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Abstract. Population geneticists have long been interested in the behavior of 
rare variants. The definition of a rare variant has been the subject of some 
debate, centered mainly on whether alleles with small relative frequency 
should be considered rare, or whether alleles with small numbers should be. 
We study the behavior of the counts of rare alleles in samples taken from 
a population genetics model that allows for selection and infinitely-many- 
alleles mutation structure. We show that in large samples the counts of rare 
alleles - those represented once, twice, . . , - are approximately distributed as 
a Poisson process, with a parameter that depends on the total mutation rate, 
but not on the selection parameters. This result is applied to the problem of 
estimating the fraction of neutral mutations. 
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1 Introduction 

A question of some importance in studies of genetic variation is: What is a rare 
allele? Traditionally, rare alleles have been defined in terms of their relatiue 
frequencies. For example, Kimura (1983a) defines a rare variant as an allele 
with a relative frequency of less than q, for some small pre-specified value of 
q such as 0.01. This definition treats as equally rare an allele arising twice in 
a sample of size 100 and an allele arising 200 times in a sample of size 10,000. 
Presumably, though, these two sample configurations would be interpreted 
very differently (Thompson et al., 1992). 

Consider a sample of n genes taken from a single locus in a large stationary 
population. We define a rare allele as one that arises at most b times 
in the sample. We are interested in the behavior of such rare variants 
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when the sample size n is large and b is chosen either to be fixed or perhaps 
to tend to infinity with n in such a way that b/n + 0. This definition of rare 
alleles focuses directly on the counts of alleles, rather than their relative 
frequencies. 

In this paper we study the asymptotic structure of the frequencies of rare 
variants under the effects of mutation and selection. We study a particular 

authors including Li (1979), Ewens and Li (1980), Kingman (1980), Grfiths 
(1983), Watterson (1987,1993) and Ethier and Kurtz (1994). Under this model 

a genotype is determined by the classes to which the two constituent genes 
belong. 

Related to the issue of rare variants is the problem of estimating the 
fraction of neutral mutations, Pneut. Suppose the fractions in the d classes are 
fl,f2,. . . ,fd. If we think of class 1 as being neutral and the others selective, 
then Pneut =fl. Kimura (1983a) proposed an estimator of Pneut based on data 
from several loci. Roughly speaking, his estimator uses the number of rare 
variants (defined in terms of relative frequencies of alleles) to estimate O r ,  the 
overall mutation rate, and the heterozygosity to estimate the effective neutral 
mutation rate el; thenfl = O1/OT. The statistical behavior of this estimator 
was discussed by Watterson (1987). Watterson (1993) assessed the possibility 
of estimating Pneut by maximum likelihood methods from data at a single 
locus, and Joyce (1994a) established that such an MLE could not be consis- 
tent. However, it is the case that & can be estimated consistently, as the results 
of this paper show. 

* population genetic model, variants of which have been discussed by several 

the alleles at the locus in question are divided into d classes, and the fitness of . 

In his paper, Kimura (1983a) commented that 

“It can be shown mathematically (see, e.g., Kimura 1983b, p. 227), in the 
neighborhood of x = 0, the population behavior of alleles in general, 
including those having mild selective advantage or disadvantage, is essen- 
tially the same as that of selectively neutral mutants.” 

This statement refers to alleles with small relative frequency. It is the purpose 
of this paper to establish a rigorous analog of this statement for rare variant 
allele counts. 

Cj(n) is the number of alleles represented 
j times in a sample of size n, then the joint distribution of ( C l ,  . . . , C,) is well 
approximated by the joint law of independent Poisson random variables 
Z, with parametersEZ, = &/j as long as b/n + 0. We also provide an estimate 
of the total variation distance between the two distributions. One interesting 
consequence of this result is that the rare variants have approximately the 
Ewens sampling distribution (Ewens, 1972) with parameter O r ,  regardless of 
the values of the selection parameters. This may be viewed as an analog of 
Kimura’s observation in the context of rare variant counts. 

The results are established by deriving approximations for the allele 
counts in different classes using the Poisson approximation methods for the 
Ewens sampling formula provided by Arratia et al. (1992). In addition, we 

Specifically, we show that if C,  

1 

, 

k 
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obtain functional central limit theorems for the allele counts, together with 
a rate of convergence. 

1.1 The Ewens sampling formula 

Here we review some of the structure of the Ewens sampling formula. Con- 
sider a random sample of n genes taken from a stationary, infinitely-many- 
neutral-alleles model. Let C,*(n) denote the number of alleles represented 
j times in the sample, and define 

for 1 s b s n. Define 2, 3 (0, 1, . . .}, and let a E 2:. According to the 
Ewens sampling formula, the probability that c ( n )  = a is given by 

where 

1 {A} is the indicator of A, and 8 = 4Nu is the neutral mutation rate. 
There has recently been a resurgence of interest in Poisson process ap- 

proximations for combinatorial objects, among them the Ewens sampling 
formula (cf. Barbour, Holst and Janson (1992), Arratia et al. (1992,1994)). The 
main idea of these methods is to approximate the behavior of a complicated 
stochastic process by a process with simpler dependence structure. The ad- 
equacy of the approximation is conveniently measured in terms of total 
variation distance, about which we recall some basic facts. 

Let X and Y be discrete random variables, and let dTY = dTY(X, Y )  
denote the total variation distance between the law of X and the law of Y:  

x@) = x(x + 1) * * (x + n - l), X(0) = 1 , 

An equivalent definition of dTY is 
1 

dTY(x, Y )  = IP(X = a) - P( Y = a ) l .  (3) 

Further, 

the infimum being taken over all couplings of X and Y on the same probabil- 
ity space. 

For the Ewens sampling formula, the approximating process is a sequence 
of independent Poisson random variables Z1, Z2, . . . , with means EZj  = 6/j. 
DefineZb E (Z,, . . . , Zb), and let d f ( n )  be the total variation distance between 
G(n) and z b :  

d T Y ( X ,  Y )  = infP(X + Y )  , (4) 

dl(n) E dTV(c(n),zb) - ( 5 )  
Arratia et al. (1992) established the following results. 
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Lemma 1. For 1 4 b 
between the laws ofC,*(n) and 2,. There is a constant c(0) > 0 such that 

n, let d:(n), defined in (5),  be the total variation distance 

(6) 
b 
n 

&(n) 4 c(e)  - . 

The constant c(0) is given by  
b 

9 

Lemma 2. For any A c { 1,2, . . . , n}, 

1 ECy(n)  5 1 + EZj  

2 The selection models 

In this section we describe a class of models that play an important role in 
estimating the fraction of neutral mutants. The description follows Ethier and 
Kurtz (1987, 1994). 

Consider a diploid population of N individuals in which each of the 2N 
genes is assigned a type x E [0,1]. Suppose the genes in the current generation 
are labelled xl, . . . , x I N .  We form the next generation of genes as follows. To 
produce each new gene, a pair of genes is selected at random from the 
population. The probability that the ith and jth genes are selected is 

wN(xi,xj) 
C 1 5 l,m 2N W N ( X ~ ~  x m )  ' 

where wN(x,  y )  2 0 is symmetric and measures the fitness of an individual with 
genotype (x, y). Next, one of the individual's genes is chosen at random and 
subjected to mutation. A gene labelled z mutates to a gene with label in 
A E a[O, 13, the Bore1 subsets of [0,1], according to the transition function 
PN(z,A). Given the types in the current generation, the 2N genes in the next 
generation are independently and identically distributed. We are interested in 
the case in which alleles are classified into one of d 2 2 classes, the selection 
function being constant for genes in a given class. To this end, let 
fl ,  . . . ,fa > 0 satisfy fl + . +fa = 1, and define intervals Z j  c [0,1] by 
Zl = [O,fl), Id  = [l -fa, 13 and fo r j  = 2 , .  . . , d - 1 

We suppose that 
t zj = [ f 1 +  * * * +fr- l , f i+ * - * +fi). 

1 
W N ( X , Y )  = 1 + j f  a ( x , y )  9 

where 
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and C E (alm) is a symmetric d x d matrix. We also assume an infinitely-many- 
alleles mutation structure in which 

where 1 is the uniform distribution on [O,l], 6, is point mass at z, and 
u E 8,/(4N) is the mutation rate per gene per generation. 

It is conventional to examine the behavior of such models in the limit as 
N -+ co. In this case, one keeps track of the fraction of genes of different types, 
perhaps using the theory of measure-valued diffusions. The details may be 
found in Ethier and Kurtz (1994). For our purposes, it is enough to record the 
structure of the stationary measure of the limit process. We denote the fraction 
of genes in selective classes 1, . . . , d by (P1, . . . , pd), a random variable in the 
simplex Ad E { ( p l , .  . . , p d ) :  p i  2 0,l s i 5 d ; p l  + - . . + pd = I}. The distri- 
bution p of (Pl, . . . , Pd) is given by Ethier and Kurtz (1994, (4.63)) as 

p(dx)  = C x p -  . ~ 2 -  exp( c x,alm*.)dxl* * dXd-1 , (10) 
d 

l . m = l  

where C is a normalizing constant, and 

ei E eTf;:, i = 1 , .  . . , d . (1 1) 

See Wright (1949, p. 383) for early applications of (l l) ,  and Watterson (1978) 
for an application having el = . - = 6,. Ethier and Kurtz (1994) also show 
that, conditional on the class frequencies, the (renormalized) allele frequencies 
in decreasing order in classes 1 , .  . . , d are independently distributed with 
Poisson-Dirichlet distributions with parameters e l , .  . . , e d  respectively. The 
case of genic selection (alm = al + a,) was treated by Griffiths (1983), follow- 
ing on from work of Li (1979), Ewens and Li (1980), and Kingman (1980). 

3 Poisson approximations 

In this section we use some of the results of Arratia et al. (1992) to analyze the 
selection model in Sect. 2. Consider a sample of n genes taken from a d-class 
model at stationarity, and define Cij(n) to be the number of alleles from 
selective class i representedj times in the sample, i = 1 , .  . , , d. It is not usually 
known which genes belong to which selective classes, and the observable 
counts are just 

d 

cj(n) E c C&), j = 1,2,. . . , n . (12) 
i = l  

For i = 1, .  . . , d, let Y h  be the number of genes of class i in the sample, and 
write Y,, E (Y l , , ,  . . . , Yp,,). Conditional on the population class frequencies 
(Pl , .  . . , Pd), Y,, has a multinomial distribution with parameters n and 
(PI, . . . , pd). Conditional on Y,, = (yl, . . . , yd), the genes in different selective 
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classes are distributed as independent samples of sizes y, ,  y,, . . . , yd from 
Poisson-Dirichlet distributions with parameters 81,&, . . . , 8d respectively. 
It follows that the counts { Cij(n), j = 1, . . . , n }  are distributed as independent 
Ewens distributions (1) with parameters Oi and yi, i = 1,. . . , d. 

* 3. I A total variation estimate 

The first lemma shows that the counts of allele frequencies in the d 5 2 classes 
are asymptotically independent, with Poisson distributions. The result is 
a special case of Corollary 1 below, and the proof is omitted. For i = 1, . . . , d, 
define 

C d n )  = (Cil(n), . . . , Cdn),O,. . .) . 
Lemma 3. As n --* oc), 

(Cim(n), i = 1,. . . , d )  ==-(ZioD,i = 1,. . . , d )  , (1 3) 
where * denotes convergence in distribution and Zi, 5 (&, Zi2,. . .), 
i = 1, . , . , d are mutually independent Poisson processes on N = { 1,2, . . . }, 
with means given by 

Remark. This result says that in large samples the counts of rare alleles have 
approximately independent Poisson distributions with parameters that do 
not depend on the selection scheme; the effects of selection are washed out in 
the limit process. 

It is now of some interest to assess the quality of the approximation in 
Lemma 3. To this end, define 

and 

for 1 

Cibl(n) (c i l (n) ,  CiZ(n), * . * 9 cib,(n)) 9 

z i b ,  E (zi1, * * 3 Zlb,) Y 

bi 5 n, i = 1,. . . , d. We wish to estimate the total variation distance 

~ 

db*,,. ... ,b,(n) E dTV((Cib,(n), i = 1, * * * 3 d), (Zib,, i = 1, - 9 d) )  
between the counts of alleles in class i with at most bi = bt(n) representatives 
(1 s i g d) ,  and the corresponding counts for the limiting Poisson processes. 
We use the following lemma. 

Lemma 4. Let ( X , ,  . . . , xd), ( Y  1, . . . , Yd) and V (possibly oector-valued) be 
discrete random variables. Assume that Y ,, . , . , Yd are independent, and that 
conditional on V the random variables X , ,  . . . , xd are independent. Then 

d 

dTY((X1, - 3 xd),(yl, * * * 9 yd)) 5 c p ( v  = m)dTdXilV = m, yi), 
i = l  m 

where Xi lV = m denotes a random variable with distribution given by the 
conditional law of Xi, given V = m. 

t 

‘r 
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x (P(Xi = ail V = m) - P( Yi = ai))l 

I = i + l  

x IP(Xi = ai( V = m) - P( Yi = ai))/ 

The next theorem provides a bound on the total variation distance d*. For 
i = 1, . . . , d, let Yin be the number of genes in the sample of size n that belong 
to selective class i, and let Pi be the fraction of the population that is in 
selective class i .  While we are particularly interested in the case where the 
Pi are distributed according to (lo), the next result is somewhat more general. 
Let Fi be the distribution function of Pi .  The main result of the paper is: 

Theorem 1. For 1 2 bi s n, i = 1 , .  . . , d, we haue 
d 

db:. ... , b, 1 7i(bi) 9 (15) 
i =  1 

where 
Ti(b) = P ( Y ~ ,  < b)  + c(e i )P(p i  s (b + i)/(n + 1)) 

the constant c(8,) being given in equation (7). 
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Proof: Let &(r) be the total variation distance, defined in (9, between the law 
of the first 6 components of counts following the Ewens sampling formula 
with sample size r and parameter 0, and the law of the first b components of 
the corresponding Poisson process in which the jth component has mean O/j. 
From Lemma 4, it follows that 

d 

db:. ... , b,(n) P(yn = (Yl, * . 9 yd))dbO:(yi) 
i=l yI. ... .y, 

We estimate the size of the ith term on the right of (17). From Lemma 1 we see 
that 

n n bi bi- 1 

C P(Yin = Y)~$(Y)  s C P(Yin = y) 1 + c(ei) C P(Yin = y )  - 
Y =o Y E 0  Y=b{ Y 

= P( Yin < bi) + C ( 0 i )  

n 

(1 8) 
bi 

Y=bi Y 
P( Yin = y )  - . 

Conditional on (PI, . . . , Pd), Y i n  - Bin(n,Pi), where Bin(n,Pi) denotes 
a binomial random variable with parameters n and P i .  Conditional on Pi = p, 
we have 

n 

P( Yi, = ylPi = p) - = 
Y = bi Y 

=- bi + P(Bin(n + 1,p) 5 bi + 1) . 
P(n + 1) 

Averaging over the distribution of Pi and using Markov's inequality, we 
have 

p-'P(Bin(n + 1,p) 2 bi + l)Fj(dp) 

This completes the proof of the theorem. 0 
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On the other hand if Oi < 1, then the right hand side of (20) is 

b - l  r(n + 1) r(j + ei) 
j = o  r(n + ei) r(j + 1) n - j 

1 = c  c 
Using the fact that limn-rm nY-"T(n + x ) / r ( n  + y )  = 1, we see that there exists 
another constant C' such that for n sufficiently large 

b 

We have established that if Oi 2 1 then P( Yi,  < b) = O(b/n), while if Oi < 1 
then P( Y i n  < b) = O(b/nel). However, if b grows faster than net then the bound 
on P( Y i ,  < b) does not tend to zero. In this case we need a more subtle large 
deviation argument to establish a rate of (b/n)edz. However, this rate does not 
hold when b grows too slowly. This is why we have combined the two rates in 
(19). Note that when b = ne11(2-ei) the two rates in (19) are the same. 

Now consider the case where b 2 nel'(z-ei). Let a = b/n and choose 
a E (a, 1). Hoeffding's (1963, Theorem 1) bound for binomial tail probabilities 
gives 

P ( Y i n  < blPi) 5 e-2(a-p1)2n 

provided Pi  2 a. Therefore 

P ( Y i , , < b ) =  P(Yi ,  < b l P i = p ) F i ( d p )  

1 

j: 
= C ' P ( Y i , < b l P i = p ) F i ( d p ) +  1 P(Yi ,  <b lP i=p)Fi (dp)  

b) = O((b/n)ei12), w 

for n sufficiently large. To establish (21), we show that 

2(a - a)'n + 8iloga + 00 

show 

(21) 
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as n + co. Substituting a = 4 into the left side of (22), 

4 
2 

2(a - al2n + oiloga = 2 4 1  - 4)'. + - loga 

P. Joyce, S. Tavark 

we see that 

6i = 2b(l - Jb7;;)' - - (logn - logb) + co 
2 

as long as b grows faster than logn. This completes the proof that 

We now consider the second and third terms on the right of (16). As above, 

xel-' dx = O((b/n)ei) . 

Note that if tIi > 1 then E(P; ') < 00, and the third term in (16) is at most 

P(Yin < b) = O(r(b,n;8i)). 

P(Pi 5 (b  + l)/(n + 1)) s c 

b + l  
n + l  

c(6,) - E(P; I) . 
If Bi 5 1, L'Hopital's rule shows that 

where5 is the density of Pi. Therefore 

4 Functional central limit theorems 

In this section, we use the total variation estimates to provide a functional 
central limit theorem for the counts of alleles in each of the selective classes. 
We use the approach of Arratia et al. (1993, 1994). We begin with 

Lemma 5. For any 1 s b n, andfor i = 1,. . . , d 

j = b +  1 

Proof: By conditioning on the value of Yin, we obtain 

j = b + l  y = O  \ j = b + l  

Since samples of size y cannot contribute to the outer sum if y 5 b, or to the 
inner sum i f j  > y, the last expression may be written 
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Given Yin = y, the number of alleles with frequencyj has the Ewens distribu- 
tion with parameter and sample size y. Hence from the estimate in Lemma 2 
we have 

We exploit Lemma 5 in the following lemma. 0 

Lemma 6. For n 2 1, there exists a coupling of {Cij(n), 1 5 i s d }  and 
{ Z i j ,  1 5 i S d} f o r i  = 1, . . . , n such that, if 

thenfor i = 1 , .  . . , d 

where 

> If we take b = Ln/log n J then by Theorem 1 and (4), the first term on the right 
of (25) is bounded above by t( Ln/logn 1). It follows from Lemma 5 that the 

0 second term in (25) is O( log log n/&). 
* 

For i = 1 , .  . . , d define random elements Bin of DRIO, 11 by 
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Theorem 2. It is possible to construct B, = (Bl,, . . . , Bd,) and a d-dimensional 
standard Brownian motion B ( B l ,  . . . , Bd) on the same probability space in 
such a way that 

Proof: Let P1, g2,. . . , g d  be d independent Poisson processes constructed 
to satisfy 

j =  1 

where 

From the inequality log(1 + j )  S C!= l/r S 1 + log j ,  valid for any integer 
J 2 1, it follows that 

sup 18,tlogn -si(  Ln'J)l 6 Oi 
o g t s 1  

(27) 

Using a result of Kurtz (1978), we may construct d independent standard 
Brownian motions B = (&, . . . , B d )  in such a way that for i = 1,. . . , d 

By the triangle inequality 
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It follows from (28) and (27) that 

We now use Lemma 1.2.1 from Csorgd and RCvCsz (1981) to see that for 
L any fixed c 

It follows from (30), (29) and Lemma 6 that 

Finally we note that 

) 
d 

SUP IIB,,(t) - B(t)  11 A 1 E SUP IBi,(t) - Bi(t)l A 1 
O $ r $ l  i = l  

d 

SUP IBin(t) - Bi(t)l A 1 . 0 

0 6 ' $ 1  ( 
) a( i = l  0 5 1 5 1  

The following corollary is an immediate consequence of Theorem 2 and 
Corollary 1. 

Corollary 2. If (Pi,  P 2 ,  . . . , pa) has density given by (10) with 
e=min,, isdOi>O, then 

4. I The approximate distribution of rare alleles 

In this section, we collect together the analogous results for the observable 
allele counts C,(n) defined in (12). Defining C(n) = (C,(n),  . . . , C,(n),O, . . .), 
the analog of Lemma 3 is , 

Corollary 3. As n + 00, 

where Z 

C(n) *Z , 
1 

( Z , ,  Z2,  . . .) is a Poisson processes on N with means given by 

9T 

i 
E Z j = - .  



616 P. Joyce, S. TavarC: 

To estimate the rate of convergence, define Cb(n) (C,(n), . . . , Cb(n)), 
and Z, ( Z l , .  . . , &)e The analog of Lemma 1 is 

Lemma 7. Let db(n) E dT,(Cb(n),Zb). Then 

db(n) = O(7(b)) 

Proof: Since 

the result follows from Theorem 1. 0 

Remark. Suppose that C:(n) = (C:(n), . . . , C,*(n)) is distributed accord- 
ing to the Ewens sampling formula (1) with parameter &, and 
C(n) = (Cl(n), . . . , C,(n)) are the observable allele counts for the model with 
selection. It follows from Lemma 1 and Lemma 7 that 

dTV(C:(n), Cb(n)) = o(r(b)) * 
Thus the counts of rare allele are approximately distributed according to the 
Ewens sampling formula with parameter eT, regardless of the values of the 
selection parameters. For the model defined by (lo), the rate 7(b) is O(b/n) if 
e T  2 1. 

The functional central limit theorem for the allele counts follows from 
Theorem 2. Define an element W ,  of DRIO, 13 by 

Corollary 4. W e  can construct W ,  and a standard Brownian motion W on the 
same probability space in such a way that 

where 7 (  0 )  is defined by (24). 

ProoJ Construct B, and B as in Theorem 2, and define 

W,= &Bin ,  
i = l  

and 
d 

W =  i= E & B i .  1 

The result now follows from Theorem 2 and the triangle inequality. 0 

Remark. The functional central limit theorem for the Ewens sampling for- 
mula is due to Hansen (1990). This can be established using Poisson approxi- 
mation methods, as shown by Arratia and Tavare (1992). The rate in that 
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setting is O(log1og n/&), as shown by Arratia et al. (1994). In the d-class 
setting the rate can be much slower, due primarily to the effects of selection. 

These results show that #IT can be estimated consistently from counts at 
a single locus. In particular, the total number of alleles in the sample is 
K(n) = Cj(n) .  It follows from Lemma 4 that K(n) has asymptotically 
a normal distribution: 

Corollary 5. As n -, 00, 

Kimura’s estimator of OT is based on the statistic K( Lnq J ) = C$‘s1 Cj(n), 
where q > 0 is a prescribed small number. Lemma 5 shows that 

n 

E C,(n) s d + O,log(n/b) , (33) 
j = b + l  

which in turn implies that 

also. Thus Kimura’s estimator of OT is also consistent. These two normal laws 
are essentially the same, because (33) shows that the contribution to the 
normal law comes from the ‘small’ counts. 

We have shown that the rare allele counts in a class of population genetic 
models with selection and infinitely-many-alleles mutation structure have 
approximately independent Poisson distributions. Joyce (1994b) establishes 
an analogous result, without a rate, for a more general class of models with 
selection. 
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