k, 
s i : , ' p s p k ( n k ) ,  P k > k  ( 5 )  
sk'psk, P k  = k. 

Example3. Let p = (5  3 1)(4 2). If k = 4 then h4( p) = (4 3 1) and we see from Example 
1 that h , ( p )  is exactly the tree one gets by removing the branch labelled 4. 

Example 4. Let p = (5 3 1)(4 2) and k = 1. Then h , ( p )  = (4 1)(3 2), and we see from 
Example 2 that h , ( p )  is exactly the tree one gets from removing the branch labelled 
1, after relabelling. 

Now we are ready to describe the Moran model using permutations. Let 2, , Z,,  . . . 
be independent and identically distributed random variables having a uniform 
distribution on {1,2, .  . . , n } ,  with 

P [ z , = k ] = n - ' ,  k = l ,  ..., n. 
Define 

(n-1)u e=- 
1-u ' 

and let Yl , Y2, . . . be independent and identically distributed random permutations 
on S,  having distribution 

P [  Y, = ( n  k ) ]  = l / ( n  - 1 +e),  k =  1 , .  . . , n - 1, 

P [  Y, = (n n)] = u = e / ( n  - 1 + e). 

Notice that Y, concentrates on transpositions. Suppose further that the Y,'s are 
independent of the Zm's. The process of interest is defined as follows: 

X,=h,(X,- , )Y, ,  m = 1 , 2  ,.... (7) 
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2, is the individual chosen at random to die, and hz,,,(Xm.-l) is the relabelling after 
the death. Multiplying by Y, = ( n  k )  on the right inserts the new individual to the 
left of his parent if k < n (so he is not a mutant), and inserts the new individual in 
a cycle on his own if k = n, corresponding to the new-born individual being a mutant. 

Clearly {X,, m 3 0) is a homogeneous Markov chain on S,,, and we note that if 
8 > 0 then the process is irreducible. The transition probabilities are given by 

Let us define 

Dpq = # { k :  h , (p)  = f i (q) } .  

Since the 2,'s are uniform on ( 1 , .  . . , n }  we have 

The evaluation of certain sums of the Dpq is crucial in what follows. In particular, 
it can be shown that 

Dp4 = n2 
P 

and 

Dpq = n. 
{P: IPl=ln^(s)l~ 

The proofs of these two results, which are of a technical nature, are given in the 
appendix. With these results in hand, we can calculate the stationary measure of 
the chain. 

Theorem 1. If X I ,  X 2 ,  . . . is a Markov chain on S,, defned by 

X ,  = hzm(Xm-,) Y,, m = 1,2,. . . , 

where hk is defned in ( 5 ) ,  the Zi are independent and identically distributed random 
variables, uniform on {1,2,. . . , n},  independent of the Y,, which are themselves 
independent with distribution given by (6), and 8 > 0, then the stationary distribution 
rq = P [ X ,  = q ]  is given by 

' 

rq = ek/e , , , ,  i f  141 = k. 

Proof. Assume that rq = Ok/8,, , ,  whenever )q1 = k. There are two cases to consider. 
The first case arises when q ends with a singleton cycle, that is n + n in q or n^( q )  = q. 
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In this case the only way to make a transition from p to q is if the offspring is a 
mutant. Thus for In^(q)l= 141 = k we have 

c r p R p q  = c r p R p q  + c r p R p q  

I p l = k - l  e(,, n n - i + e  

P I p l = k - l  Ipl=k 

- 1 - 3  D e e k - I  
- 

e (from (6) and (8)) 
B k  D + -- 

Ipl=k e(,) n n - i + e  

= ek /e ( , ,  = rq. 
The second case arises when In^(q)l= 141 + 1 = k +  1. In this case we have 

c r p R p q  = c r p R p q  + c r p R p q  
P Ipl=k I p l = k + l  

= -A B k  D 1 
Ipl=k e(,,) n n - i + e  

Ok+' Dpq 1 + -- (from (6) and (8)) 
I p l = k + l  e(,) n n - i + e  

1 
[ n 2 - n + n O ]  (from (10) and (11)) 

ek  
e(,,, n(n - 1 + e) 

-- - 

k = 8 /e(,,= rq. 
Thus rq = 1, rpRpq implying that { r p }  is the stationary distribution. 0 

4. Sampling 

Now suppose a sample of size r is taken from a population of size n evolving 
according to a stationary Moran model. It is important in practice to be able to 
describe the mutational history of such a sample. The natural way to do this is to 
randomly remove n - r branches from the set of trees that describe the population, 
then relabel the 'reduced set of trees' so as to be consistent with the permutation 
process. Equivalently, we can remove the branches one at a time and relabel after 
each branch is removed. 

Example 5. Suppose n = 5, r = 3, and p = (5 3 1)(4 2) (see Fig. 1 again). Let us first 
remove the branch labelled 4. That is, h , ( p )  = (4 3 1)(2)(5). Now remove the branch 
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labelled 3, to obtain h3 0 h , ( p )  = ( 3  1 ) (2 ) (4 ) (5 ) .  Each application of an h removes 
another branch and relabels the tree. We want to view this as a permutation in S, ,  
which we can do by projection. 

Let Z,,, Zflp1, . . . , Z,+, be independent random variables, Zi uniformly distributed 
over the set { 1,2,  . . . , i } .  Let rj : S j  + Sj - ,  be the projection map. Let hV) = rj 0 h k  

where hk : S j  + S j  defined by (5). (For ease of notation, we are implicitly using the 
definition in ( 5 )  with n replaced by j ;  there should be no cause for confusion.) 
Define H'" : S, + S, by 

H'" = hgr+;) 0 hg,;;) 0 . . . 0 h$"). (12)  
We interpret H'"( p) as the collection of trees one gets after randomly removing 

n - r branches from p .  

Theorem 2. If X is an S,-valued random variable with distribution 

PIX = P I  = ek /e , , , ,  if IPI = k 

P [ H ( ' ) ( x )  = q ]  = #/e,+ 

p [  H ( n - 1 )  ( X )  = q ]  = P[h%'(X) = q ]  

if the Zi are independent of X,  and if q E S, and 141 = 1, then 

(13)  
Proof. The proof is by backward induction on r. Let r = n - 1 ,  and assume that 
q E Sn-,  and 141 = 1. Then 

=e P [ h $ ) ( p )  = qlX = p ] P [ X  = p ]  
P 

e' en + n 2 -  n 
(from (10)  and ( 1 1 ) )  =-[ e,,, n 3 

= e'/ e,,-,, . 
By induction suppose ( 1 3 )  is true for some r < n - 1. If q E Sr-, and 141 = 1 then 

p [ H ( r - I )  ( X )  = q ]  = P[h$)  0 H'"(X) = q ]  

= 1 P [ h $ ) ( p )  = q1H"'(X) = p ] P [ H ' " ( X )  = p ]  

= P [ h $ ) ( p )  = q]P[H"' (X)  = p ]  
PES, 

PES, 

= e'/ e,,-l,. 
The last line follows by the same argument used in the r =  n - 1  case and by the 
induction hypothesis. 0 

This theorem shows that the sampled trees have the same probabilistic structure 
as the trees associated with the entire (stationary) population. This may be viewed 
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as the analog of a theorem of Kelly (1979, Theorem 7.1) for the standard representa- 
tion of the Moran model. As a consequence, other sampling distributions associated 
with the Moran model (which arise when less detailed information about the process 
is recorded, such as its partition structure) follow readily by counting. For example, 
the cycle representation preserves the age structure of the types and so will yield 
an alternative derivation of Donnelly and TavarC's (1986) age-ordered Ewens samp- 
ling formula. Further examples appear in Joyce and TavarC (1987). The present 
approach also gives alternative derivations for many of the sampling results described 
in Hoppe (1987) and Ewens (1990). 

5. The Moran model with no mutation 

When u = 0 (so there is no mutation in the model) the permutation-valued process 
{X,,,, rn 2 0) is defined as in (7), but since 8 = 0, Y, , Y 2 , .  . . are now independent 
and identically distributed random permutations on S,, having distribution 

P [  Y,,,=(n k)]= I/(n - I), k = I , .  . . , n - I. (14) 
The interpretation of permutations as genealogical trees is just as before, but the 

process is no longer irreducible. From (14) it is clear that IX, I is non-increasing in 
rn, and that any limit distribution for the process must concentrate on C,,, the set 
of p E S,, comprising a single cycle. 

If we allow the process to start from any p E S,,, then the fact that eventually it 
concentrates on C,, corresponds to the observation that in such a process every 
individual can eventually be traced back to a common ancestor. If we suppose that 
X,,E C,,, then {X,,,, rn 2 0) is an irreducible C,,-valued Markov chain, and the method 
of the proof of Theorem 1 applies immediately to show that the stationary distribution 
{ r q }  of the chain is given by 

rq = l / ( n  - l)!, q E C,,. (15) 
Thus the stationary measure is uniform on C,,, reflecting the reproductive symmetry 
in the model. 

Permutations have been used, implicitly or explicitly, to describe genealogy in 
several other places. Of particular relevance in the present context is the work of 
Harding (1971) and Tajima (1983), who implicitly used (15) to study the genealogy 
of neutral models. The method of this section may also be thought of as a forward-in- 
time version of Kingman's coalescent (Kingman, 1982a), although the information 
contained in the two processes is somewhat different. 

. 

6. The birth-death-immigration process 

Throughout this paper we have viewed a permutation as a representation of the 
history of the individuals in the population. In this section we look at the permuta- 
tion-valued description of the (linear) birth, death and immigration process. Like 
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the Moran model, a birth is represented by adding a branch to one of the remaining 
trees, an immigration is represented by starting a new tree, and a death is represented 
by removing one of the branches from an existing tree. 

Let {n( t), t 3 0) be the permutation-valued description of the birth and death 
process with immigration with birth rate 1 ,  death rate p and immigration rate 0. 
Let I( t)  be total number of individuals alive at time t. We will show that P [ n (  t)  = 
p I I (  t )  = n ]  = O k / O ( , )  , whenever IpI = k The introduction of deaths makes the process 
quite a bit more complicated. In the birth with immigration process at the time of 
the nth transition there were n individuals alive in the process, and the entire history 
of the process was recorded in a single permutation. This is no longer the case with 
the birth-death process with immigration. 

It is well known that 

@ ( n )  P [ I (  t )  = n ]  =T ( 1  - b,)'b:, n .  
where 

exp(1 - p ) t -  1 
b, = 

exp(1- p*.)t - p . 
Let r( p ,  q )  be the transition rate from p to q. Note that if p E S,+, , q E S,, then it 
follows from Lemma 8 of the appendix that 1, Dpq = ( n  + 1 ) 2  where Dp4 = 
#{k: h P + " ( p )  = q}. If 141 = k, then by Lemma 9 of the appendix, 

D p q = n + l .  (17) 
I p l = k + l  

So from the above 
1 Dpq = n ( n  + 1 ) .  

Theorem 3. Let P p ( t )  = P [ n ( t )  = p ] .  Then 

Ipl=k 

ek  
pP( 2 )  = - ( 1  - b, )%: if I pi = k. n !  

Proof. Our method is to check the Chapman-Kolmogorov equations. 

( 1  - b,)'b:+' 
B k  

+ pDpq(n+l)l 
l d = k  

( 1  - b,)'b:-' 
0 k  +- 

( n - l ) !  

=- ( 1  - b,)'b:-' - ( n ( p  + 1 )  + 0)b,  
B k  
n !  

+&b: 1 Dpq+- b: D p q + n ] .  
n + l  Ipl=k+l ( n + l )  Ipl=k 
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From (17) it follows that the above is 

ek 
=- ( 1  - b,)%:-'[ - ( n ( p  + 1 ) +  e)b,+pOb:+pb:n + n ]  

n !  

ek  
= - ( l - b , ) e b : - l [ p n b , ( b , - l ) - n ( b , - l ) + e b , ( p b , - l ) ]  

n !  

ek  
=- ( 1  -b,)%:-'[n(b, - l ) ( p b ,  - 1 ) +  eb,(pb, - l ) ]  

n !  

257 

ek 
=- (1 - b,)%:-'[(i -pb , ) (n( l  - b,) - Ob,)]. 

n !  

But 

ek e k + l  

P b ( t )  =- n ( 1 -  b,)%:-'b;--(l - b,)e-lb:b; 
n!  n !  

An easy calculation gives b: = (1 - pb,)(  1 - b,) so the above 

ek  
= - ( 1  - b,)%:-'( 1 - pb,)[  n( 1 - b,) - ob,]. 

n !  

It follows that 

and the proof is complete. 

The following corollary follows easily from (16) and the previous theorem. 

Corollary 4. 

P [ n ( t )  = p l l ( t )  = n ]  = ek/e,,,,, i f p ~  S,, and IpI = k. 0 

Note that conditional on the number of individuals alive at time t, the distribution 
of n( t )  does not depend on time and has the same distribution as the birth process 
with immigration. See Joyce and TavarC (1987) and TavarC (1989) for related results. 
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It is straightforward to show that if the death rate is larger than the birth rate 
then the process has a limiting (and stationary) distribution, for if p > 1 then b, + p-' 
as t +  a. Thus by the last corollary and (16), if p E S, and IpI = k then 

B k  
lim P [ n ( t )  = p ]  =- Iim P [ l ( t )  = n] 
r+oo 0 ( n )  n! 

We have therefore established that for p > 1: 

Corollary 5. 

i-oo 

7. The birth4eath process 

We conclude with a short description of the linear birth-death process. Since there 
is no immigration, the natural state space for the birth-death process is the collection 
C of permutations containing a single cycle. It will once more be convenient to let 
C,, denote the set of p E S, comprising a single cycle. First, let us formally take the 
limit as 0 (the immigration parameter) goes to zero. Then from Corollary 4, 

1 
Iim P [ I T (  t )  = p l ~ (  t )  = n] = ~ 

e+o ( n - I ) ! '  
if p E C,, 

and is 0 otherwise. Since ( n  - l ) !  is the number of cycles of length n, this indicates 
that given that n individuals are alive at time t, each of the ( n  - l ) !  states of the 
process is equally likely, independent of time t or the death rate p. While the lengths 
of the branches of the family tree for a birth-death process clearly depend on the 
birth and death rates, the symmetries in the history of the population are reflected 
in the fact that the phylogeny is independent of these rates (subject of course to 
the scalings used here). 

Let J ( t )  be the number of individuals alive at time t for a birth-death process. 
The distribution of J ( t )  is 

P [ J (  t )  = n] = (1  - pb,)(  1 - 6 , )  b;- ' .  

If we let {n*( t), t 2 0)  be the C-valued description of the birth-death process, then 
it is intuitively clear that if n ,> 0 and p E C,,, 

1 1 
P [ n * (  t )  = p ]  = - P [ J (  t )  = n] = - (1  - pb,)(  1 - b,)b;-' .  

( n  - l ) !  ( n  - l ) !  

To give a precise proof of the above result one need only check the Chapman- 
Kolmogorov equations. Since the proof is almost identical to that of the birth-death 
with immigration case we omit it and just state the result. 
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Theorem 6. If {n*( t ) :  t 3 0) is the C-valued description of the birth-death process 
and p E C,, n > 0, then 

( 1  - pb,)( 1 - b,)b:-'. 
1 

( n - l ) !  
P [ n * (  t )  = p ]  =- 

If n =0,  then 

P [ n * ( t )  = (O)] = pb,. 0 

This appendix contains proofs of the results in equations (10) and ( 1  1) .  The function 
h k ( p )  defined at ( 5 )  relabels the permutation p in a particular way. It will be 
convenient to reverse the relabelling. To do this we define a function which is in 
some sense an inverse to hk. 

Let g,  : S,  + S,, be given by 

( i j ) s j [ n ^ ( p ) ] s i ' ,  i c j ,  
s i[n^(p)]s; ' ( i j ) ,  i a j .  = 

Let Lp4 = #{( i ,  j ) :  g,(p) = 4). It is clear that E, Lp4 = n2. We now relate g, to hi. 

Proof. (a) By the definition of g, given by (18),  

i j ) s j [  n^(hi(p))]sT', i s  j ,  
gij(hi(p)) = { ( s i [ $ (  h i ( p ) ) ] s ; ' ( i j ) ,  i 3 j .  

By ( 5 )  and (18) and the fact that n^(h,(p)) = h i ( p )  we get 

( ip i ) s i [ (p i  n)s;'psi]s;', pi < i, 

si [ s f ' psi] s ; ', pi = i. 
sp,[s,'psp,(n i ) I s i , ' ( i ~ i ) ,  pi > i, 

Case 1. p i < i :  
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Lemma 8. 1, Dpq = n2. 

Proof. 

Dpq = #{k: h k ( p )  = i i ( q ) )  = #{k: p = gp,k(q)) (by Lemma 7). 

Note that j + i in the permutation g , ( q ) ,  so if g , ( q )  = p  then pi = i. Thus 

Dpq = #{k: P = gp,k(q)) = # { ( i , j ) :  g , ( q )  = P I  = Lqp, 

and so C p  Dpq = E p  Lqp = n2. 0 

Lemma 9. 

Proof. If IpI = In^(q)l then p must have a singleton cycle in order that Dpq # 0. The 
singleton can be any of the first n integers, and so 

1 Dpq = n. 0 
{ P :  Ipl=l%q)l) 
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