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Abstract 

This paper gives general conditions under which symmetric functionals of random 
partitions of the integer rn converge in distribution as rn - 03. The main result is 
used to settle a conjecture of Donnelly et al. (1 99 1) to the effect that the mean of the 
sum of the square roots of the relative sizes of the components of a random mapping 
of rn integers converges to nI2 as rn - CQ. 
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1. Introduction 

This paper is motivated by a conjecture made by Donnelly et al. (1991) in their paper 
on functionals of random mappings. 

Consider a random mapping of the set { 1,2, , +, m} into itself where each of the 
mm maps is equally likely. The mapping partitions the set { 1,2,. - e ,  m} into com- 
ponents, integers i and j being in the same component if some functional iterate 
of i equals some functional iterate of j .  If M!"') is the size of the ith largest corn- 
ponent of a random map and vm) = m -'Mm), then it was shown by Aldous (1 985) 
that as m - 00 

- denoting weak convergence in the product topology on V = {(xl, x2,. .): 
x, I x2 h - h 0, Exi 3 l}. Further, (Y l ,  Y,, - - .) has the Poisson-Dirichlet distribu- 
tion with parameter 4.  (For definitions and basic properties of the Poisson-Dirichlet 
distribution, see Kingman (1977).) 
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Let g : [0,1] - [0, a) be a continuous function, and define f, : V - [0, co] by&) = 

2: I g(x,). If g(x) = o ( x )  as x - 0, Kingman (1977) showed that f, is continuous, and 
hence thatf,(ylm), q"), e )  3 f , (Y , ,  Y,, - - .) as m - a, using the continuous mapping 
theorem. In the case g(x) = &, the limiting behavior off,( Urn), G"), - - a )  cannot be 
obtained immediately from this result, since & is not o(x)  as x - 0. In addition, 
Lemma 4.2 of Donnelly et al. (1991) shows that if g(x)  is not o(x)  as x - 0 then fB is 
discontinuous at any y E V for which&( y )  is finite. Thus further attempts to use just the 
continuous mapping theorem must fail in such cases. However, computer simulations 
described in Donnelly et al. (1 99 1) suggest that 

We show that (2) is indeed true. In fact, for a large collection of continuous functionsg 
we show that E Zpe I g( urn)) - E Cpe g( Y,), and in addition Cpe g( E")) =* CP., I g( x). 
This result follows because the sizes of the components of a random mapping converge 
weakly to the Poisson-Dirichlet distribution in a particularly nice way. However, in 
Section 3, we show that it is possible to construct a sequence of distributions on 
partitions (other than those induced by random mappings) where the normalized sizes 
( yl"), a"), - e )  converge in distribution to a Poisson-Dirichlet distributed point 

The trade-off is clear. We can assume weaker conditions on g if we can establish 
stronger conditions on how the relative sizes converge. Establishing such conditions, 
which are easily verified in cases of interest, is the central idea of this paper. In the next 
section we prove a general result which has the conditions necessary to establish 
convergence off, under very mild assumptions on g. In the third section we verify these 
conditions for two important cases: the components of random mappings, and random 
partitions distributed according to the Ewens sampling formula. 

(Y1, Y2,- *)but E Zzl m+ E C,Zl a. 

2. A convergence theorem 

- , A?)) be a random partition of m ,  so 
that AI") is the number of parts of size i ,  and Z,? iA$) = m .  Let M"), I@"), - - - be a 
listing of the parts in decreasing order, and define Xf") = m-'Nj"). For example, if 
m = 10 and AILo) = 2, Ailo) = 1 and Ailo) = 1, then MIo) = 6, IV$l0) = 2, MIo) = 1 and 
MIo) = 1. To make (a"), a"), e - ) a point in V, we use the convention that A$") = 0 if it 
has not already been defined. Another way to label the parts is to label at random 
according to their sizes; that is, to size-bias the sizes M"), N"), - - . We let a"), a"), - - - 
denote the parts in size-biased order, and define 2)") = m - l q " ) .  

For each positive integer m , let (Ai"), Ai"), 

Theorem 1. (i) Suppose that as m -a, (a"), a"),. e )  =$ (XI, X,, 

Denote the size-biased permutution of (XI, X,, - . ) by (Zl, Z,, 
(ii) Assume that the distribution of 2, has a probability densityfinction h(x), x E [0, 11 

.), a random 
point in 0. 

-). 

that is continuous for x E (0, 1). 
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Let h, : (0, I ]  - [0, C Q )  be defined in such a way that 

(3) h,(~)=jE(A,Q")), j = l , . . . , m  . 

(iii) Assume that there exists a to€(O, 1) such that 

(4) A := sup SUP h,(x) < 00, 
m xC(0,rol 

and such that h, converges uniformly to h on [s, to] for 0 < s < to. 

Jiznction g* satisfiing 
(iv) Suppose g E C[O, 11, g L 0 and that for some 6 > 0 there exists a non-increasing 

Then as m - CQ, 
(7) 

and 

(8) 

g(x)  5 xg*(x), 0 < x < 6,  

E ( g ( x m ) ) )  - E ( i g(X,)) = 1' g+ h(x)dx, 
i-I  i-1 

Remark 1. It follows from (4) and (6) that 

(9) L'g*(x)h(x)dx < CQ. 

Remark 2. To motivate the conditions in the statement of the theorem and the 
proof we consider two formal arguments that establish (7). 

Formal argument A. Note that if the parts of the partition of m are given in 
decreasing order a"), 4'"),. . - then the ith largest part is chosen to be labeled 1 under 
the size-biased labeling with probability a"). Therefore if Zim) is the part chosen first 
under the size-biased labeling, 

implying that 

It was shown by Donnelly and Joyce (1989) that if the relative sizes in decreasing 
order converge in distribution, then the relative sizes under size-biased labeling also 



f 
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converge in distribution. If we formally interchange limit with expectation the limit 
becomes E(g(Zl)/Zl). If we replace Conditions (iii) and (iv) with the condition that 
g(Zlm)) /am)  be uniformly integrable, then interchanging expectation and limit would be 
justified. However, as Donnelly et al. (199 1) point out, this is difficult to verify directly in 
cases of interest, since x- lg (x )  is typically unbounded near 0. However, once Con- 
ditions (iii) and (iv) are verified, uniform integrability will follow as a consequence of 
this theorem. 

Formal argument B. Note that 

Formally, if we replace h, with h in the last equality, then the limiting mean would be 
x-'g(x)h(x)dx. It is difficult to make this argument precise, because g(x)h(x)/x may 

be unbounded near x = 0 and x = 1. Our proof actually combines the two formal 
arguments. Note that in order for arguments A and B to be consistent, h(x)  must be the 
density of 2,. 

Proof. Note first that by ( 5 )  of Assumption (iv) we must have g(0)  = 0. Let to be as 
given in Assumption (iii). Since the distribution function of each Xi is continuous except 
at a countable number of points, the set 

m 
u= u {s>O:P(&.=s)>O) 

i - 1  

is countable. For t E(0, to)\ U we have 

i - 1  

the last equality following from (10). Next note that x-'g(x)Z{x > t }  is bounded by 
t -' sup,,~o,ll g(x) .  The dominated convergence theorem and Conditions (i) and (ii) then 
guarantee that 

It remains to prove that 
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To establish (12), choose s E(O,6) and use the triangle inequality: 

where A =supm h,(x) is finite by Assumption (iii). Note that x-'g(x)h(x)  
and x - ' g ( x )  are bounded and continuous on [s, t] and therefore Riemann integrable 
there. Also note that h, - h uniformly on [s, t] by Assumption (iii). Thus the third and 
fourth terms of the above inequality tend to 0 as rn - 00. Next observe that by 
monotonicity of g*, 

which may be made arbitrarily small by letting s-0. Finally, the term 
x-'g(x)h(x)dx - 0 as s - 0, by (9). This completes the proof of (7). 
To establish (8) we first employ Skorohod's theorem (cf. Ethier and Kurtz (1986), 

p. 102) to conclude that (a"), a'"),. - e )  - (XI, X,, - .) as rn - co almost surely on 
some probability space. 

Let E > 0 be given. Using (1 1) choose s =s(e)E(O,  to)\ U so small that 

and choose R = R(s ,  E )  so large that P(XR > s) < e12 and 

i - R + I  

This last choice is possible because E Zg, g ( 4 )  =Eg nce 
P(XR = s) = 0, P(xjl") > s ) -P(XR > s), so that there exists No such that for all rn >No 

E 
P(xk") > s) < - . 

2 

Z1)lZl< co by (9). S 
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so that there exists N1 such that for all m > Nl 

Choose N = max{No, N l } .  Note that ZjF] Alm)g(i/m) 2 E and .@"" 5 s imply.that 
m Imsl 

It follows from (1 4) and (1 5 )  that if m > N then 

P( i - R + I  2 g(q"')>&)cE. 

The proof may be completed by using the inequality 

The first term is controlled by (1 6) and the second by (1 3), and the third may be made 
small for large enough m by Condition (i) of Theorem 1. 

Remark 3. For general g,  if we assume that both g+ and g- satisfy the conditions of 

Remark 4. If g : [0, I l k  - [0, co) is continuous, and& : V - [0, co) is given by 

the theorem, then its conclusion will hold for g = g+ - g-.  

I 
. & ( X I ,  ~ 2 ,  * '1 = g(xil9 . . * 3 X i k h  

i l , .  . .,ikdistinct 

then similar arguments may be used to study weak convergence and convergence of 
means in this setting. 

I 3. Some examples 

Example 1. Consider a random partition (Ai"), A$'"), - - - , A:)) of the integer m with 
I 

I 
probability distribution given by the Ewens sampling formula (Ewens (1 972)): 
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where = 8(8 + 1 )  - - (8 + m - 1 ), 8 > 0, and Z,? jaj = m . Let Mm), Nm), - - - be a 
listing of the parts in decreasing order and d") = m-'N").  Kingman (1977) showed 
that as m - oo 
where (Xl, X2, - .) has the Poisson-Dirichlet distribution with parameter 8. We will 
verify Conditions (iii) of Theorem 1 by showing that h,(x)-h(x) uniformly on the 
interval [0, t ]  for all 0 < t < 1. In this case h(x)  = 8(l - x ) ~ - ~ ,  which is the density 
function of 2,. Watterson ( 1  974) showed that 

8 m(m - 1 ) .  e .(m - i + 1 )  
i ( 8 + m -  1 ) . . . ( 8 + m - i ) '  

E(A,(")) = - 

so from (3) we may take 

er(m + 1)r(m( l -  X) + e )  
r ( m  + e)r (m( i  - x) + 1 )  h m  (x) = 

Corollary 1 .  If g satisfies Assumprjon (iv) of Theorem 1 ,  and (a"), am), - a )  

are the normalized parts from a random partition of m with distribution given by 
( 1  7) ,  then 

and 

i - 1  i - I  

Proof. Let r,,,(y) = T(my + 8)/r(my + 1) and define 

(19 )  

We may write 

( B,yl)m~+e-l/2 A(my + 8 - 1 )  
A W Y )  

rm( y )  = exp( - (8 - 1 ) )  1 + - 
It is known (cf. Abramowitz and Stegun ( 1  965))  that 

A(x)=exp - ( 1 3  
for some O < a <  1 .  It follows from (20) that A(m(1 - x ) +  8 - 1 )  and A(m(1 -x)) 
converge uniformly to 1 for all x E [0, t ] .  Since ( 1  + d z ) =  increases to ea as z - CO, 
we see that ( 1  + (8 - l ) / (m(l  - converges uniformly for x E [0, t ]  to 
ee-I. Therefore 



A conwrgence theorem for symmetric functionals of random partitions 287 

as m - m, uniformly on [0, t] for all 0 < t < 1. 

There are numerous functions g that satisfy the conditions of Corollary 1 that are not 
o(x) as x - 0. For example, if g(x) = f i  we may take g*(x) = x -  "' and conclude that if 
X = ( X I *  X,, . . e), then 

AS e - ~: f , (x )  - f i e .  
A more interesting example has g(x )  = - x log(x), in which case 

the entropy of the random measure X = ( X I ,  X,, - - e ) .  It is straightforward to calculate 

where w is the digamma function, and y is Euler's constant (Abramowitz and Stegun 
(1965), p. 258). For large values of 8, it follows that 

Example 2. We now return to our random mapping problem. Recall the definitions 
given at the beginning of the paper: Nm) is the size of the ith largest component of a 
random mapping on m integers, and Em) = m-lM?'"). Also recall that Y = ( Y l ,  Y,, - - .) 
has the Poisson-Dirichlet distribution with parameter f . 

Corollary 2. If g satisJies condition (iv) of Theorem 1, then 

m - m  

and 

Proof. Because of (1) we need only verify Conditions (ii) and (iii) of Theorem 1. It is 
known (cf. Lemma 2.1 of Donnelly et al. (1 99 1)) that 

Writing this in the form 
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and recalling (3), we may define 

It is straightforward to show that h,(x)- i(1 - x)-lj2 pointwise. To establish uniform 
convergence away from the endpoints of (0, 1) a little extra care is needed. A calculation 
using (1 9) shows that 

If {N( y), y h 0} is a Poisson process with rate 1, then 

Choose 0 < s < t < 1. Since A(m)/A(m(l - x ) )  converges uniformly to 1 on [0, t], we 
need only show that as m - m 

N ( m x ) - m x  < - 1 1 ( Jmx =&I P(N(mx) 5 mx - 1) = P 

uniformly on [s, 11 to verify that h,(x) converges to h(x)  = f(l - x)-ll2 uniformly on 
[s, t]. The following argument, due to the referee, simplifies our original proof. 

Let E > 0 be given, and assume that x h s > 0. Choose M sufficiently large that 
l I m < e a n d f o r y h M s  

This last is possible by the central limit theorem, and the fact that the standard 
normal distribution function Wz) satisfies I @( k e) - f I < e/@ if E > 0. If m h M 
and x )e s ,  then - e < - 1 I G x  < e ,  so that the probability p on the right side of (22) 
satisfies I p - f 1 < E  if m h M and x L s. Hence h,(x) - h(x)  uniformly on [s, t], as 
required. Since it is clear that sup, S U ~ ~ ~ ( ~ , , ~  h,(x) < m, the result follows by applying 
Theorem 1. 

The particular case g ( x )  = & given in Donnelly et al. (1991) satisfies the con- 
ditions of Corollary 2, from which we verify that the limiting mean E&( Y) has value w/2. 
For the information function g ( x )  = - x log(x), we deduce from (21) that E&( Y) = 

Example 3. We conclude with an example where the relative sizes converge to the 
Poisson-Dirichlet distribution but Condition (iii) of Theorem 1 fails. We then show that 
the sum of the square roots of the relative sizes does not converge appropriately. The 

2-10g(4)X0.61371. 
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idea is to construct a random partition that has too many small components; individu- 
ally they do not affect the (Poisson-Dirichlet) limit but the sum of the square roots of the 
relative sizes is affected by them. The example involves random permutations, the 
special case of random mappings in which the cycles of the permutation make up the 
components of the mapping. 

Consider the set of all permutations of the set { 1,2, - - e ,  m2 - m } .  Choose a permu- 
tation uniformly and at random from this set and call it ll, . Define the permutation ll,$ 
on the set { 1 , 2,. . , m2} by 

n,,,(i), i 5 m2 - m 

m2 - m < i  5 m2 {i, 
ll,$(i) = 

We consider the partitions of m2 - m and m2 induced by these permutations. Let Y,,, 
(respectively, K*J be the size of the ith largest cycle of ll, (respectively, ll:), and let 
Xi,, = Yi,,/(m2 - m),  Xlf, = Y&,/mZ. 

The distribution of the partition induced by ll, is the Ewens sampling formula with 
8 = 1 (cf. Joyce and Tavark (1 987)). Relation ( 1  8) shows that as m - 00 

where (XI, X2,. - e )  has the Poisson-Dirichlet distribution with 8 = 1. 

fixed r 
If F, is the total number of cycles of ll, then F, - 00 in probability. Note that for 

where d is the usual Euclidean metric on R'. It follows by (23) and (24) that 
(q,, 3, , e  e )  also converges weakly to the Poisson-Dirichlet distribution with para- 
meter 8 = 1. But 

and so 

Notice that the hypothesis (iii) is not satisfied for the partition induced by ll:, 
since 

h,i(l /m2) = E(Afm3)-+ co as m - co. 
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