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BACKGROUND & AIMS: Esophageal adenocarcinomas (EACs)
are heterogeneous and often preceded by Barrett’s esophagus
(BE). Many genomic changes have been associated with
development of BE and EAC, but little is known about epige-
netic alterations. We performed epigenetic analyses of BE and
EAC tissues and combined these data with transcriptome and
genomic data to identify mechanisms that control gene
expression and genome integrity.METHODS: In a retrospective
cohort study, we collected tissue samples and clinical data from
150 BE and 285 EAC cases from the Oesophageal Cancer
Classification and Molecular Stratification consortium in the
United Kingdom. We analyzed methylation profiles of all BE
and EAC tissues and assigned them to subgroups using non-
negative matrix factorization with k-means clustering. Data
from whole-genome sequencing and transcriptome studies
were then incorporated; we performed integrative methylation
and RNA-sequencing analyses to identify genes that were
suppressed with increased methylation in promoter regions.
Levels of different immune cell types were computed using
single-sample gene set enrichment methods. We derived 8
organoids from 8 EAC tissues and tested their sensitivity to
different drugs. RESULTS: BE and EAC samples shared genome-
wide methylation features, compared with normal tissues
(esophageal, gastric, and duodenum; controls) from the same
patients and grouped into 4 subtypes. Subtype 1 was character-
ized by DNA hypermethylation with a high mutation burden and
multiple mutations in genes in cell cycle and receptor tyrosine
signaling pathways. Subtype 2 was characterized by a gene
expression pattern associated with metabolic processes (ATP
synthesis and fatty acid oxidation) and lack methylation at spe-
cific binding sites for transcription factors; 83% of samples of this
subtype were BE and 17% were EAC. The third subtype did not
have changes in methylation pattern, compared with control tis-
sue, but had a gene expression pattern that indicated immune cell
infiltration; this tumor type was associated with the shortest time
of patient survival. The fourth subtype was characterized by DNA
hypomethylation associated with structure rearrangements, copy
number alterations, with preferential amplification of CCNE1
(cells with this gene amplification have been reported to be
sensitive to CDK2 inhibitors). Organoids with reduced levels of
MGMT and CHFR expression were sensitive to temozolomide and
taxane drugs. CONCLUSIONS: In a comprehensive integrated
analysis of methylation, transcriptome, and genome profiles of
more than 400 BE and EAC tissues, along with clinical data, we
identified 4 subtypes that were associated with patient outcomes
and potential responses to therapy.
Keywords: prognostic factor; antitumor immune response;
response to treatment; gene repression.

sophageal cancer is the eighth most common cancer
1
Etype globally. Esophageal adenocarcinoma (EAC) is

the predominant subtype in the western world, particularly
among white men2; most patients present at an advanced
stage and despite some improvements in therapy, overall 5-
year survival rate is less than 15%.3 Epidemiologically, long-
term esophageal exposure to acid and bile reflux appear to
be the major risk factors resulting in aberrant differentia-
tion of the cells lining the lower esophagus to intestinal
metaplasia, otherwise known as Barrett’s esophagus4 (BE).

Recent genomic studies have shown that BE harbors a
number of point mutations even in cases that never prog-
ress to cancer5; however, it has a relatively stable genome in
terms of copy number alterations and structural variants
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WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

Esophageal adenocarcinomas (EAC) are heterogeneous
and often preceded by Barrett’s esophagus (BE). There
is information on transcriptomes and genomes of these
tissues, but these data have not been integrated with
epigenome data.

NEW FINDINGS

In an integrated epigenome, genome, and transcriptome
analysis of methylation patterns of more than 400 BE
and EAC tissue samples, the authors identified 4
subtypes, associated with patient outcomes and
potential responses to therapy.

LIMITATIONS

This was a retrospective analysis of tissue samples and
patient data. Prospective studies are needed.

IMPACT

Analyses of genome, transcriptome, and epigenome
features of BE and EAC samples could increase our
understanding of pathways of development and identify
therapeutic targets and prognostic factors.

May 2020 Methylation-based Subtypes in BE and EAC 1683

BA
SI
C
AN

D
TR

AN
SL
AT

IO
NA

L
AT
(SVs).6,7 As BE progresses to EAC, there is loss of p53
accompanied by an increasingly unstable genome, although
the genetic trigger for disease progression has not been
established.5,8 DNA methylation is one of the key epigenetic
mechanisms for regulating gene expression and maintaining
genome stability.9 In a number of different cancer types, it
has been shown that hypermethylation at CpG islands
(CpGi), including promoter regions, results in gene silencing
of tumor suppressor genes, whereas regions undergoing
hypomethylation are associated with increased expression
of oncogenes and genome instability.10

In EAC, 2 studies have demonstrated marked variation in
the degree of methylation at CpGi, denoted CpGi methylator
phenotype (CIMP)-positive and -negative respectively.11,12

The Cancer Genome Atlas (TCGA) study has shown that
methylation profiles of esophageal squamous cell carcinoma
and EAC are distinct, and the methylation profile of EAC
resembles that of intestinal cancers, such as gastric and
colon cancer.13 However, the detailed landscape of methyl-
ation changes across BE and EAC in relation to other
genome-wide mutational processes determined from whole-
genome sequencing (WGS) data remains to be determined.

Here we present methylation data integrated with
genomic and transcriptomic information for a large cohort
comprising more than 400 cases. The detailed clinical in-
formation has enabled us to examine the prognostic signif-
icance of the changes and we have used primary organoid
models to test the therapeutic relevance of prevalent
epigenetically regulated targets.

Methods
Cohort

In this retrospective cohort study, we assessed 150 BE and
285 EAC cases derived from the Biomarker and International
Cancer Genome Consortium study, for which samples are
collected through the UK-wide OCCAMS (Oesophageal Cancer
Classification and Molecular Stratification) consortium. The
procedures for obtaining the samples, quality control pro-
cesses, extractions, and WGS are as previously described.6

Strict pathology consensus review was observed for these
samples with a 70% cellularity requirement before inclusion.

Methylation Profiling and Data Analysis
Methylation profiles for all samples were generated using

the EPIC array platform. For all samples, DNA from fresh frozen
material was used. All raw data were processed using minfi.14

Samples with less than 96% capture efficiency were not
considered in analysis. We filtered probes if they were not
significantly detected from background, and are not in CpG
context, have known single nucleotide polymorphisms in the
surrounding locus, align to multiple locations in the genome, or
if they mapped to X and Y chromosomes. Processed methyl-
ation data were further normalized using BETA mixture model
BMIQ15 implemented in ChAMP package.16 Processed data
were then corrected for batch effects using limma.17

To identify methylation-dependent subgroups, we per-
formed non-negative matrix factorization (NMF)18 on 5000
most variable probes together with k-means clustering.
Through NMF we first estimated optimal ranks/metagenes by
executing it in combinations of 2 to 10 metagenes over 200
runs. This analysis identified 4 optimal metagenes assessed
through the cophenetic index. Scores from all 4 metagenes
were further subjected to k-means clustering for identifying the
optimal number of subtypes. Using silhouette width as a mea-
sure, 4 optimal subtypes were identified.

Differential analysis on individual probes was performed
using linear models implemented in limma.17 We selected as
differentially methylated only those probes with an absolute
difference in b greater than 0.3 and adjusted P value less than
.01. On the other hand, for identifying regions with differential
methylation, we used the bumphunter19 function implemented
in minfi. bumphunter was executed under the following
parameter settings: maxGap ¼ 500, B ¼ 1000, cutoff ¼ 0.2, and
minProbes ¼ 4.

WGS Data Analysis
WGS data were aligned using BWA-MEM program. We used

Strelka20 for calling somatic mutations, ASCAT21 for calling copy
number, and Manta22 for calling SVs under similar settings, as
previously described.6 Our methods were benchmarked against
various other available methods and have among the best
sensitivity and specificity for variant calling (International Can-
cer Genome Consortium benchmarking exercise23).

RNA-sequencing Data Analysis
Sequencing data were aligned using STAR aligner.24 Using

ENSEMBL gene annotation, counts of individual genes for all
samples were computed using GenomicAlignments25 package
from Bioconductor. Based on the counts, sequencing depth of in-
dividual samples, and gene annotation, Transcripts Per Kilobase
Million (TPM) for individual genes was computed across all sam-
ples. TPM was further corrected for batch effects using Combat.26

Differential analysis of each individual subtype over all
other subtypes was performed on counts using the edgeR27
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package. Pathway analysis was performed on ranked data from
differential analysis using Gene Set Enrichment Analysis.28 For
such analyses, we considered pathways annotated from Gene
Ontology, Reactome and other databases.

Enrichment for different immune cell types was computed
through gene set variant analysis.29 Markers for immune cell
types were retrieved from publication.30

Identifying Epigenetically Silenced Genes
For assessing which genes undergo transcriptional repres-

sion under the influence of gaining methylation in promoter
regions, we performed integrative methylation and RNA-
sequencing (RNA-seq) analysis. For this analysis, we consid-
ered samples for which both RNA-seq and methylation were
available. For each gene, we identified all probes located 1500
base pairs both up and downstream from the transcription start
site. We selectively removed all CpG sites that were methylated
in normal tissues (mean b-value >0.2). Methylation data was
then dichotomized using b-value �0.3 as a threshold (as used in
TCGA studies13,31) for positive DNA methylation, and discarded
CpG sites methylated in fewer than 10% of samples. For each
probe/gene pair, we then applied the following conditions: (1)
categorized samples as either methylated (b � 0.3) or unme-
thylated (b< 0.3); (2) compare expression in the methylated and
unmethylated groups using the Mann-Whitney test; and (3)
compute the correlation between methylation beta and expres-
sion TPM. We labeled each individual tumor sample as epige-
netically silenced for a specific probe/gene pair selected
previously if for the probes there is a difference in beta (>0.2)
between 2 groups, difference in distribution of expression of
(adjusted P < .05), and negative correlation between methyl-
ation and expression (r < �0.1, adjusted P < .05). Only genes
with multiple probes were considered for this analysis and a
sample is considered as epigenetically silenced if more than 30%
of probes for the corresponding gene was also labeled as
epigenetically silenced.

Transcription Factor Analysis
We used ELMER32 for understanding which transcription

factors are regulated on perturbations from regulatory regions.
Briefly, this method is based on initially identifying differentially
methylated distal probes and predicting enriched motifs across
them. Methylation levels from motif-associated probes are then
correlated with expression levels of transcription factor and
ranked for any significant associations. We performed supervised
analysis where each subtype was compared with others. On doing
so, we did not find significant results for most of the comparisons
except for one, that between Subtype 2 and Subtype 3.

Ethics
The study was registered (UKCRNID 8880), approved by the

Institutional Ethics Committees (REC 07/H0305/52 and 10/
H0305/1), and all subjects gave individual informed consent.

Data Availability
Methylation data is accessible from European Genome-

phenome Archive under accession numbers
EGAD00010001822, EGAD00010001838 and
EGAD00010001834.
Results
To capture comprehensive genome-wide methylation

changes, we used the Illumina MethylationEPIC BeadChip
(EPIC; Illumina Inc., San Diego, CA). EPIC measures
methylation over 850,000 CpG sites covering a wide
range of regulatory regions of the genome (https://emea.
illumina.com/products/by-type/microarray-kits/infinium-
methylation-epic.html). Compared with its older version
Illumina HumanMethylation450 BeadChip (450K; Illumina
Inc.), more than 90% of 450K probes are included in EPIC
along with increased coverage over distal regulatory ele-
ments.33 In total, 435 samples comprising 285 EAC and 150
BE cases along with 100 controls were assayed using the
EPIC array. We included control samples from neighboring
tissue types: squamous esophagus (n ¼ 39) and gastric
cardia (n ¼ 38), as well as duodenum (n ¼ 23) as a com-
parison for intestinal differentiation, which is a defining
feature of BE and also seen in well-differentiated EAC. Both
methylation and RNA-seq–specific analysis among the 3
control tissue types showed that each tissue harbors a
unique pattern of methylation (Supplementary Figure 1J)
and RNA expression (Supplementary Figure 1K). The gene
ontology of differentially expressed genes shows enrich-
ment of pathways specific to each individual tissue
(Supplementary Figure 1L). As expected, biological pro-
cesses related to epidermis development and keratin dif-
ferentiation are specifically enriched in squamous tissue.
Similarly, in gastric tissue we observe upregulation of hor-
mone and gastric acid secretion processes, whereas lipid-
associated metabolic processes are enriched in duodenum.
Biological processes such as digestion and ion transport are
enriched in both gastric and duodenum tissues, in keeping
with some common functional roles. For 59% of BE cases
and 62% of EAC cases, both WGS, and transcriptomic (RNA-
seq) data were available to enable an integrated analysis
(Supplementary Figure 1A and B).

The clinical features of the cohort generated from the UK-
wide OCCAMS consortium are in keeping with the expected
demographics for this disease (Supplementary Tables 1 and
2). Most cases are male (85% EAC, 83% BE) with a median
age of 67 years. The most common site of EAC cases is at the
gastro-esophageal junction and most patients included are
stage 2 or 3 (89%), in keeping with our recruitment in the
context of patients entering a curative pathway for whom
sample collection is most feasible. Among the premalignant
BE cases, 57% are nondysplastic and the remaining 43% are
dysplastic. Most of these are taken from patients undergoing
surveillance and represent their highest progression grade
following multiple years of follow-up. We also included 34
cases with BE adjacent to invasive EAC (see Supplementary
Table 2 and Supplementary Figure 2C–E for details).

Methylation Profiles of BE and EAC Reveal 4
Subtypes With Independent Replication

To elucidate differences between BE and EAC in com-
parison with controls, we carried out principal component
analysis on the 5000 most variable probes selected across
all samples. It is apparent that, in keeping with their

https://emea.illumina.com/products/by-type/microarray-kits/infinium-methylation-epic.html
https://emea.illumina.com/products/by-type/microarray-kits/infinium-methylation-epic.html
https://emea.illumina.com/products/by-type/microarray-kits/infinium-methylation-epic.html
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glandular phenotype, BE and EAC closely resemble gastric
cardia and duodenum but are highly distinct from normal
squamous esophagus (Supplementary Figure 1C). Hetero-
geneous BE profiles overlap more strongly with EAC than
with benign gastric and duodenal tissues.

In view of the variability in methylation observed in BE
and EAC (Supplementary Figure 1C) we used NMF-based
clustering to identify subtypes. Through this analysis, we
were able to identify 4 optimal metagenes (Supplementary
Figure 1D). Expression measures of these 4 metagenes
were further subjected to k-means clustering, which resul-
ted in 4 stable subtypes (Supplementary Figure 1E and F).
Figure 1A represents levels of methylation across 5000
most variables with samples grouped into 4 identified
subtypes. For comparative purposes, levels of methylation
from different control samples are also displayed on the left.
Interestingly, the BE cases are distributed across the 4
subgroups: 83.2% of the cases in subtype 2 are BE (n¼ 119;
BE ¼ 99, EAC ¼ 20) with 33.3% (n ¼ 99; BE ¼ 33, EAC ¼
66) in subtype 3, 13.6% in subtype 1 (n ¼ 125; BE ¼ 17,
EAC ¼ 108) and a single case in subtype 4 (n ¼ 92; BE ¼ 1,
EAC ¼ 91) (Figure 1).

From the heatmap (Figure 1A), we can observe that
each subtype has a unique methylation pattern; 30.6% of
the variable probes are localized within CpGi with the
remainder falling in areas designated as shore (2 kb
outside CpGi boundaries), shelf (2 kb outside shore), and
open sea. Similarly, in gene centric terms, 42.7% of the
most variable probes are localized in promoter regions. For
ease of reference, we have divided probes into 3 blocks: A,
B, and C. In block A, most probes overlap with CpGi (or-
ange) and are located in promoter regions (blue), whereas
most probes in block B and C fall within gene bodies and
intergenic regions. There is generally a gain in methylation
for block A probes in subtypes 1 and 2 when compared
with that of controls and the other subgroups. In contrast,
probes in block B are relatively hypomethylated in subtype
4 and probes from block C are unmethylated in subtype 2.
For EACs, except for differentiation status, we did not find
any significant association between subtypes and clinical
variables, such as tumor location, chemotherapy status,
differentiation status (Supplementary Figure 2A and B).
The distribution of BE cases is influenced by the degree of
dysplasia, with most of the nondysplastic BE falling into
subtypes 2 and 3 (Supplementary Figure 2C–E). From here
onward in some figures, subtype 1 is denoted as ST_1,
subtype 2 as ST_2, subtype 3 as ST_3, and subtype 4 as
ST_4.

To determine whether these subtypes are specific to this
cohort or a result of the methodology used, we examined
whether these findings could be replicated in an indepen-
dent cohort. To do this, we examined publicly available
methylation data from Australia, comprising 19 BE and 125
EAC cases along with 106 controls (normal esophagus and
gastric) profiled using the older 450K array platform.11

Remarkably, although the probe overlap between the 2
platforms was only 55.4% (2771 of the 5000 most variable
probes), we observed a similar number of metagenes and
again 4 subtypes emerged with very similar methylation
profiles to those seen in our cohort (Supplementary
Figure 2F–H).

Methylation Profiles in Relation to DNA Mutation
When integrating the WGS data, which were available for

most cases (n ¼ 391/435), Subtype 1 and 4 are observed to
have a significantly higher mutation burden compared with
subtypes 2 and 3 (Supplementary Figure 1H). The low
mutation burden in Subtype 2 is partly explained by the
high proportion of premalignant BE cases, but the difference
persists in EAC cases.5,8

We previously identified 77 genes that, based on their
“driver gene” status, are likely to play a critical role in the
pathogenesis of EAC.7 We mapped the 20 driver genes
mutated in at least 4% of EAC cases (Figure 1B,
Supplementary Figure 3). TP53 and CDKN2A are the 2 most
frequently altered genes across the cohort as expected,7

wherein TP53 is more preferentially mutated in subtype 1
(78%) and subtype 4 (78%), whereas in Subtype 2 and
subtype 3, 37% and 46%, are altered. Similarly, CDKN2A is
preferentially deleted in subtype 2, commensurate with the
high prevalence of BE (67%, P < .001). ERBB2 is amplified
in both subtype 1 (19%) and subtype 4 (29%). Some genetic
events appear to be subtype specific; for example, GATA4
(22%, P < .001), CCND1 (21%, P < .001), KCNQ3 (19%, P ¼
0.01), MYC (23%, P < .01), CDK6 (17%, P < .05), and KRAS
(18%, P < .05) are preferentially altered in subtype 1,
whereas CCNE1 (21%, P < .001) and APC (12%, P < .05)
are preferentially altered in subtype 4. Mapping these
events to their functional pathways, we found that compo-
nents of the receptor tyrosine kinase pathway (GATA4,
ERBB2, KRAS) and cell cycle (CCND1, CCNE1, MYC, CDK6)
are altered in subtypes 1 and 4. More specifically, all key
drivers of cell cycle aside from CCNE1 are preferentially
altered in subtype 1, whereas components of the Wnt
pathway (APC) are dysregulated in subtype 4. MDM2 is
amplified preferentially in subtype 3 (8%, P ¼ .0643).

Integrated Analysis of Methylation, Genomic and
Expression Features in Each Subgroup

Subtype 1. To characterize the highly mutated subtype
1 in more detail, we performed a differential analysis in
comparison with the controls both at an individual base
level and to broad regions for which probes clustered within
a distance of 500 base pairs. We found that the proportion
of hyper- and hypomethylated probes was similar. However,
hypomethylation events are spread throughout the genome,
whereas hypermethylation is profound in localized regions,
mainly promoters rich with CpGi (Figure 2A). Further, we
observed that 66% of hypermethylated probes and 1%
hypomethylated probes overlap with CpGi and most (59%)
occur in promoter regions (Figure 2B), suggesting a CIMP-
like phenotype.

Because the state of chromatin can further affect gene
regulation, we explored markers of closed and open chro-
matin. To do this, we took advantage of Histone modification
data available from ENCODE34,35 and the ROADMAP epi-
genomics consortium.36 Using methylation profiles, we
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Figure 1.Methylation-based BE/EAC subtypes. (A) Heatmap representing methylation levels from top 5000 most variable
CpGs across all cases categorized into 4 subtypes: subtypes 1, 2, 3, and 4, including 3 different controls (squamous, gastric,
duodenum) in extreme left along with annotation of CpG with different color code. (B) Mutation status of driver genes across all
cases in same order as displayed in (A).
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confirmed tissue-specific similarity for healthy controls be-
tween ENCODE and our dataset (Supplementary Figure 1M
and N). We then compared both repressive Histone 3
methylation at Lysine 27 (H327me3) and activation marks
with Histone 3 acetylation at Lysine 27 (H3K27ac) data
from squamous, gastric, and duodenum tissues available
from the ENCODE34,35 and ROADMAP epigenomics con-
sortium.36 This showed that for hypermethylation, 77% of
regions are marked by H3K27me3 and 23% by H3K27ac
(Figure 2C) across all tissues. Hence, the effects of DNA
methylation on gene regulation do not appear to be tissue
specific.

Transcriptome-based pathway analysis of subtype 1 in
comparison with all other subtypes shows a strong enrich-
ment for pathways related to DNA repair and cell cycle
(Figure 2D, Supplementary Table 6), which is also in line
with driver gene alterations (CCND1, CCNE1, MYC, CDK6)
described previously.

Subtype 2. Subtype 2 is dominated by BE cases with
hypermethylated CpGi. We were interested to assess
whether the hypermethylation changes in this subtype are
also seen in EAC, so we compared differentially hyper-
methylated probes in subtypes 1 and 2. This showed that
most (85%) hypermethylated probes are shared between
these subtypes for BE and EAC, suggesting that hyper-
methylation is an early event (Figure 1A and B).

Even though we observe strong similarities in hyper-
methylation patterns between BE and EAC, there is also a
prominent pattern of unmethylated block C probes
(Figure 1A) that are highly specific to BE cases in this
subgroup. We suspect that these are unique regions that
maintain tissue specificity in BE and in keeping with this,



Figure 2. Hypermethylation-driven subtype 1. (A) Total number of hyper- and hypomethylation events observed in subtype 1 at
individual CpG base level (left) and regions with clustered probes (right). (B) Annotation of both of hyper- and hypomethylation
events with respect to CpG island (left) and gene promoter (right). (C) Heatmap quantifying levels of H3K27me3 and H3K27ac
in all extend regions undergoing hypermethylation. (D) Dot plot with top scored pathways identified in subtype 1 when
compared with other subtypes through gene set enrichment analysis.
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the levels are comparable with gastric but not with squa-
mous or duodenum phenotypes (Figure 3C). It has been
observed through functional studies that different sets of
key master transcription factors, such as ELF3, GATA6,
KLF5, and TP63, through their self-regulatory networks can
play an important role in esophageal cancer progres-
sion.37,38 To predict the behavior of different transcription
factors, we took advantage of distal probes and observed
that key transcription factor motifs, including HNF4A/G,
FOXA1/2/3, GATA6, and CDX2, are significantly
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overrepresented in probes specific to distal regulatory re-
gions in subtype 2 (Figure 3D). Correlation between the
average DNA methylation levels at probes enriched for in-
dividual transcription factors and the relevant expression
level across all subtypes is shown in Supplementary
Figure 4. This demonstrates that the probes critical for
regulation of master transcription factors to maintain the BE
phenotype are unmethylated in subtype 2 with a gain in
methylation at these sites and reduced expression in EAC. At
the RNA level, there is selective enrichment of ATP syn-
thesis, fatty acid metabolism, and oxidation-related pro-
cesses in this subtype, especially in BE (Supplementary
Figure 5A, Supplementary Table 7).

Subtype 3. Compared with other subtypes, we did not
observe strong changes in methylation in subtype 3 how-
ever, from RNA-seq data, we observe that subtype 3 has a
strong enrichment of both innate and adaptive immune cell
types. Particularly, we notice strong positive enrichment of
cytotoxic cells, B cells, mast cells, and neutrophils along with
cancer-associated fibroblasts (CAFs) and at the same time
we also observe reduced levels of T-helper cells in this
subtype (Figure 4A). This contrasts with subtype 2, which
shows no enrichment for immune infiltration (Figure 4A).
Consistent with this, we observe that all pathways related to
immune regulation are strongly enriched (Figure 4B,
Supplementary Figure 5B, Supplementary Table 8). Gran-
zyme B (GZMB), a serine protease protein secreted by
cytotoxic and natural killer cells, is well known for its vital
role in immune defense mechanisms. Using GZMB as marker
of cytotoxic cells, we verified their abundance in multiple
cases from different subtypes through immunohistochem-
ical (IHC) staining and confirmed that the relative abun-
dance of GZMB is substantially higher in subtype 3 as
compared with other subtypes (Figure 4C, Supplementary
Figure 5D).

The high level of immune infiltration in subtype 3 also
suggests a proportionally lower tumor content (see
Supplementary Figure 1G), as computationally predicted
from WGS data. To ensure that cellularity is not influencing
our subtype classification, we repeated NMF-based clus-
tering on samples with computationally predicted cellularity
greater than 0.3. On doing so, we still retain similar sub-
types, suggesting cellularity has no impact on classification.

Subtype 4. Subtype 4 is dominated by hypo-
methylation events (Figure 5A), which in other studies may
be an indication of genome instability.39 Widespread
hypomethylation has been observed in both early and late
stages of many cancer types,40–44 including BE and
EAC,45,46 causing upregulation of certain coding and non-
coding regions. In our analysis, when compared with other
subtypes, subtype 4 shows a relatively high number of
copy number alterations, which are spread throughout
the genome (Figure 5B). For example, focal amplifications
of CCNE1, ERBB2, and Chr13 and 20 are common as
compared with other subtypes. Subtype 4 also has more
extrachromosomal-like events affecting ERBB2, character-
ized by more than 10 copies of the gene, whereas in
subtype 1, most events are low-level amplifications
(Figure 5C). This is consistent with our previous finding
that these extrachromosomal-like events are strongly
associated with chromosomal rearrangements.7 When
quantifying the total number of SVs, subtype 4 was found
to have significantly more SVs as compared with other
subtypes (Supplementary Figure 1I). On a case-by-case
basis, patients in group 4 with low levels of methylation
harbor a high level of SVs (Figure 5D), in keeping with the
idea that methylation levels may be important for main-
taining genome stability.

When considering the prognosis of EAC cases according
to their methylation profiles (BE cases were removed for
this analysis), there are differences in overall survival rates
among the subgroups (Figure 5E). The small number of EAC
cases in subtype 2, which cluster with the BE cases, had the
best survival. Surprisingly, subtype 3, which has an immune
activation phenotype, a lower mutation burden, and fewer
oncogenic drivers, has poor survival compared with patients
in other subtypes.
Epigenetically Silenced Genes and Relevance to
Therapy

To understand which genes undergo transcriptional
repression in association with methylation change, we per-
formed an integrative methylation and transcriptomic
analysis. Of the 237 genes with significantly lower expres-
sion in relation to increased methylation (Supplementary
Table 3), few genes seem to be affected globally across all
subtypes, with most silenced genes being more specific to
subtypes 1 and 2 (Figure 6A).

Gene ontology and pathway analysis of silenced genes
showed enrichment for biological processes related to
transcription and its regulation, along with pathways
related to cell cycle (CCND2, RDX, UBE2E2), kinase
signaling, stem cell pluripotency, nucleosome assembly, cell
adhesion, and wnt/b-catenin signaling pathway, which has
been shown to play a role in the neoplastic transformation
of BE47 (Supplementary Figure 6A and B, Supplementary
Tables 4 and 5). We also observe that a few immune regu-
lators (BLNK, CD40, VAV3, IRS2) are also affected by
methylation.

Previously we tested different sets of drugs in both EAC
cell lines and primary derived organoids and have shown
that their response correlates with the specific driver gene
alterations.7,48 In view of this, we were interested to identify
methylation-based drivers and predict their response to
known drugs. Previous work has shown that the MGMT
gene, a key regulator in DNA repair, is methylated in nearly
50% of glioblastoma cases, and these patients benefited
from temozolomide chemotherapy more than patients with
an unmethylated MGMT promoter.49 In our cohort, MGMT is
strongly regulated by a gain of methylation in promoter
regions, affecting 32% of cases (Figure 6B, Supplementary
Figure 6C). To examine responses to temozolomide in
EAC, we took advantage of organoids generated from
primary tumors from this cohort.48 High sensitivity to
temozolomide was observed in organoids showing low



Figure 3. BE-specific subtype 2. (A) Venn diagram showing level of common probes undergoing hypermethylation between
subtypes 1 and 2. (B) Correlation plot comparing median level of methylation from all probes undergoing hypermethylation in
subtype 1 and 2. (C) Boxplot comparing median level of methylation across 4 different subtypes, including controls for all
probes from block C from Figure 1A (P value: *< .05, **< .01, ***< .001). (D) Plot shows odds ratio with 95% confidence interval
for set of transcription factors motifs enriched in subtype 2. Key transcription factors required for maintaining BE phenotypes
are highlighted in red.
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expression of MGMT at both RNA and protein levels, such as
CAM277, in contrast, organoids with stable MGMT expres-
sion showing resistance, for example in CAM408 (Figure 6D
and E, Supplementary Figure 6E).
Similarly, CHFR, a cell cycle check point inhibitor, is
methylated in many cancer types; in squamous cell carcinoma,
CHFR methylation sensitizes to taxane chemotherapy.50 In our
cohort, we observe CHFR to be altered in 18% of cases, most of



Figure 4. Immune-regulated subtype 3. (A) Boxplot displaying enrichment scores for different immune cell types computed
from bulk RNA-seq data across all 4 different subtypes. (B) Gene set enrichment plot for key immune-regulated pathways
identified on comparing subtype 3 with all other subtypes. (C) Immunohistochemistry staining for granzyme B on 3 different
chemo-treated cases representative of subtype 1, 3, and 4.
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which are preferentially affected in subtype 1 (Figure 6C,
Supplementary Figure 6D), and in organoid models, CHFR
expression levels correlate with a differential response to
docetaxel (Supplementary Figure 6D).

In our earlier driver gene analysis, we have shown that
more than 50% of EACs (n ¼ 551) are predicted to benefit
from CDK4/6 inhibitors, along with EZH2 and BET in-
hibitors in a smaller proportion of cases.7 In view of this
observation, we were interested to determine whether the
response rate to different inhibitors is also dependent on
their methylation profiles. We observe CDK4/6 inhibitors to
be effective in EAC, across all subtypes. In contrast, we also
observe CDK2 (P < .001) inhibitors to be more effective in
subtype 4 (Figure 6F). This selective response is due to
preferential amplification of CCNE1 in subtype 4.
Discussion
NMF-based clustering demonstrated that both BE and

EAC can be broadly classified into 4 subtypes each with a



Figure 5. Hypomethylation-driven subtype 4. (A) Total number of hyper- and hypomethylation events observed across all 4
subtypes. (B) Genome-wide copy number alteration profile for all cases within individual subtype. (C) Proportion of cases
harboring different forms of ERBB2 alternation across all 4 subtypes. (D) Correlation between SVs and median measure of
methylation from probes undergoing hypomethylation from subtype 4 across all samples from different subtypes. Circos plot
(on top and right) representing genome-wide SVs (deletions in red, duplication in light green, inversion in blue, and trans-
locations in gray) from individual case undergoing high and low levels of hypomethylation. (E) Kaplan-Meier curves for EACs
from 4 different subtypes.
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unique pattern of methylation, mutation (Figure 1), and
expression (Figure 2D, Supplementary Figure 5A–C).
Furthermore, these subtypes were shown to be
reproducible in an independent cohort from Australia,11

even though the data had been generated on a different
array platform.



Figure 6. Epigenetically silenced genes and clinical relevance. (A) List of genes that are preferentially silenced either in subtype
1 or subtype 2. (B) Correlation between methylation and expression for MGMT gene across all cases from 4 different subtypes.
(C) Same as (B) for CHFR gene. (D) Growth inhibition responses of 8 primary tumor–derived organoids and control gastric
organoid (NG088) drug response to temozolomide. (E) MGMT staining in low (CAM277) and stable (CAM408)-expressing
tumors and derived organoids (scale bar ¼ 100 mM). (F) Drug classes for which sensitivity is indicated by EAC driver genes with
data from the Cancer Biomarkers database.
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Subtype 1 is dominated by EAC and some BE cases that
show a gain in methylation in CpGi, which is representative
of a CIMP-like phenotype, with preferential amplification for
GATA4, CCND1, and signs of DNA repair. Subtype 2, with a
preponderance of BE cases, also shows a gain in CpGi
methylation like that of subtype 1 but with a unique pattern



Figure 7.Overview of different biological features unique to individual subtypes.
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of unmethylation. The transcriptomic profile of this subtype
is uniquely enriched for ATP synthesis, fatty acid meta-
bolism, and oxidation processes. Methylation levels in sub-
type 3 are unremarkable, but show a high-level presence of
both myeloid and lymphoid cell lineages. Subtype 4 is
characterized by hypomethylation and EAC cases harboring
a high degree of genome stability supported by a high
number of copy number alterations and SVs. Comprehensive
molecular and biological features unique to each subtype
identified through our analysis are presented in Figure 7.

We note that although most BE cases cluster together,
they are somewhat distributed among subtypes 1 and 3
with the more stable genomes. Of 108 cases in subtype 1,
17 cases are BE and detailed inspection revealed that 15 of
17 cases were dysplastic with high-grade dysplasia or
intramucosal carcinoma (Supplementary Figure 2C). On
the other hand, some EAC cases (n ¼ 20) cluster with the
BE Subtype 2. Most of these tumors (11/20) have adjacent
BE and are moderately differentiated (Supplementary
Figure 2A), in keeping with better prognosis. This is in
keeping with our previous observation that EAC with
adjacent BE has a better prognosis.51 In future, we would
like to compare and study metabolic changes underlying
such behavior.

In terms of prognosis, patients from subtype 3 with
infiltration of immune-related cells tend to show a poor
prognosis compared with patients in other subtypes. The
tumor microenvironment is a complex network of in-
teractions among tumor cells, immune cells, and stromal
cells. Depending on their composition, different immune
infiltrates are associated with good or poor prognosis. In
general, tumor-infiltrating lymphocytes comprising cyto-
toxic CD8 T cells, memory T cells and T-helper cells are
associated with a good prognosis, as is evident in many
cancer types, such as breast,52 ovary,53 and lung,54

whereas regulatory T cells, stromal cells, and immune
cells of myeloid lineages (such as macrophages, neutro-
phils, mast cells, and others) are indicators of poor
prognosis and can promote tumor progression.55,56 In
subtype 3, along with cytotoxic cells, we also notice a
strong presence of macrophages, neutrophils, and CAFs,
which could perhaps explain the poor prognosis of cases
in this subtype. It is also worth noting that subtype 3 has
a high prevalence of MDM2 amplification (8%), which is
associated with resistance to and hyperprogression on
immunotherapy.57

A recent study in EAC has shown that topoisomerase I
inhibitors are effective in tumors with high levels of
methylation.12 Irinotecan is a topoisomerase I inhibitor
chemotherapy that is currently used in EAC; however,
irinotecan treatment has a low monotherapy response
rate (w7%). This low response rate could potentially be
enhanced if therapy is targeted to methylated tumors. As
the TCGA demonstrates EAC to be very similar to CIN
gastric cancer, we propose that subtype 1 representative
of CIMP could possibly be sensitive to DNA methyl-
transferase and topoisomerase I inhibitors.

Through our integrated data analysis approach, we have
shown how different genes from critical pathways are
altered in EAC/BE. We also provide in vitro evidence from
organoid models showing how key regulators of DNA repair
(MGMT) and cell cycle (CHFR) can be targeted for effective
treatment. In an extension of our previous work,7 here we
have shown other potential inhibitors like CDK2 could be
preferentially effective toward subtype 4 cases. Taking all
this information together, these results provide wider scope
for better stratification and assignment of relevant targeted
therapeutics.

It is also worth noting that all observations made in this
study are derived from only the CpG sites present on the
EPIC array. This is a narrow representation of the whole
genome, and may be a limiting factor, as we cannot draw
conclusions or understand changes in other parts of the
genome and their influence in tumorigenesis. In future, it
would be worth studying methylation on a genome-wide
scale, perhaps though whole-genome bisulfite sequencing
approaches.

In summary, this study elucidates diversity in the
methylation landscape across BE and EAC and its influ-
ence on gene expression and genome integrity, suggest-
ing a role for DNA methylation alteration in EAC
carcinogenesis.

Supplementary Material
Note: To access the supplementary material accompanying
this article, visit the online version of Gastroenterology at
www.gastrojournal.org, and at https://doi.org/10.1053/j.
gastro.2020.01.044.
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Supplementary Methods

Gene Expression Profiling
Total RNA was extracted using All Prep DNA/RNA kit

from Qiagen and the quality was checked on an Agilent
2100 Bioanalyzer using the RNA 6000 nano kit (Agilent).
The Qubit high sensitivity RNA assay kit from Thermo
Fisher was used for quantification. Libraries were prepared
from 250ng RNA, using TruSeq Stranded Total RNA Library
Prep Gold (Ribo-zero) kit and ribosomal RNA (nuclear,
cytoplasmic and mitochondrial rRNA) was depleted,
whereby biotinylated probes selectively bind to ribosomal
RNA molecules forming probe-rRNA hybrids. These hybrids
were pulled down using magnetic beads and rRNA depleted
total RNA was reverse transcribed. The libraries were
prepared according to the Illumina protocol.1 Paired-end
75bp sequencing on HiSeq4000 generated the paired end
reads.

Histone Modification Profiling
We downloaded ChIP-seq data for H3K27me3 and

H3K27ac histone modifications in aligned form for esoph-
agus, gastric and duodenum tissues from ENCODE2,3/
ROADMAP4 consortium data portal. We quantified two
histone modifications across all normal tissues on extended
regions (5kb both up and downstream from centre) that
were gaining methylation in Subtype I as compared to
controls. The quantification shown in Figure 2 was gener-
ated using ngs.plot.5

Organoid culture and Drug treatment
The primary organoid cultures were derived from one

normal gastric case and eight EAC cases included in the
OCCAMS/ICGC sequencing study. Detailed organoid culture
and derivation method have been previously described.6

Regarding the drug treatment, the seeding density for
each line was optimised to ensure cell growth in the loga-
rithmic growth phase. Cells were seeded in complete me-
dium for 24 hours then treated with compounds at a 9-point
half-log serial dilutions for 6 days. Cell viability was
assessed using CellTiter-Glo (Promega) after drug incuba-
tion. The concentrations of a compound causing 50%
growth inhibition relative to the vehicle control (GI50) were
determined by nonlinear regression dose-response analysis
and the area under the curve (AUC) was calculated using
GraphPad Prism.

Granzyme B (GZMB) Immunohistochemistry
FFPE tissues are sectioned at 4um thickness, floated

onto charged glass slides and dried at 37oC overnight.
Deparaffinisation (69�C for 32min), antigen retrieval (pH8
with CC1), peroxidase inhibition (Discovery inhibitor/in-
hibitor CM) and indirect IHC are conducted with the auto-
mated Ventana Discovery Ultra platform and Leica Bond.
Primary antibody for Granzyme B from Abcam (EPR8260)
was used in this study.

Performance of primary antibodies is compared against
negative isotype controls. Mouse monoclonal antibodies are
ready-to-use (RTU) preparations manufactured by Roche.
Rabbit primary Ab negative control is produced by DAKO at
a concentration of 1500 uL/mL. This negative isotype is
diluted to match the concentration of the tested primary
antibody. For counterstaining and post-counterstaining,
haematoxylin and bluing reagent are consecutively applied
to the sections, and each is incubated for 16 minutes. Slides
are washed with reaction buffer after each incubation,
throughout the automated process.

Stained slides are dehydrated and automatically cover-
slipped using the Leica Autostainer ST020. They are digitally
scanned by Aperio Scanscope XT at a 20X resolution. Images
are annotated digitally using the HALO® TM digital image
analysis software v2.1.1637.11 (Indica Labs, Corrales, NM).
In total, IHC data for GZMB was available for 17 EAC cases.

MGMT Immunohistochemistry
Paraffin embedded sections of 3.5mm were used for

immunohistochemistry by a Bond Max autostainer accord-
ing to the manufacturer’s instruction (Leica Microsystems).
Primary antibodies MGMT (MT3.1, Merck, 1:100 dilution)
were optimized (incubation 30 mins) and applied with
controls.

Pathway Analysis
Gene Ontology and Pathway analysis of silenced gene

was performed using David7 and IPA (QIAGEN Inc., https://
www.qiagenbioinformatics.com/products/ingenuitypathway-
analysis).
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