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1. INTRODUCTION 

Robertson, 1978, addressed the interesting problem of ascertaining the distri- 
bution of the time to detection of a recessive homozygote in a finite population. 
He was motivated in part by breeding and artificial selection practices. The same 
problem arises in the context of evolutionary processes and medical genetics 
since it refers to the time of first appearance as a homozygote of a new crossover 
event or a mutant gene. 

The model investigated is as follows. Consider a finite population of N diploid 
individuals, comprising the two genotypes AA and Aa. Its composition changes 
over successive generations under the effects of random mating and finite sampling. 
Robertson studied the case of visible recessive homozygotes where the process of 
diploid formation continues as long as no recessive genotypes are formed, whereas 
if an au-gene does appear, the process terminates. Due to the finite population size 
it is possible for loss of the a-allele to occur prior to formation of a recessive 
homozygote even in populations starting with many heterozygous carriers. 

Under this framework, Robertson estimated the mean number of generations 
until the first visible recessive homozygote appears, using simulation techniques 
and matrix numerical methods. These times were calculated for a range of popula- 
tion sizes ( N ) ,  and on the basis of these results, he astutely suggested the order of 
magnitude of N* generations for the expected time to detection. 

The objective of this paper is to examine Robertson’s model by analytic means, 
and to study a number of variations. We will now indicate briefly several issues 
that will be considered. Some further extensions are indicated in the discussion. 
(1)  What is the role of the initial population composition? (2) What is the proba- 
bility that the detection of a homozygous au-genotype will occur before loss of the 
a-allele? (3) Evaluation of a number of functionals of the process, including the 
aggregate number of heterozygous carriers ever occurring in the population until 
detection of the first recessive homozygote. (4) The moments of the detection and 
loss times, and of the sojourn times of the process between two prescribed values 

It is also relevant to investigate two associated processes derived by appropriate 
conditionings. Specifically, the primary conditioned process that concerns us 

* Supported in part by NIH Grant 5ROl GM10452-17 and NSF Grant MCS79-24310. 

Y1 and Yz- 

o@l6-6723/81/2828-8290 $01.00 @ 1981 Cambridge University Press 
2-2 

C 



34 S. KARLIN AND S. TAVARE 
restricts attention to those realizations of the model ending in detection of a 
recessive homozygote. Another pertinent conditioning focuses attention only on 
those realizations leading to loss of the a-allele. The construction of conditioned 
processes occurs intrinsically in the study of transitions among mutant lines in 
population genetic theory (e.g. Robertson, 1960; Kimura, 1971 ; Ewens, 1979, 
p. 125). A new aspect in the present context is that the first conditioning event can 
happen from any population state. 

A specific functional of interest for the process conditioned on detection is to 
determine the distributional properties of the number of heterozygotes (carriers) 
at the time of detection. 

In  our analysis we employ the traditional method of diffusion approximation 
to the underlying discrete model. The novelty in the analysis is that the underlying 
discrete process has not only an absorbing state, but also a killing rate which 
depends on the population configuration. This killing rate corresponds to the event 
of detection of the homozygous recessive genotype. Such processes already occur 
in the population genetics literature, one example involving the determination of 
the probability that a recombinant type appears before fixation (Karlin, McGregor 
& Bodmer, 1966), another involving the formation of high order mutants (Karlin, 
1973). 

A classical result shows that when the population size N is moderately large 
with no selection, a new mutant occurring in the population will eventually be 
fixed with probability 1/2N, having mean time to fixation about 4N generations, 
e.g. Kimura, 1970. Robertson & Narain, 1971, found that if the recessive homo- 
zygote is lethal, the expected time until its elimination requires about ,/N genera- 
tions, a much shorter time frame. The same order of magnitude holds for the case 
in which there is strong selection against recessive homozygotes (Guess & Levikson, 
private communication). The approximating diffusions for both these models are 
of the usual kind described completely by the associated infinitesimal drift and 
variance parameters. For the present detection model, the outcome indicating the 
first appearance of a recessive kills the breeding line in which it occurs and the 
corresponding diffusion is now governed by infinitesimal drift and variance effects 
as usual, but also an infinitesimal killing rate. 

We would like to emphasize that the representation of the problem in terms of a 
diffusion process allows us to compute a wide variety of analytical results for the 
problem which are intractable (in closed form at least) for the discrete problem. 
Further, within the diffusion framework, the models are much simpler to general- 
ize and analyse, and therefore we are led more readily to a fuller description of the 
process of gene formation and detection. Some of these extensions are indicated in 
the summary. 

2. THE MODEL 

We consider a monoecious population of N diploid individuals, and a single locus 
at which there are two possible alleles, denoted A and a. As explained in the 
introduction, we are interested in the time to formation of the first recessive 
homozygote, aa. It is convenient to let X,& be the number of heterozygotes at 
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time n;  then, assuming we have not yet seen a recessive homozygote and that 
X ,  = i, the number of A-alleles at  time n is 2N - i, and the number of a-alleles is i. 

If we assume random mating in the population, then, under the usual Wright- 
Fisher finite population reproduction scheme, the next generation will comprise 
N - j A A ,  j - k Aa, and k m with probability 

N !  [i( i )]j-)(l -- 2L)2(N--i)( - i2 )1 
( N  - j)! ( j  - k)! k! N - 4N2 * 

Since any recessive homozygotes are detected instantly, it follows from (1)  that if 
X ,  = i, then X9L+1 = j with probability 

2(N-i) 

pij = (y)  [&(1-&)]’(1-&) , i, j = o , 1 ,  ..., N .  (2) 

A transition probability matrix such as that given in ( 2 )  is called sub-Markovian, 
because the transition probabilities no longer sum to unity. This follows because 
the process can be killed by the appearance of a recessive homozygote. 

In the discrete state space case, we can add on an extra state H ,  say, to transform 
the process into a normal transition probability matrix. The transition proba- 
bilities into the state H are given by 

N 
pfjy = 1 -  I: pij = 1 -  1-- , 0 < i < N .  (3) 

p f I H  = 1,  p H i  = 0, 0 < i < N .  (4) 

i = O  ( 
while 

Of course, state 0 is absorbing, since once the population comprises only AA- 
genotypes it remains so thereafter. 

What is the probability of never observing a recessive homozygote? This is just 
the probability of reaching state 0 before reaching state H ,  i.e. before the appear- 
ance of a recessive homozygote. In principle, this can be solved by finding the 
solutions (uo, ul, . . . , uN) to the system of equations 

under the boundary condition uo = 1. This system can be solved numerically for 
small values of N ,  but it seems difficult to get explicit results for the ui. Secondly, 
what is the mean time taken to observe a homozygous recessive, conditional on 
this event occurring? Or, what is similar, what is the mean time until the process 
stops, either by reaching the absorbing state 0 or the killing state H ?  For small 
values of N it  is possible to use standard theory and numerical methods to get 
solutions to these problems. Some results along these lines are given by Robertson 
(1978). 

In order to analyse this model further, we will resort to the method of diffusion 
approximation. This will enable us to determine the appropriate time-scale and 
state-space scale under which a recessive homozygote will be seen ‘instantly ’, 
‘never ’, or when the process can be modelled in a way that allows both possibilities. 



36 S. KARLIN AND S. TAVARE 

3. DIFFUSlON APPROXIMATIONS 
The analysis proceeds in the usual way, but with the added contingency of 

killing corresponding to the detection event. We have to scale the state space 
and time space to produce a limiting diffusion process. To this end, we define 
AX = Xn+l-Xn. Given that no recessive homozygote appeared in generation n, 
we have 

E(AXIXn = i) = jpij-i pi j  
N N 

5 - 0  5 - 0  
- $2 
2N = -+lower order terms, 

while 

and 
E((AX)21Xn = i) = i+lower order terms, (7) 

(8) 

We now need to find the correct time and state space scalings to compute the 
infinitesimal parameters of the associated diffusion process. 

By examination of (6)-( €9, we determine that the sequence of processes depend- 
ing on the parameter N (the population size) defined by rescaling time and the 
state variables in the form 

i 2  

4N Pr(kil1ed in time (n, n+ l ) lX,  = i) = -+lower order terms. 

will converge (as N + co) to a limiting diffusion process { Y(t ) ,  t 3 0} having state 
space [0, co) and continuous positive time parameter. The interpretation and 
identifications of the methodology are as follows. One unit of time, t = 1, for the 
process Y(m corresponds to (2N) i  generations of the original process {X,]. More- 
over, we are keeping track of fluctuations in heterozygote numbers to the order of 
N*. (The factor 24 that appears in (9) is for norational convenience later on.) The 
limiting diffusion Y ( t )  has infinitesimal parameters analogous to (6)-(8) given by 

(10) 

(11) 

(12) 

p(x) = 0 mean coefficient, 

@(x) = x variance coefficient, 
2 2  k(x )  = killing rate. 

Accordingly, for the approximating diffusion Y(t ) ,  we have 

E ( Y ( t + h ) -  Y ( t ) ( Y ( t )  = x) = o(h) 

E ( ( Y ( t + h ) -  Y(t))21Y(t) = 2) = xh+o(h) 
X8 

Pr( Y(t)  is killed during (t, t + h)(  Y(t)  = x) = h + o(h) 

(o(h) means terms of smaller order than h). 
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It is important to remark that the boundary point 0 is an exit (or absorbing) 
state for the process Y(t). This means that the approximating diffusion mirrors the 
beheviour of the underlying discrete process, where 0 is an absorbing state (reflect- 
ing the loss of the a-allele). 

We make a few important preliminary statements. Firstly, as can be established 
by examining (6)-(8), the scalings used to derive the diffusion approximation are 
unique. A demonstration of the uniqueness of this scaling is presented in the 
appendix so as not to interrupt this discussion. From this, we conclude that if 
X ,  = i < N* (i much smaller than N*),  then the A A  genotype is established 
‘instantly’, i.e. fixation is effectively the only possibility, while if i %N*, then 
detection of the aa-recessive homozygote occurs ‘instantly’, i.e. detection is 
effectively the only possibility. When X ,  = i is of the order i z N* then there is a 
positive probability of fixation of A A  or detection of the aa homozygote, and in 
this case, the time to detection will be of order N* generat,ions. 

4. A?XALYSIS OF THE PROCESS 

(i) The detection probability. Let us define u(z, t )  = Pr { Y process has not been 
killed by time tlY(0) = z}. From diffusion theory (e.g. Karlin & Taylor, 1980, 
ch. 15), u(x, t )  satisfies the differential equation 

with initial condition u(z, 0) = 1 for all z > 0 and boundary condition u(0, t )  = 1 
for all t > 0. It is clear that u(z, t )  is a decreasing function oft, and, since 

u(z, t )  2 0, 
the limit 

u(z) = lim u(x, t )  
t+m 

exists, and is equal to the probability that the process is never killed (that is, that a 
homozygous recessive is never detected). Since 0 is an absorbing attainable 
boundary, we see that u(z) must be the probability of fixation at  0, the probability 
that the population will comprise only A alleles. From ( l a ) ,  we find that &/at + 0 
as t --f co and hence u(z) satisfies the differential equation 

u”(z)-xu(x) = 0 (16) 

subject to the boundary conditions u(0) = 1, u(co) = 0. 
The equation (16) is known as Airy’s equation, and occurs in studies of radio 

waves and light spectra (Airy, 1838). There are two standard solutions of this 
equation, the so-called Airy functions of the first and second kind. These are 
explicitly represented in the form 
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and 

where I , ( .  ) is the modified Bessel function of order v. The behaviour of these 
functions is well studied, and has been tabulated (Miller, 1946). The function A ( x )  
strictly decreases from A(0)  < co to zero as x traverses 0 to co. 

The probability u(x) of AA-fixation is therefore given by 

Hence the probability of detection is given by 

As an example of the use of (19), we give in Table 1 some values of the detection 
probability in populations of size N starting with one heterozygote. These are 
computed by taking X, = 1 = x ( 2 N ) i  or x = (2A7)-4. The values of the Airy 
function are taken from Miller, 1946. 

Table 1. Probability of detection of a recessive homozygote starting from 
one a-allele in a population of size N .  This uses v ( x )  given in (19) 

N Diffusion Numerial* 
6 0.294 0.26 
10 0.261 0.23 
20 0.210 0.18 
60 0.166 0-14 
100 0.124 0.1 1 
600 0.073 0.07 

* Robertson, 1978, Table 1 based on the numerical solution of (6). 

For small values of x ,  we compute the approximation 

V(Z) w 0 . 7 2 9 0 ~ -  0*1667$, 

obtained by retaining the first three terms from the expansion of (19). This 
approximation agrees with those in Table 1 for N 2 50. 

As another example of the use of (19), we compute an approximation to the 
number X, of heterozygotes necessary in the initial generation to ensure that the 
detection probability is at  least 4. We require x such that 1 - A(x)/A(O) 2 4. We 
find that x 2 0.76, and so, converting back in terms of the original process, we 
need X, at  least 0.96 N i .  

(ii) The mean time to detection or loss. It is easy to check that the mean time M ( x )  
to detection or loss solves the differential equation 

X - M " ( x ) - - - ( x )  Xa = - 1 ,  
2 2 
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subject to the boundary conditions M ( 0 )  = 0, M(co) = 0. The required solution is 

d u + S n ( B ( x ) -  4 3 A ( x ) )  -du, (21 )  
A?? 

M ( z )  = 2nA(x)  /ow -22 j34u)  

where A(x)  and B ( x )  are given in ( 1 7 a )  and (17b) .  For small values of x ,  (21 )  shows 
that M ( z )  x Dx In 2, where D is a constant. From this we deduce that in the 
discrete model starting with 1 heterozygote, the order of magnitude of the time to 
loss or detection is In ( 2 N )  generations. This is of the same order as the time to loss 
or fixation in the classical pure random drift model (cf. Kimura, 1970). Even 
though killing is possible, the predominant outcome from an initial single hetero- 
zygote is loss of the a-allele, and this happens in about In ( 2 N )  generations. 

(iii) Aggregate number of heterozygote carriers. One interesting functional of the 
process is the mean number of heterozygotes produced in the evolution of the 
population before loss or detection of allele a. This function, denoted by H ( x ) ,  
gives one type of measure of the ‘genetic costs ’ of having a deleterious mutant in 
the population. If T is time to loss or detection of the a-allele, then 

H ( x )  = E( IoT Y(u)dul Y(0)  = x 

T 
which is the natural analog of the discrete measure E 

number of heterozygotes that appear before detection or loss. It follows that 

For small values of x we have H ( z )  x zH’(0) = x ( 2 n / 3 )  [B’(O) - J3A’ (0 ) ]  3 1.88s. 
To see what this implies for the discrete process, we note that H (  . ) is in units of d, 
and hence we approximate the discrete result by (2N)#H(  .). We see that if we 
start with one heterozygote ( x  = (2N)-*),  then the expected total number of 
heterozygotes subsequently appearing in the population is given approximately by 

1 

(iv) Other functiomls. The function 

H = 1-88 . - . (2N)8  = 2-37B*. 
(W* 

is commonly called the Green function of the diffusion process and possesses the 
following interpretation. If we require the expected time the heterozygote numbers 
hover between y 1  and y z  before detection or loss, the answer is given by 

We have used (23 )  implicitly in deriving (21 )  and (22 ) .  
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(v) Mean time to detection, conditioned t h t  detection occurs. The problem that 

most interested Robertson was the mean time M,(x)  for the process to end by 
detection, conditional on this event occurring. We find that 

M K ( x )  = 4 0 ) - 4 4  27rA(O) A(2)  f 2 B ( u )  0 -uJ3A(U) ( 1 - Z ) d U  

(The subscript K keeps in view the conditioning event of eventual detection.) For 
small values of z, M ~ ( z )  is approximately constant, from which we deduce the 
following. In populations of size N, the mean time to detection, conditional on 
this happening, is of order C N i  generations, where C is given by 

27r[B’(O)- ,/3A’(O)]A(O) 
- A’(O) 

The integral above can be evaluated explicitly using a limiting argument (based 
on the representation of Airy functions in &ms of Bessel functions) on the integral 
given in Gradshteyn & Ryzhik, 1965, p. 693, (4). This shows that the integral has 
value I’($)/2(3#) = 0.214650, and hence C = 2.090. This is in close agreement 
with the result found by Robertson. 

If we let M g  (x) be the l-th moment of the detection time, then for very small 
initial numbers of heterozygotes, we may approximate M g  (x) by C, = M$ (0), 
and hence in the discrete model, the Z-th moment of the (conditional) detection 
time is of order Nils 2*C, generations. 

(vi) Aggregate numbers of heterozygotes conditioned on detection. This is derived 
analogous to (iii). The result is 

Its evaluation for x small (we can take x = 0) is the constant value 

2nA(O) [B’(O)- J3A’(0)] (3 -w)  1 [A’(O)]’ = 1.12. 
- A’( 0) H K ( o )  

Therefore, in terms of the discrete process the average total number of hetero- 
zygotes appearing before detection, given detection occurs and starting from 1 
heterozygote, is approximately 

H A -  = 1*12(2N)f = 3.78iV3. 

The intuitive reason for the different order of magnitude between H and HK 
may be explained as follows. Starting from one heterozygote, the over-whelming 
outcome is loss (as opposed to detection), which occurs rapidly. Those paths which 
lead to detection have to build up a substantial number of heterozygotes to avoid 
loss, and so the total number that occur is much larger. 
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(vii) The maximum number of heterozygotes attained before detection conditioned on 
eventual detection. For the conditioned process, with certain detection, the dis- 
tribution of the maximum functional, i.e. the probability that from an initial state 
x the maximum exceeds y > x prior to detection is 

In  particular, starting from a single heterozygote the probability that the maximum 
exceeds y is approximately 

Q 

4 0 )  - 4 Y )  

Table 2. The probability of exceeding a level a(2N)) heterozygotes 
with one initial heterozygote conditioned on detection 

ir Probability 

0.1 
0.4 
0.7 
1.0 
1.3 
1.7 
2.0 
3-0 
3.5 
4.0 

0.998 
0-964 
0.890 
0.782 
0.652 
0.468 
0.343 
0.086 
0.037 
0.015 

(viii) The rate of approach to loss OT detection. In  order to assess the rate of ap- 
proach to loss or detection, it is of interest to compute the leading eigenvalues of 
the process; that is, we wish to find the eigenvalues {y,,} and corresponding 
eigenvectors {u,(x)} satisfying 

(26) xui(x)  - x ~ u , ( x )  = - 2ynu,(x), n = 1 ,  2, . . . , 

subject to u,(O) = 0, ( l / x )  u”,x) dx < 00. It appears to be difficult to solve (26) 

explicitly, but it is possible to extimate {y,} and {u,, (z)} using a numerical scheme 
(e.g. Rayleigh-Ritz method). The eigenvalue of particular interest in this context 
is pl, the smallest positive one. The rate of approach to loss or detection is then of 
the order e-”t. Using Rayleigh-Ritz, we obtained p1 = 1.070, the next two 
eigenvalues being y2 = 2.740, pus = 4.718. Of course, the same eigenvalues apply 
to the model conditioned on detection. 

To compare this to the discrete result, let y be the largest non-unit eigenvalue of 
the discrete chain specified in (2) and (3) .  Recalling that one unit of diffusion time 
corresponds to (2N)) generations in discrete time, we see that 

I o W  

e-Fi E p(w)), or ,LA E exp { -y1 (2~) -4} .  (27) 

In table (3) we compare the values of y computed from (27) with the matrix results 
computed by Robertson. 
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Table 3. Comparison of leading eigenvalue ,u of discrete process estimated by 
diffwion method (27) and matrix results of Robertson (Table 1 ; h = 1 -,u) 

2N Diffusion method Matrix method 
10 0 61 0.62 
20 0.67 0.68 
40 0.73 0.14 
100 0.79 0.80 
200 0.83 0.83 

1poo 0.90 0.90 

(ix) The number of carriers at detection. It can be shown that, given an initial 
value Y(0)  = x, and conditional on detection occurring, the probability that 
detection occurs in the interval (y, y+dy) is given by w,(y) dy, where 

We can use (28) to ascertain the most likely number of carriers in the population 
when detection occurs. We will restrict our attention to the case in which we start 
with a very small number of heterozygotes (that is, we may take x + 0 in (28)). In  
this case, we find that 

wo(y) = ~J37r4O)yA(Y), Y ’ 0. (29) 

The function wo(y) can be interpreted as a probability density function, with the 
interpretation that, for any interval I = (a, b), the probability that detection 
occurs in the interval I is given by 

1: wo(y) dy = 2.43 d ( 0 )  [A’@) -A’@)] .  

The density (29) has a maximum a t  the point yo satisfying the equation yA’(y) 
+ A(y) = 0. Numerical solution yields yo = 0.885. It follows that detection is most 
likely to occur a t  yo, which corresponds to a frequency of 0-885(2N)* = 1-12N* 
heterozygotes in the discrete model. 

6. DISCUSSION 
Robertson, 1978 addressed in an analytic formulation the important problem 

of estimating the mean time to first appearance of a recessive visible gene in a 
finite population starting with a single heterozygote. This problem has interest 
with respect to artificial selection practices, in evolutionary studies concerned with 
the elapsed time to observation of new mutant types and for medical intervention 
and counselling programmes. 

Robertson noted a number of examples in Drosophila of recessive visibles 
occurring in several selection lines, although only a few initial stocks are involved. 
Cases of rare genetic diseases exhibiting anomalous frequency estimates in certain 
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population groups are sufficiently documented, often attributed to founder 
effects (e.g. Tay Sachs, Nieman Pick, Gaucher’s syndrome), and are often only 
recognized several generations after the defective phenotype arose. 

An essential problem motivated by the foregoing considerations is to estimate 
the distributional properties of the time to detection of a newly arising mutant 
(visible only as a recessive homozygote) in a finite population. By simulation and 
numerical methods Robertson suggested the conclusion that the mean time to 
uncover the existence of such recessive genes emanating from one heterozygote 
carrier is of relatively low dependence on population size, of the order If*. (The 
occurrence of the gene more than once in the initial sample and the examination 
of more individuals than parents would undoubtedly reduce the times of detection.) 
The time scale N+ stands in sharp contrast to the classical result on the expected 
time of establishment of a new mutant gene conditioned on its fixation which is 
about 4N generations. Stimulated by the work of Robertson, we investigated 
analytical6 his model and a number of extensions with the aid of diffusion process 
approximations. We confirmed his finding that the correct time scaling involves 
N )  generations of the discrete process corresponding to unit time of the diffusion 
process, but then in this time scale, only fluctuations of heterozygote numbers of 
the order N )  are discernible. That is to say, if the number of initial heterozygotes 
X ,  is much less than N ) ,  then only AA-fixation results (virtually instantly) and 
when X ,  is much larger than N ) ,  then quick detection of an aa-homozygote 
happens. For X ,  of the order N Q  one of both outcomes (loss versus detection) 
results and each has positive probability depending on the initial heterozygote 
numbers X,. 

In seeking an incisive analysis of these models there are two processes of prime 
relevance : (1)  The realizations in the approximating diffusion process { Y(t ) ,  t 2 0} 
(Y( t )  = number of heterozygote carriers at  time t )  end in one of two mutually 
exclusive outcomes ; either that of random elimination of the heterozygote carriers 
through repeated sampling, leading to AA-fixation, or detection of a visible 
recessive homozygote. The latter event is represented in the diffusion process by 
the operation of a killing rate depending on the numbers of heterozygotes, i.e. the 
state variable (cf. the studies of Karlin et al. [1967] on first recombination occur- 
rences in a finite population). (2) The second diffusion process is derived as a 
conditioned diffusion from the original diffusion defined by restricting considera- 
tions only to the realizations of the process ending in killing (=detection). The 
time scale translated from this diffusion to the discrete case is again N* generations. 

Both diffusions are remarkably tractable and relate to a classical differential 
equation analysed in studies on radio waves and light spectra. The basic solutions 
are known as the Airy functions of the first and second kind. They can be repre- 
sented in terms of appropriate Bessel functions and in these terms are extensively 
tabulated. 

We ascertained analytically the following functionals of these processes in terms 
of the initial heterozygote numbers x. (1)  The probability u(x) of loss of the recessive 
allele as against detection of a homozygote recessive, the latter occurring with 
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probability v(x) given explicitly by (19) .  ( 2 )  The expected time until either loss or 
detection. (Higher moments are also accessible.) (3) The cumulative number of 
heterozygotes over the population lifetime, i.e. until loss or detection. 

We calculated for the conditioned process (conditioning on the detection out- 
come) the same functionals and also the distribution of the maximum heterozygote 
numbers attained prior to detection. It is worth highlighting several of these 
evaluations for an initial state corresponding to a single heterozygote. We deter- 
mined then that the expected time until detection, conditioned on eventual 
detection, is 2.09N) generations. The aggregate average numbers of heterozygotes 
over the life of this process is 1.78Ni. During this period the probability exceeds 4 
that the maximum number of heterozygotes achieved a level exceeding 2.02N3. 
The same calculations can be done for any initial population state and analytic 
formulas are available (see section 4, paragraphs (iv)-(vii)). 

We have also tried to assess the effect on detection of examining more individuals 
than are used as parents in the subsequent generation. If we use N parents’ and 
examine M offspring (usually M > N )  then the detection probability is increased, 
as expected. Suppose we are interested in ascertaining how many offspring we 
should examine to ensure that the detection probability is at  least one half. 
Starting with one heterozygote in the initial parent population, we found that we 
need M = 0.88Na, meaning that we have to examine a, very large number of 

We have also analysed the effects of selection differentials in heterozygotes, and 
of recurrent mutation to the a-allele. The details of these analyses may be found 
in Karlin t Tavar6 [1981], but the results may be summarized as follows. If we 
suppose that selection acts on the heterozygotes, the selection difference being s 
(which may be positive or negative), then the diffusion method shows that the 
scalings again have to be of order N ) ,  as long as the selection coefficient is of order 
at most N-4. The ‘usual’ scaling of the selection coefficient in the Wright-Fisher 
model is N-l ; this result shows that we can have quite strong selection intensities 
before we significantly alter the probability of detection. 

It is interesting that for all directions of selection (heterozygote advantage 
s > 0, or heterozygote disadvantage s < 0) ,  the fixation probability is a monotone 
decreasing function of x. It is no longer exclusively convex for s < 0. The time to 
detection conditioned on this occurring, is again of order N+ generations. 

For models in which we allow mutation from the A-allele to the a-allele, and 
the mutation rate is taken to be of order N - l ,  the correct order of magnitude for 
the time scale is again N i .  These results show that the order of magnitude N* is 
quite a robust result for a wide spectrum of genetic models concerned with detect- 
ing particular genotypes in finite populations. 

offspring. 
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APPENDIX 

Derivation of diflusion approximation (9 )  
In order to find the diffusion approximation described by (9) and (10)-(13), we 

ascertain values of the parameters a, /3 for which the processes 

converges to a limiting diffusion Y ( t )  as N -+ co. (The coefficients 2 that appear in 
( 3 1 )  are for notational ease only.) In  (31 ) ,  one unit of the discrete time scale 
corresponds to At = (2N)-" time units on the new time scale. In order to evaluate 
which values of a, /3 ( 2  0) are admissible, we compute the following limits as 
N --f 00 (i.e. At --f 0 ) :  4 

p(z) = lim :E(AY,IY,.(t) = x ) ,  
At& 

1 
a 2 ( x )  = lim -E((AYN)21Yv(t)  = x), 

A t J . O A t  
and 

1 
k ( z )  = lim -Pr(Yv( .) killed in ( t ,  t +At)lYv(t)  = z) 

A t J O A t  



46 S. KARLIN AND S. TAVARE 

where AY' = AYN(t) = Y(m(t+ At)  - Y")(t) and x = i/(2N)S. In  the current 
probiem, admissible values of a and 6 are those for which k(z)  and aa(z) are finite 
and positive, and p ( x )  is finite. We will show in this appendix that we must have 
a = /3 = 4, which reduces (31) to (9). Using (32), the resulting coefficients of the 
approximating process are given by (lo)-( 12). 
Using the equations (6)-(8) and neglecting lower order terms, we arrive a t  

and 

(32) combined with (33c) necessitates that 1 - 28- a = 0, while (33b) ahows that 
,8 - a = 0. It follows that a = /3 = 4 is the (unique) required scaling. Finally, from 
(33a) and (31), p ( x )  = lim ( -za/2(2N)3) = 0, which is (12). 

AtJO 


