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ABSTRACT

This article is concerned with statistical modeling of shotgun resequencing data and the use of such data
for population genetic inference. We model data produced by sequencing-by-synthesis technologies such as
the Solexa, 454, and polymerase colony (polony) systems, whose use is becoming increasingly widespread.
We show how such data can be used to estimate evolutionary parameters (mutation and recombination
rates), despite the fact that the data do not necessarily provide complete or aligned sequence information.
We also present two refinements of our methods: one that is more robust to sequencing errors and another
that can be used when no reference genome is available.

SANGER sequencing and fluorescence-based elec-
trophoresis technologies are currently the stan-

dard methods for DNA sequencing. However, there is
widespread interest in improving the efficiency with
which sequence information can be obtained. Conse-
quently, many novel sequencing technologies are being
developed. Shendure et al. (2005a) reviews low-cost
sequencing technologies, which can be classified into
five groups: microelectrophoretic methods, sequencing
by hybridization, cyclic-array sequencing on amplified
molecules, cyclic-array sequencing on single molecules,
and noncyclical, single-molecule, real-time methods.

Johnson and Slatkin (2006) developed methods for
estimation of the mutation rate and the growth rate for
Sanger shotgun sequencing data from metagenomic
projects. In this article we develop tools that can be
applied to the analysis of data resulting from resequenc-
ing technology. Such methods are rapidly growing in
popularity and raise a variety of interesting practical and
theoretical questions (e.g., Korbel et al. 2007; Brockman

et al. 2008; Hillier et al. 2008). In this article we show how
these data can be used to infer evolutionary parameters,
such as mutation and recombination rates. We focus on
three such systems: Solexa, 454, and polymerase colony
(polony) sequencing (cf. Jarvie 2005). These methods
are massively parallel and thereby offer the opportunity
to improve, by several orders of magnitude, the speed
with which sequence information is obtained. However,
the technologies typically result in imperfect coverage of
any given region of interest. While we develop inference
methods for these three technologies in particular, our
methods could easily be adapted to other similar

techniques. In essence these methods first break geno-
mic DNA into fragments from which library molecules
are constructed. These library molecules are then clon-
ally amplified in a highly parallel array and used as
templates for sequencing by synthesis. Differences be-
tween the systems include the nature of the array surface
and the type of sequencing chemistry that is used
(Bentley 2006). These differences affect the details
but not the spirit of the methods we introduce in this
article. We now briefly summarize the three technologies
(see also Figure 1). Each of them begins by randomly
fragmenting the entire genome.

In the Solexa system (www.illumina.com) the frag-
ments are then covalently attached to a planar surface
and amplified in situ. Sequencing is performed in an
iterative fashion using a mixture of four fluorescently
labeled reversible chain terminators and DNA poly-
merases. The resulting data consist of regions of 20–50
bases at one end, or at both ends, of the fragment.

In the 454 system (www.454.com) (Margulies et al.
2005) specialized common adapters are added to the
fragments. The fragments are then captured on beads
and clonally amplified in aqueous-oil emulsion. Beads
are placed in individual microfabricated picoliter wells
for pyrosequencing. The resulting data typically consist
of sequence information for regions of �200–300 bases
at one end or at both ends of the fragment.

In polony sequencing (http://arep.med.harvard.edu/
Polonator/) molecules are immobilized with a polyacryl-
amide gel on a microscope slide and amplified by forming
polymerase colonies (Shendure et al. 2005b). A four-color
sequencing-by-ligation scheme is used to generate reads
and 13 bp at each end of a read are obtained.

We note that resequencing technology is a moving
target in the sense that the details are evolving. For
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example, the number of bases in a typical read has
changed over time. The methods in this article are
robust to changes in parameters such as the exact
number of bases per read or whether one or both ends
of fragments are sequenced.

BACKGROUND

Each of the above technologies results in multiple short
sequence fragments. We assume that the left ends of these
fragments are sequenced and we refer to these sequenced
portions as ‘‘reads’’ in this article. Finally, we initially
assume that the reads have been uniquely mapped in the
reference genome, regardless of the presence of poly-
morphism (but we relax this assumption later).

We wish to use these reads to infer population genetic
parameters. Specifically, we explore the following ques-
tion: When using data from reads, what degree of
genome coverage is needed to estimate accurately
population genetic parameters? Since fragments are
created by a physical shearing process, it is a reasonable
first approximation to assume that their left endpoints
are randomly positioned along the genome. Specifi-
cally, we can view the start point of reads as occurring
according to a Poisson process of rate l along the
genome. If several copies of the region of interest are
fragmented according to independent shearing pro-
cesses, the resulting process of left-hand ends is still a
Poisson process but with a different value of l.

We now consider the estimation of genetic parame-
ters from a random sample of diploid individuals who
have been resequenced at a chromosomal segment of
interest. It is well known that the number of segregating
sites and the haplotype configuration at two-locus pairs
in a sample are informative about the mutation para-
meter u and recombination parameter r, respectively
(Watterson 1975; Hudson and Kaplan 1985; Hudson

2001). In the present context we encounter a missing
data problem. At any particular location in the genome,
we have sequence data only for those individuals in the
sample that have reads covering that position. As a
result, some segregating sites are not detected due to
lack of coverage, and some two-locus genotype config-
urations (which we use later as part of our method for

estimating recombination rate) are not available be-
cause loci may not have complete sequence information
for all individuals.

Hudson (2001) used two-locus sampling distribu-
tions to estimate recombination rates from SNP data.
Hudson’s method involves calculating a composite prod-
uct likelihood and can be applied to diploid samples.
Each term of this product corresponds to the probabil-
ity of the observed SNP genotype configuration at a
particular pair of loci, the product being taken across all
pairs of loci. However, we note one complicating factor
related to diploids: given that we observe data from
reads at a particular locus for an individual, we can-
not tell (using current applications of the technolo-
gies we study) whether one or both alleles have been
sequenced.

We assume that the read length is constant and
initially we assume that there are no sequencing errors.
We focus primarily on results for single-end reads from
the Solexa system and outline extensions to the other
two systems in the discussion.

RESULTS

We now present results for estimating the mutation
parameter u and recombination parameter r for rese-
quencing data from diploid individuals, assuming no
sequencing errors. We then adapt our approach to deal
with two types of sequencing errors. Finally, we address
the issue of inference when there is no reference
genome. For convenience, we list our notation in Table 1.

Estimating u: We first derive a point estimator for u

and then give simulation results to assess its perfor-
mance. The key to estimating u from read data is to
calculate the probability of detecting a segregating site,
which enables us to apply Watterson’s estimator. The
probability of detecting a segregating site in a diploid
sample of size m is the same as that in the corresponding
haploid sample of size 2m, because it requires only that
we observe two different types at the locus. Using the

Figure 1.—Illustration of Solexa reads in diploid individu-
als. Rectangles denote fragments, with the solid portion indi-
cating the region that is sequenced for that fragment.

TABLE 1

Notation for analysis of reads

Symbol Meaning

m No. of diploid individuals in the sample
n 2m, i.e., no. of chromosomes
G Length of resequenced region in base pairs
l Length of a read in base pairs
l Rate of Poisson process
X ¼ ll Expected coverage per haploid

u Mutation parameter
r Recombination parameter
S No. of SNPs in the sample
ST No. of SNPs detected by reads

RMSE Root mean square error
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notation in Table 1, we have the following (proofs are
deferred to the appendix):

1. The probability q1 that a random point, in a single
copy of a genome, is covered by at least one read is

q1 ¼ 1� e�X : ð1Þ

The expected total length of covered regions is Gq1.
2. The probability q2(b) that a segregating site with b

mutants in a sample of size n ¼ 2m is detected by
reads is

q2ðbÞ ¼ ð1� ð1� q1ÞbÞ � ð1� ð1� q1Þn�bÞ; ð2Þ

for 1 , b , n.
3. Under a constant population size coalescent model,

the probability q3 that a segregating site is detected by
reads is

q3 ¼
Xn�1

b¼1

qnb q2ðbÞ; ð3Þ

where qnb ¼ ð1=bÞð
Pn�1

k¼1 1=kÞ�1 is the probability that
a mutant is represented b times in the sample of size n
(Griffiths and Tavaré 1998).

4. The expected number of detected SNPs is

E½ST� ¼ q3E½S � ¼ q3u
Xn�1

i¼1

1

i
: ð4Þ

Hence we obtain the point estimator of u for read data,

û ¼ ST

q3
P

n�1
i¼1 ð1=iÞ : ð5Þ

Note that these probabilities (e.g., q3) depend only on X,
the expected coverage of reads per region. Figure 2
shows the proportion of the region covered for any
given individual (q1) and the number of detected SNPs
(ST) in graphical form, based on simulation of 25
diploid individuals over 1000 replicate data sets; circles
refer to values obtained by the simulation and the solid
line is based on the formulas above. Simulated values
agree closely with the analytical predictions.

We now use the result in (5) to estimate u. To assess
performance we use standard coalescent simulations to
generate 1000 samples of 25 diploid individuals (i.e., n¼
2 3 25 ¼ 50) with fixed values of u and r, e.g., (100, 20)
and (400, 20), for a 100-kb region. For each chromo-
some, we simulate the start point of reads as indepen-
dent Poisson processes, and reads are assumed to be of
length 36 bp. We record the number of segregating sites
detected by reads, ST, and report point estimates of u

obtained using Equation 5. The mean and root mean
square error (RMSE) are listed in Table 2. As we can see,
the number of segregating sites detected by reads, ST, is
highly informative for u, with the variance increasing as
the coverage decreases.

Application to data: It is, of course, of interest to
apply our methods to existing data sets. Given the new
nature of the technology, and the fact that the aim of
our article is to anticipate the need for analysis meth-
odologies for forthcoming data, we find ourselves in a
situation in which there are very few publicly available
resequencing data. For this reason we use a data set that
was analyzed in Hellmann et al. (2008), an article that
appeared during the revision process for this article and
that presented an independently derived method for
estimating mutation rate on the basis of resequencing
data. The article included an analysis of the Celera

Figure 2.—Properties of reads for a sample of 25 diploid
individuals with u ¼ 100 and r ¼ 20. Circles correspond to
the average value of the statistic of interest in 1000 simulations.
The solid line is the prediction based on the propositions in
results. The horizontal dashed line in b indicates the ex-
pected number of segregating sites in the sample (Watterson

1975).
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shotgun sequence data from Venter et al. (2001). Those
data consist of contigs from seven human individuals.
The average number of reads per base, across the
sample, is about five, leading to an expected coverage
of 0.36 per haploid. Consequently, we apply our method
for estimation of mutation rate to these data and
compare results to those of Hellmann et al. (2008).
However, we note that the depth of coverage in these
data does not allow for application of the estimator for
recombination rates that we present later in this article.

In the method of Hellmann et al. (2008), each
chromosome is treated as a collection of segments, each
segment being defined as the maximal continuous
region over which the observed coverage is constant.
This raises a key issue: when coverage is low, or varies
significantly over the genome due to the existence of
repetitive regions, for example, the use of an estimator,
such as ours, that conditions on theoretical expectation
of coverage rather than the coverage actually observed
may be suboptimal. To assess this issue, when analyzing
these data we also present results for a version of our
method that conditions on the observed coverage. We
now detail this modification.

The key to our method for estimating u is the
calculation of the probability that a segregating site is
detected. To calculate this probability conditional on
the observed coverage within a segment, where seg-
ments are defined as regions of maximal length over
which coverage is constant, we consider a particular
segregating site, in a particular segment v, and let r
denote the number of reads observed to cover that site.
We first condition on the number of mutant alleles at
the segregating site (i.e., b) and calculate the probability
of detecting this segregating site as

q2ðb; r Þ ¼ 1� ð1� b=nÞr � ðb=nÞr ð6Þ

(cf. Equation 2), where n is the number of (haploid)
chromosomes. We then substitute into Equation 3 to
obtain the conditional probability of detecting a segre-
gating site, given r observed reads as

q3ðr Þ ¼
Xn�1

b¼1

q2ðb; r Þqnb ; ð7Þ

where, as before, qnb is the probability of there being b
mutants at a segregating site. The point estimator of u

per base for the region covered by r reads is then

û ¼ sv

q3ðrÞlv
P

n�1
i¼1 ð1=iÞ ; ð8Þ

where sv is the number of detected segregating sites and
lv is the length of segment v.

We then write the overall estimate of u as

û ¼
P

V
v¼1 sv

ð
P

n�1
i¼1 ð1=iÞÞ

P
V
v¼1 q3ðrvÞlv

; ð9Þ

where V is the total number of segments (where r . 0).
Results are listed in Table 3. As well as analyzing the

data of Venter et al. (2001) (the first row of results), we
present analyses of a set of 1000 simulated data sets (the
second row of results) designed to assess the generality
of our conclusions. We report both the mean and the
RMSE of the resulting u-estimates for the 1000 analyses.
We simulated 10-kb regions for n¼ 20 haplotypes using
a mutation rate of u¼ 1/kb and further simulated short
reads of length 100 bp with an expected coverage of
0.5, without sequencing error. In column a we show
the results of applying the method of Hellmann et al.
(2008), in column b we give results for the method
presented in this article, and in column c we report
results for the extension of our approach to perform
calculations conditional on observed rather than expected
coverage. Existing estimates for u in the region corre-
sponding to the data of Hellmann et al. (2008) are
�1.0/kb (Halushka et al. 1999, reported as 1.5/kb for
silent substitutions and 1.05/kb for introns), suggesting
that our method may perform somewhat better than
that of Hellmann et al. (2008). The analyses of the
simulated data suggest that this might be true in gen-
eral, since we obtain both a smaller bias and a smaller
RMSE. Finally, we note that, across the scenarios con-
sidered in this article, as is suggested by the results in
Table 3, there appears to be little measurable difference
in performance between the versions of our estimator
based on expected and observed coverage (results not

TABLE 2

Estimating u using resequencing data

X u0 ¼ 100 u0 ¼ 400

163 99.5 (14.5) 400.6 (57.4)
83 99.3 (15.3) 399.5 (58.7)
43 101.6 (15.5) 404.1 (58.3)
23 105.1 (16.8) 400.6 (62.9)

The recombination parameter is fixed at r ¼ 20. We report
the mean (and RMSE) of the estimates over 1000 simulations.

TABLE 3

Comparisons of estimates of u (per kb) for the data of VENTER

et al. (2001) and for a set of 1000 simulated data sets

Data a b c

Celera data 1.67 1.13 1.21
Simulated data 1.68 (0.9) 1.36 (0.6) 1.39 (0.6)

Columns indicate estimates resulting from (a) the method
of Hellmann et al. (2008), (b) the method presented in this
article, and (c) the extension of our approach to perform cal-
culations conditional on observed rather than expected cover-
age. We show the mean estimate for the data of Venter

et al. (2001) and the mean (and RMSE) for the simulated
data.
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shown). However, when coverage levels are very low, it
may be the case that conditioning on observed coverage
would show an improvement in performance.

Estimating r: When estimating r we adapt the
approximate product-likelihood approach of Hudson

(2001). The major difficulty here is that we cannot
determine the genotypes of individuals with certainty.
Suppose two alleles exist at a given polymorphic locus.
For now, we assume that bases are called correctly.
Consequently, for any given individual, if we observe two
types at that locus, we know that we have sequenced
both alleles and that the individual is a heterozygote.
However, if only one type is observed, two explanations
are possible: (i) the individual is homozygous at that
position and we have sequenced one or both alleles or
(ii) the individual is heterozygous but we have only
sequenced one allele. The probability of the second of
these two situations decreases as the number of reads at
that locus for that individual increases (and can be
calculated directly). Thus, we propose a pragmatic
approach in which data are included in the analysis if
either of the following ‘‘read criteria’’ are satisfied: (1)
we observe two different sequence types or (2) we
observe one type and there are at least NT reads, for
that individual at that locus. We vary the value of NT to
find a good choice for a given coverage X.

In addition to the above, we make a further adjust-
ment to the approximate product-likelihood approach
of Hudson (2001) to deal with the imperfect coverage
that results from read data. Hudson’s method relies
upon lookup tables that contain empirical estimates of
the probability of observing each possible two-locus
genotype configuration for a given r and sample size.
Each lookup table gives results for a range of r-values
and a particular sample size. In traditional applications
a single lookup table is used, corresponding to the
appropriate sample size n. In our context, due to (a)
incomplete read coverage and (b) the fact that we
discard genotypes not meeting the read criteria given
earlier, we do not have full data. For example, if for the
jth two-locus pair, only Nj individuals meet either of the
two read criteria given above at both loci, we then use
the lookup table of size nj ¼ 2Nj to find the sample
probability for this diploid configuration. Since Nj varies
between locus pairs, the lookup table that we use will
also vary from pair to pair.

We now present a more formal description. Let mj

denote a two-locus genotype configuration obtained
from full sequence data over n chromosomes. Let pn(mj;
r) denote the probability of this configuration given r.
The composite likelihood of the full sample is defined as

LðrÞ ¼
Y

j

pnðmj ; rÞ: ð10Þ

In the present setting we let m̃j be the configuration of
the jth two-locus pair we observe from reads meeting the

read criteria. Suppose there are Nj individuals that meet
the read criteria for both loci of this locus pair. We then
use the tabulated two-locus sampling distribution of size
nj¼ 2Nj to look up the value of the likelihood of m̃j given
r, denoted by pnj

ðm̃j ; rÞ, which we then use as a surrogate
for pn(mj; r) in the above expression. Therefore, we
write the approximate product likelihood as

L̃ðrÞ ¼
Y

j

pnj
ðm̃j ; rÞ: ð11Þ

Finally, we compute the approximate product likeli-
hood L̃ðrÞ for r-values ranging from 0 to 120 and record
the MLE as the estimate of r for each sample.

In our simulation study we generate 1000 coalescent
samples of 25 diploid individuals with fixed u but
differing r, e.g., (100, 20), (100, 40), and (100, 60), for
a 100-kb region, and report results for estimating r in
Table 4. First, we note that the mean number of reads,
nr, covering a locus increases as the coverage X increases.
That is, for a threshold NT, the larger the coverage is, the
larger nr becomes on average, and the more two-locus
pairs are included in the approximate product-likeli-
hood calculation, which improves the estimates. On the
other hand, for large NTand relatively small X, we do not
obtain estimates of r because there are too few two-locus
pairs meeting the read criteria.

An important observation from Table 4 is that we tend
to significantly underestimate r when there is low cover-
age and a stringent threshold for NT, e.g., twofold coverage
with NT ¼ 5. We speculate that this is caused by the
increasing tendency to misinterpret an observed homo-
zygote as an actual homozygote as coverage decreases.
Clearly, if resequencing data are to be used to estimate
recombination rates, adequate coverage must be used.

TABLE 4

Estimating r for resequencing data where u ¼ 100 and NT ¼
number of reads required to use homozygous genotype calls

in the inference

X NT r0 ¼ 20 r0 ¼ 40 r0 ¼ 60

163 3 21.6 (7.4) 42.2 (12.1) 63.9 (16.3)
5 21.9 (7.6) 43.3 (12.9) 64.2 (16.7)
7 21.9 (7.6) 42.3 (12.5) 64.2 (16.7)

83 3 21.6 (7.6) 42.2 (12.1) 63.9 (16.6)
5 21.6 (7.3) 43.3 (12.9) 63.2 (15.9)
7 21.9 (7.5) 42.3 (12.5) 62.7 (16.3)

43 3 21.4 (7.6) 42.7 (12.9) 62.1 (15.8)
5 21.2 (7.3) 40.9 (11.4) 61.5 (15.5)
7 19.8 (6.3) 37.6 (10.8) 54.6 (14.6)

23 3 19.8 (6.6) 38.0 (11.1) 55.9 (14.3)
5 13.4 (7.7) 22.7 (18.5) 30.4 (30.5)
7 NA NA NA

We report mean (and RMSE) of the estimates over 1000
simulations. NA, not applicable due to too few two-locus pairs
meeting the read criteria.
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Robustness: So far we have assumed that there are no
sequencing errors in read data; in reality, of course,
sequencing errors do exist. We focus on two types of
errors in this article: traditional sequencing error and biased
amplification.

We first allow for traditional base-calling sequencing
errors. In Solexa data, for example, the error rate is
�1% per base per read. Motivated by the fact that a
given base will be sequenced more than once if it is
contained within more than one read, we provide a
simple heuristic procedure to deal with sequencing
errors. For the read data at any given locus, for any given
individual, we proceed as follows:

1. Treat the data as missing if the number of reads is less
than NT.

2. Find the most frequent and second most frequent
alleles, denoted by A and B; denote their counts by nA

and nB, respectively.
3. Set the genotype as AA if nB ¼ 0 or BB if nA ¼ 0; i.e.,

we observe only one type at this locus.
4. Set the genotype as AB if nA $ 2 and nB $ 2; i.e., we

require at least two observations of both alleles to call
it as a heterozygote (so, if nA ¼ 1 or nB ¼ 1, we treat
the data as missing for that individual).

The rationale for the last condition is that sequencing
errors at a homozygous locus will most often result in a
single instance of the erroneous call (assuming, as is
realistic, that error rates are relatively low). Therefore,
we exclude such occurrences from the analysis since this
pattern cannot be distinguished from a situation in
which one of two different alleles has been read once
only. Clearly, other schemes are possible.

In following this procedure the probability of making
an error in calling the genotype is a decreasing function
of NT, but, conversely, the number of called genotypes
will decrease as NT increases. For example, when the
error rate is 1% per base per read, and when using 13

coverage with NT¼ 3 (i.e., we require at least three reads
present to call a locus), we make calls for �32% of
homozygotes (with 100% accuracy), while calling�13%
of heterozygotes (with 54% accuracy). As we increase
the coverage and the threshold NT, we make better calls.
For example, with 43 coverage and NT ¼ 5, we make

calls for 81.2% heterozygotes, with 98.2% accuracy. The
results in Table 5 show that we still successfully estimate
u, but there is some impact on performance when
estimating r (Table 6) at low coverage levels.

We also note that the method for dealing with
sequencing errors inherent in the method of Hellmann

et al. (2008) is not applicable in this scenario. In that
article it was assumed that each sequencing error leads to
a unique new segregating site or SNP. Their method
works in the context of the data of Venter et al. (2001)
because of the extremely small error rate of�0.003% per
base per read, but fails to produce accurate estimates in
the present context (results not shown).

Note that, for convenience, we assume that sequenc-
ing errors are distributed uniformly along a read. In
fact, error rates typically increase toward the growing
end of each read and may be influenced by composition
of neighboring bases (e.g., in homopolymer tracts), but
we expect this to have little impact on the results
presented here.

We now consider a second type of error: biased
amplification. Here there are different success rates in
sequencing, depending on the actual type being se-
quenced. Clearly a range of scenarios is possible, but
here we illustrate how to adapt our approach in a
situation in which we are able sequence the major allele
with 100% success but fail to sequence a percentage of
minor alleles at each locus. We now recalculate the
probability that a segregating site is detected in this
context. We let pe denote the probability that a minor
allele is not sequenced and then recalculate q2(b) and q3

as follows:

(2̃): The probability q2e(b) that a segregating site with b
mutants in a sample of size n is detected by reads is

TABLE 5

Estimating u in the presence of sequencing errors where
r is fixed at 20 and NT ¼ 3

X u0 ¼ 100 u0 ¼ 400

163 99.8 (11.4) 404.2 (59.6)
83 99.6 (11.4) 403.6 (60.5)
43 104.8 (12.9) 406.5 (61.0)
23 103.2 (12.0) 415.6 (64.7)

We report the mean (and RMSE) of the estimates over 1000
simulations.

TABLE 6

Estimating r in the presence of sequencing errors

X NT r0 ¼ 20 r0 ¼ 40 r0 ¼ 60

163 3 21.2 (6.1) 41.6 (11.1) 62.4 (15.3)
5 21.2 (6.2) 41.8 (11.0) 62.9 (15.8)
7 21.1 (6.2) 41.9 (11.0) 62.9 (15.8)

83 3 21.4 (6.6) 41.2 (10.2) 61.5 (14.1)
5 19.9 (6.3) 39.3 (11.2) 58.9 (14.9)
7 20.3 (6.7) 39.6 (11.4) 57.7 (14.2)

43 3 20.7 (6.9) 41.9 (12.0) 60.6 (15.7)
5 19.9 (6.6) 39.5 (11.3) 58.2 (14.6)
7 18.8 (5.9) 35.0 (11.2) 51.4 (15.2)

23 3 19.0 (6.1) 37.0 (10.6) 53.6 (15.4)
5 12.5 (8.4) 22.8 (19.9) 27.6 (23.2)
7 NA NA NA

Here, u ¼ 100 and NT ¼ number of reads required to use
homozygous genotype calls in the inference. NA, not applica-
ble, due to there being too few two-locus pairs for which calls
are made. We report mean (and RMSE) of the estimates over
1000 simulations.
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q2eðbÞ ¼ ð1� ð1� q1Þn�bÞð1� ð1� ð1� peÞq1ÞbÞ; ð12Þ

for 1 , b , n, where q1 is defined as before.
(3̃): Under a constant population size coalescent model,

the probability q3e that a segregating site is detected
by reads is

q3e ¼
Xn�1

b¼1

qnbq2eðbÞ: ð13Þ

The estimate of u is given by ST=ðq3e

Pn�1
i¼1 1=iÞ, where

ST is the number of detected segregating sites. We
simulate 1000 data sets using the coalescent model to
assess performance of this estimator. Results for esti-
mating u are listed in Table 7, where we see that we
remain able to infer u from the adjusted formulas.
There is no straightforward way to adapt the procedure
for estimating r in the presence of biased amplification.
However, in Table 8 we show results obtained by
applying the method we used for ‘‘traditional’’ sequenc-
ing errors earlier in this article to this new context. We
see the same trends as in Table 4; i.e., if coverage is low
we tend to underestimate r, but as coverage increases,
the estimator begins to perform well. Note that, with

onefold coverage, performance is relatively poor when
estimating u or r since relatively few data meet the
threshold NT (results not shown).

Inference with no reference genome: Thus far we
have assumed that there is a reference genome to which
all reads can be uniquely mapped. However, reference
genomes are not always available, e.g., in bacterial
genome resequencing projects. The common fragment
assembly programs such as Phrap (Ewing and Green

1998) work well on 500- to 700-bp reads produced by
Sanger sequencing, but their overlap-layout-consensus
approach becomes more difficult when applied to
shorter reads produced by next-generation sequencing
techniques. Chaisson et al. (2004) demonstrated that
while it is feasible to assemble short reads (of length
80–200 bp), it requires significantly higher coverage
($303).

Addressing the lack of a reference genome in diploid
data is a difficult problem, and it is not clear how one
should proceed. As a first step in that direction, we
demonstrate a simple but effective algorithm that is
usable in the context where individuals are haploid:

1. Assume R reads (length l bp) are obtained for each
of the haploid individuals.

2. Assume that we can merge adjacent reads into a
larger fragment if they share at least k bases. Do this
for each individual and call the resulting collections
of reads ‘‘islands.’’

3. Examine the set of islands across all individuals and
create ‘‘superislands’’ by joining islands that overlap
by at least k bases.

This algorithm results in a set of superislands. The
relative ordering of the superislands is unknown. We now
present results for inferring the mutation and recombi-
nation parameters on the basis of the superislands. We
show results for a context in which there are no
sequencing errors in the reads. (Sequencing errors can
be dealt with using the heuristic procedures employed
earlier.) We explore a range of different values for k.

In Table 9 we list the estimates of u and r, respectively,
from simulated data. For each combination of generat-
ing values (u, r), we simulate 1000 coalescent samples of

TABLE 7

Estimating u in the presence of biased amplification

X pe ¼ 0.0 pe ¼ 0.01 pe ¼ 0.05 pe ¼ 0.1 pe ¼ 0.15

163 100.1 (14.4) 100.0 (14.7) 101.8 (15.2) 102.4 (15.1) 102.6 (15.6)
83 100.1 (14.4) 100.1 (15.4) 101.9 (15.5) 102.3 (15.4) 103.0 (15.9)
43 100.2 (14.9) 101.5 (15.6) 102.8 (16.5) 100.6 (15.8) 103.7 (15.9)
23 99.6 (15.7) 103.7 (16.3) 105.1 (16.7) 105.6 (16.5) 107.3 (18.7)

Here we set u0 (the generating value of u)¼ 100 and use r0¼ 20. pe is the probability that a minor allele is not
sequenced. We report the mean (and RMSE) of the estimates over 1000 simulations.

TABLE 8

Estimating r in the presence of biased amplification

X NT pe ¼ 0.01 pe ¼ 0.05 pe ¼ 0.1 pe ¼ 0.15

163 3 21.7 (7.8) 21.9 (7.8) 21.8 (7.6) 21.7 (7.5)
5 21.9 (7.6) 21.9 (7.7) 21.7 (7.5) 21.6 (7.5)

83 3 21.8 (7.6) 22.4 (8.2) 20.9 (7.6) 21.2 (7.3)
5 21.7 (7.7) 22.1 (7.6) 22.1 (7.8) 21.1 (7.2)

43 3 21.5 (7.7) 21.6 (7.5) 22.0 (7.8) 21.1 (7.7)
5 21.0 (7.4) 20.5 (7.1) 21.0 (7.5) 20.5 (7.2)

23 3 19.5 (6.7) 20.1 (6.9) 19.6 (6.6) 19.5 (6.5)
5 13.4 (7.8) 12.7 (8.22) 12.5 (8.28) 12.1 (8.8)

Here we set the generating values, u0 ¼ 100 and r0 ¼ 20. NT

is the number of reads required to use homozygous genotype
calls in the inference and pe is the probability that a minor
allele is not sequenced. We report mean (and RMSE) of
the estimates over 1000 simulations.
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50 haploid individuals over a 100-kb region and gener-
ate reads according to a Poisson process, as before, with
intensity specified by the coverage X for each chromo-
some. We then construct superislands. For both analyses
we consider only the SNPs detected by reads in the
superislands. When estimating r, we include only the
covered pairs for which both loci fall within the same
superisland (since only for such pairs is the distance
between them known). We then use composite likeli-
hood as before and report the maximum-likelihood
estimate (MLE). We present mean and RMSE of the
estimates from the 1000 samples. Results for u are gen-
erated from data simulated with u0 ¼ 100 and r0 ¼ 20.
Results for r use data simulated with u0¼ 20 and r0¼ 20,
40 and 60 (per column headings).

As we can see from Table 9, in general we obtain good
results for estimating both u and r. When estimating r

we lose some efficiency when coverage is low and large
overlap is required for alignment (last row of Table 9).
This is because, in such a case, the number of superis-
lands becomes very large, with each being of relatively
short length. For example, for data corresponding to
the last row of Table 9, there are an average of �250
superislands with a mean length �440 bp in the 100-kb
region for each data set (see Figure 3). Consequently
there are far fewer SNPs within each superisland, the
number of covered pairs becomes much lower, and
those pairs will be relatively close together. This in-
creases the variance of our estimates of r, and the
asymmetry of those errors at low r-values leads to an
apparent upward bias in the final MLE.

Note that the total length of the combined superis-
lands, G̃, will often be longer than the length of the
region from which they were generated, G. This is
because if two superislands (A and B, say) overlap by
fewer base pairs than are required to align them, they
are not combined to form a single superisland. Thus the
region of overlap between the two is considered twice in
the analysis: once for superisland A and once for
superisland B. For example, with X ¼ 0.5, l ¼ 50, and
k ¼ 40, the total length of superislands is, on average
G̃ ¼ 110 kb. Because of this, the estimate we obtain for u

is what would be appropriate for a region of length G̃.
Consequently, we report a ‘‘corrected’’ u-estimate that
multiplies the original estimate by a factor of G=G̃.

DISCUSSION

Our model and analysis show how read data from the
Solexa (and similar) systems can be used to estimate
mutation and recombination parameters. Inference
accuracy increases as coverage increases, but 23 cover-
age provides good estimates for inferring mutation rate,
while 43 coverage is sufficient for recombination rate.
One of the primary advantages of sequencing by
synthesis is that it is (in principle) fast and economic,
and it is therefore relatively easy to increase coverage to
whatever level is necessary to attain the desired
accuracy.

In this article we have presented results for the Solexa
system (with an assumed read length of 36 bp).
However, our methods generalize naturally to longer
read lengths and to the 454 and polony methods, since

TABLE 9

Estimating u and r in the absence of a reference genome

X l k u0 ¼ 100 r0 ¼ 20 r0 ¼ 40 r0 ¼ 60

13 30 20 100.5 (16.7) 21.3 (7.5) 42.2 (11.4) 63.2 (15.7)
13 50 40 100.3 (16.3) 21.5 (7.7) 42.2 (13.0) 61.8 (15.1)
0.53 30 20 99.3 (18.0) 22.2 (11.1) 44.2 (16.1) 62.8 (19.2)
0.53 50 40 101.2 (18.2) 32.8 (34.9) 47.7 (34.3) 61.5 (30.9)

We report the mean (and RMSE) of the estimates over 1000
simulations.

Figure 3.—Histograms of the number of SNPs detected
within superislands for (a) X ¼ 0.53 and l ¼ 50 and (b) X ¼
0.53 and l ¼ 30.
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our theoretical results depend only on the expected
coverage X. With respect to 454 technology, we simply
have to change the read length to be 200 bp, say, rather
than the 36 bp used here.

For polony data, the situation is slightly less clear since
reads now occur in pairs (one read at each end of each
fragment). It has been experimentally determined that
the distance between each pair of reads is reasonably
modeled by a Gaussian distribution with a mean of�950
bp and standard deviation of �97 bp (Shendure et al.
2005b). The theoretical results we have presented here
still apply in this case.

It is also of interest to explore our ability to estimate
decay of linkage disequilibrium (LD) using resequenc-
ing data. Recall that, for each pair of SNPs, the number
of haplotypes that are covered (i.e., have data) at both
SNPs will be less than or equal to the total number of
haplotypes. In particular, the number of covered SNP
pairs will vary from pair to pair. This leads to an
interesting phenomenon, which we illustrate in the
context of haploid data. In Figure 4a, we plot the decay
of LD, measured in terms of r2, for differing levels of
coverage. The r2 estimates are based on averages over
1000 simulations. We see that the estimated r2 decreases
as distance increases, as it should, but also increases as
coverage decreases. This is a simple consequence of the
known tendency of r2 to be overestimated for small
sample sizes (Terwilliger and Hiekkalinna 2006).
For reference, Figure 4a also shows the decay of r2 when
calculated from the full SNP data using samples of 30
and 50 chromosomes. One way of avoiding the observed
bias is to condition on having a reasonably large number
of covered chromosomes for each pair of loci. As an
example of this, in Figure 4b we show results in which we
include only pairs of loci for which have at least 30
covered chromosomes. We see that the bias now largely
disappears. The results for X ¼ 0.253 are not shown
because there are no two-locus pairs that meet the
conditioning criteria in this case.

Throughout this article we have assumed that reads
are randomly distributed and that read locations are
independent across chromosomes. Since fragments are
created by physical shearing processes, this assumption
appears to be a reasonable approximation. However,
there is evidence suggesting that in short-read rese-
quencing data the distribution of the number of reads
covering a base pair depends on the location of that base
pair. The effects of this lack of homogeneity, thought to
be due to underlying variation in GC content across the
genome, can be modeled in a straightforward way using
nonhomogeneous Poisson processes, in which the rate
of the Poisson process at a given location will reflect the
local GC content, for example. We also note that since
isochores, regions of relatively constant GC content, are
�300 kb long (Constantini et al. 2006), then if we are
considering regions of the order of 100 kb (say), as in
the examples in this article, an assumption of homoge-

neity is more reasonable. It is also likely that the
locations of reads are correlated across fragments in
the sequencing library. We have shown in other work
( Jiang et al. 2006) that procedures such as those used
here continue to work in the context of single-feature
polymorphism (SFP) data, in which the positions of SFPs
are also highly correlated across fragmentations of a
given chromosome (theoretical results will change, of
course). One might also consider Poisson processes of
different rates for different regions or allow the prob-
ability that a read is sequenced to depend on the local
GC content.

Our method for estimating recombination rate is
admittedly somewhat ad hoc. This approach represents
an attempt to finesse the principal difficulty in using

Figure 4.—LD decay of r2 based on SNPs observed in a sam-
ple of 50 chromosomes, presented as a function of coverage
in a 100-kb region. (a) Plot of the r2 estimates obtained from
all reads; (b) plot of those estimates when we condition on the
number of covered chromosomes being at least 30. ‘‘SNP
(50)’’ presents results when using full SNP data and ‘‘SNP
(30)’’ is the same as SNP (50) but using only a subset of 30
chromosomes from the sample.
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resequencing data to estimate recombination rates: the
fact that while, under reasonable assumptions, reads
can be mapped to a genomic location within an in-
dividual, it is, at least under current incarnations of the
technologies, not known which copy of the chromo-
some has been read. Our method relies upon use of a
threshold NT, and we show performance under a range
of values for NT. It is worth noting that in other
scenarios, such as varying recombination rates, say,
performance as a function of NT may vary. However,
we note that, while we demonstrated results for estimat-
ing recombination rate using the composite-likelihood
estimator of Hudson in this article, other methods, for
example LDHat (McVean et al. 2004), might also be
usefully adapted to the present context by using a
similar threshold scheme and might improve robust-
ness to variation in recombination rates.

In summary, resequencing data provide an exciting,
economically efficient way of generating large quanti-
ties of sequence data. Such data will typically result in a
level of coverage that varies from locus to locus. In this
article we have shown that this complication can be
dealt with in a reasonably simple way, allowing for
successful estimation of evolutionary parameters from
such data.
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APPENDIX: DERIVATIONS

We now derive the results of Equations 1–4. First
consider the probability that a random point in the
genome is covered by reads or the expected fraction of
the genome is covered by reads. We assume the reads
occur on the real line (�‘, ‘) according to a Poisson
process with rate l. The region of interest corresponds
to the interval (0, G) in base pairs. The probability that a
point x is not covered by reads of length l is the
probability that no events occur in the interval (x � l,
x), which is e�ll. The expected number of reads in (0, G)
is Gl, covering an average of Gll bp. The coverage per
base is therefore X¼ Gll/G¼ ll. To achieve a coverage
of X we choose l¼ X/l. The probability that a base is not
covered is therefore

q1 ¼ 1� e�ll ¼ 1� e�X :

With imperfect coverage of the region, we do not have
full sequence information for the entire chromosome.
However, we can still detect segregating sites with
sequenced reads, unless either the site is entirely
unsequenced or we see only ancestral (or mutant)
alleles at that segregating site. Suppose there are b
copies of the mutant allele at a segregating site of
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interest. The probability that this segregating site is
detected is the product of the probability of reading at
least one of the b mutant and at least one of the (n � b)
ancestral alleles. This gives formula (2). To find the
probability that a segregating site is detected by reads
without conditioning on b, we average over the proba-
bility qnb of having b mutants in a sample of n
chromosomes given in Griffiths and Tavaré (1998)
for coalescent samples with constant population size.

To derive the expected number of segregating sites
detected by reads, we use indicator functions I such that
Ii ¼ 1 if the ith segregating site is detected by reads;
otherwise Ii ¼ 0. Note that ST ¼

PS
i¼1 Ii , where S is the

total number of segregating sites in the sample. Condi-
tioning on S ¼ s, we have

E½ST j S ¼ s� ¼ E½
Xs

i¼1

Ii j S ¼ s� ¼
Xs

i¼1

E½Ii �;

since Ii is independent of S. The distribution of the
Bernoulli random variable, Ii, is determined by P(Ii¼ 1 j
b) ¼ q2(b), where b is the number of mutants at the ith
segregating site. Hence

E½Ii � ¼ E½E½Ii j b�� ¼ E½q2ðbÞ� ¼ q3:

Thus we have

E½ST j S ¼ s� ¼
Xs

i¼1

q3 ¼ q3s;

so that E[ST] ¼ q3E[S].
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CORRIGENDUM

Corrigendum

In the article by R. Jiang, S. Tavaré, and P. Marjoram
(GENETICS 181: 187–197) entitled “Population Genetic Infer-
ence from Resequencing Data,” the description of methods for
estimating population mutation and recombination rates from
next-generation sequencing data contains an error in the way
data were generated when genotyping error was present (Fig-
ures 5 and 6 in the article). This error, when corrected, greatly
reduces the performance of our methods. The performance on
the other simulated and real data described in the article
remains unaffected by the error.

We offer a corrected method that alters the way in which
genotypes are called. We continue to use a threshold NT that
determines whether data are called as missing for each in-
dividual at each base, but, instead of using a threshold that is
independent of the observed coverage, we use a probabilistic
threshold defined in terms of P(C, e), the probability of pro-
ducing the observed data if the underlying genotype is homo-
zygous, given C, the number of reads, and an assumed error
rate e for those reads (measured per site, per read, and de-
fined as in the article; see Robustness in Results section). For
computational convenience, we assume that if I is homozy-
gous at position b, the allele will be the most commonly
observed type in the reads covering b. Denoting this type
by A, and assuming that we observe nA reads at which we
see type A, and nB # nA reads at which we see type B, we

define PðC; eÞ 5
� C
nB

�
ð12eÞnA enB . We then call individual I as

a heterozygote if P(C, e) , P for some fixed threshold P;
otherwise, we call it homozygous AA. Such a threshold
model is more robust to varying coverage across differ-
ent individuals and/or different nucleotide positions.
However, since small thresholds cannot be reached for

low coverage levels, we treat the data as missing if we do
not observe at least Pm reads for I at b.

Figure 1 of this Corrigendum shows that this revised method
works in contexts analogous to those of Tables 5 and 6 in the
article. We simulated sequence read data sets of 100 kb, as-
suming that errors occur at a rate of 1% per nucleotide, per
read. We simulated 100 such data sets for samples of 25 dip-
loid individuals, conditioning on total expected coverage. (For
further details of the simulation, see the article.)

Here, data were simulated using a mutation rate of u ¼ 100
for the entire region. For estimation of mutation rates, we
show results for three coverage levels (4·, 8·, and 16·)
and for three thresholds (P ¼ 1027, 1026, and 1025). For
estimation of recombination rates, we show results for two
coverage levels—16· (Figure 1, middle) and 8· (Figure 1,
bottom)—at all combinations of two thresholds (P ¼ 1027,
1026) and for two recombination rates under which data
were generated (r ¼ 20 or r ¼ 40). The method performs
well for estimation of mutation rate, provided that the prob-
ability threshold P is appropriately chosen (P ¼ 1026 or
1027), but performs poorly if the threshold is not strict
enough (P ¼ 1025). Performance is also good for estimation
of recombination rate provided that genotypes can be inferred
with reasonable accuracy, as is the case at 16· coverage, but
performance erodes as the coverage level decreases.
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Figure 1 Estimation of muta-
tion rate (top) and recombina-
tion rate (middle and bottom).
The y-axis shows the mean of
estimated u- or r-values across
100 data sets. The x-axis shows
values of X/Pm, where X is the
expected coverage per individ-
ual for the region, and Pm is
a threshold such that the geno-
type is called as “missing” for
any given individual at any given
nucleotide position if fewer than
Pm reads are observed.
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