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1. INTRODUCTION 

A problem of wide interest considered first by Robertson (1978) concerns 
the task of estimating the distribution of the time of the first appearance of a 
recessive visible gene (e.g., a lethal homozygote) in a finite population 
starting with a single heterozygote. This inquiry is relevant in artificial 
selection practices as it pertains to early detection of carriers of deleterious 
genes. From the perspective of evolutionary dynamics, this problem concerns 
the elapsed time to observation of new mutant types, equal or unequal 
crossover events, ihsertion or deletion sequences, etc. It may also lend insight 
into the objectives of medical genetic screening that attempts to identify 
carriers of defective genes or chromosomal anomalies. 

The model investigated is as follows. Consider a finite population of N 
diploid individuals, comprising the two genotypes AA and Aa in numbers 
N - i and i, respectively. Two mechanisms for producing the next generation 
were considered by Robertson (1978), reflecting the consequences of random 
mating and finite sampling effects. 

I. The population composition corresponds to 2N - i A-gametes and i a- 
gametes. The next generation of j a-gametes (and 2N - j of A) is produced 
by Binomial (Wright-Fisher) sampling, the diploid individuals then being 
formed by pairing the gametes at random. Robertson considered the case of 
a visible homozygous genotype aa, and so the process of diploid formation 
terminates with the appearance of the first such homozygote. 
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11. The same model can be derived under the assumption of random 
mating, the process continuing as long as no aa-homozygote is sampled in 
the next generation. 

Robertson estimated the number of generations until the first visible 
homozygote appears, using simulation techniques and matrix numerical 
methods. He perceived the order of magnitude of generations for the 
expected time to detection. This particular model was analyzed by use of 
diffusion approximations in Karlin and TavarC (1980). The object of this 
paper is to examine a number of variations on the basic problem. We 
indicate briefly several extensions and further issues: 

(a) What happens in the presence of differential viability selection 
forces? (b) The recessive homozygote may entail unobserved natural 
abortions, prolonging the expected time to detection. What are the conse- 
quences of these events in the model? (c) It is possible that mating types 
involving heterozygote carriers entail reduced fertility compared to wild type 
matings. What is the effect of variable fertility rates on the behavior of the 
model? 

(d) It is possible that the homozygous genotype uu cannot always be 
detected with certainty. So how do different detection contingencies influence 
the time to detection? We may be interested in a screening program that 
partially succeeds in detecting heterozygous carriers, Aa. How does the type 
of the incomplete detection scheme influence the outcome of the process? 
Generally, how do different screening methods alter the probability of 
detection of a lethal genotype? 

(e) An analysis of nonrandom mating patterns, including the cases of 
selfing lines, matings confined to a particular type, and other regular 
breeding schemes may be of economic-genetic interest, especially in artificial 
selection practices. 

\ 

For the models I and I1 we would like to ascertain: 

(i) The probability that the process will end in detection of the mutant 
type as opposed to fixation of the wild type. (ii) The expected time until 
either loss of the a allele, or uadetection. (iii) Functionals of the process, 
including the aggregate number of heterozygous carriers ever occurring in 
the population until detection of the first recessive homozygote, and the 
mean, variance and higher moments of the detection and/or fixation times. 
(iv) Apart from cumulative heterozygosity, another measure of genetic cost 
to the population is the number of carriers that occur in the population at the 
time of detection. The properties of the distribution of this variable are of 
interest. 

In our analysis we employ diffusion approximation to variations of the 
finite model set forth in I and I1 above. The novelty in the analysis is that the 
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underlying discrete process has not only an absorbing state, but also a killing 
rate which depends on the population configuration. This killing rate derives 
from terminating the process either by detection of the genotype aa or, 
perhaps, detection of a heterozygous carrier. 

Such diffusion processes with killing already occur in the literature. One 
example involves the determination of the probability that a recombinant 
type appears before fixation (Karlin et al., 1966); another involves the 
formation of high order mutants (Karlin, 1973). 

The statement of the problem involves first passage times to either an 
absorbing state (corresponding to loss of the a-allele) or to a point not 
described in the state space of the process (corresponding to detection of 
particular gametes or genotypes). Thus, in the present detection model the 
outcome indicating the first appearance of a recessive homozygote terminates 
the breeding line in which it occurs and the corresponding difusion is now 
governed by infinitesimal drift and variance effects as usual, but also an 
infinitesimal killing rate which is also a function of the state variable. 

It is true that the order of time to detection in a variety of these models is 
of relatively low dependence on population size; in fact of the order N'13 
generations. This result can be interpreted in the following way. In a large 
population with the absence of selection and mutation effects, there is only a 
competition between fixation and the chance of detection if' the initial 
number of heterozygotes is of order Nu3. In this case detection (given that it 
occurs) takes of order NY3 generations. For an initial number of 
heterozygotes of order much smaller than "I3, then the only effective 
outcome is loss of the a-allele, and, therefore, no detection. If, on the other 
hand, the initial number is of order much larger than NV3,  then detection of 
the aa-homozygote is effectively the only possibility. Further, conditional on 
detection occurring, the time to detection is also of order N V 3  generations. 
The time scale N V 3  stands in sharp contrast to the classical result on the 
expected time to the establishment of a new mutant gene conditioned on its 
fixation which is about 4N generations. 

In seeking an incisive analysis of these models there are two processes of 
prime relevance. (i) The realizations in the approximating diffusion process 
( Y(t), t 2 0 )  (Y(t) = number of heterozygote carriers at time t) end in one of 
two mutually exclusive outcomes: either that of random elimination of the 
heterozygote carriers through repeated sampling, leading to loss of allele a or 
detection of a visible recessive homozygote the aa-genotype. (ii) The second 
diffusion process arises by restricting consideration to the realizations of the 
process ending in killing (i.e., detection). The time scale translated from this 
diffusion to the discrete case is again N V 3  generations. 

Both diffusions are remarkably tractable and relate to a classical 
differential equation analyzed abundantly in studies on radio waves and light 
spectra. The basic solutions are known as Airy functions of the first and 
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second kind. They can be represented in terms of appropriate Bessel 
functions and have been extensively tabulated. 

In Karlin and Tavare (1980) we ascertained analytically for the model 
without selection the probability of loss as against detection of a homozygote 
recessive as a function of the initial heterozygote numbers and the 
cumulative number of heterozygotes over the population lifetime, i.e., until 
loss of allele a or its detection. We also calculated for the conditioned 
process (conditioning on the detection outcome) the same functionals and 
also the distribution of the maximum heterozygote numbers attained prior to 
detection. In particular, for an initial state corresponding to a single 
heterozygote, we determined the expected time until detection conditioned on 
detection to be 2.09N113 generations. The aggregate average numbers of 
heterozygotes over the life of this conditioned process is about 1.78Ny3. 
Analytic formulas for a variety of other functionals were also given. 

Our main objective in this work is to analyze the effects on detection of 
selection differentials between AA-homozygotes and Aa-heterozygotes. If we 
suppose that selection acts on the heterozygotes, the selection difference 
being s (which may be positive or negative), then the diffusion method 
elaborated in Section3 below shows that the scalings again have to be of 
order NV3, as long as the selection coeflicient is of order W V 3  or less. The 
“usual” scaling of the selection coefficient in the framework of the 
Wright-Fisher model is N-’; this result shows that we can have quite strong 
selection intensities before we significantly alter the probability of detection. 

For models in which we allow mutation from the A-allele to the a-allele, 
the mutation rate is taken to be of order N-’, and the correct order of 
magnitude for the time scale is again NV3; see Karlin and Tavare (1981a). 
These facts show that the order of magnitude NV3 is quite a robust result for 
a wide spectrum of genetic models concerned with detecting particular 
genotypes in finite populations. 

We will also examine models allowing differential fertility rates acting on 
the three feasible mating types AA x A A ,  AA X A U  and Aa XAU.  We can 
also treat the possibility that a fraction of unobserved aborted aa- 
homozygotes occur. In these models the time scale needs, in some cases, to 
be modified to N’, 6> 1/3. Normalizations of the order Nu* and more 
generally N’ already occur in certain finite population studies allowing very 
strong selection effects (Robertson and Narain, 1971; Guess and Levikson, 
1978) and in situations of variable mutation rates (Karlin and McGregor, 
1964). 

We will now describe briefly the layout of the paper. In Section2 we 
formulate precisely the basic discrete model of the phenomenon. In Section 3 
the diffusion approximations are resolved, incorporating differential viability 
effects. A hierarchy of functionals are determined including the detection 
probability, moments of detection and fixation time, the expected cumulative 
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heterozygosity. Section4 is devoted to an analysis of the model admitting 
variable fertility rates over the mating types. Discussion and interpretation of 
our results are interspersed throughout the paper with several key points 
highlighted in the concluding section. 

In the following paper we consider a model where in addition to the fact 
that aa-individuals are visible as they appear, there is also an opportunity to 
screen for heterozygote carriers. This can be interpreted as a model involving 
partial penetrance of heterozygotes. We also assess the effect on detection of 
examining more individuals than are used as parents in the subsequent 
generation. This is often practiced in implementing artificial selection 
programs. In a similar vein, screening a number of relatives is done in 
seeking heterozygote carriers of certain rare genetic disorders. This will 
reduce the time until such defective genes are detected. A number of further 
variants including alternative homozygote detection schemes are considered. 

2. THE MODELS 

(i) Discrete Models 
We assume that the homozygote is visible, and therefore detectable as 

soon as it appears. Consider a monecious population of N diploid 
individuals, and a single locus at which there are two possible alleles, 
denoted by A and a. We are interested in the time to formation of the first 
homozygote, aa. It is convenient to let X,, be the number of heterozygotes at 
time n. If X,, = i, and we have not yet seen any recessive' homozygotes, the 
number of A-alleles at time n is 2N- i, and the number of a-alleles is i. To 
form the next generation, we suppose that selection acts on the AA, Aa 
genotypes, giving relative survival rates of 1 : 1 + s, respectively. Here, s may 
be negative (heterozygote disadvantage) or positive (heterozygote 
advantage). After selection, the probability of being an AA is 

N - i  
N + i s  ' p i  = Pr { AA after selection I X,, = i }  = - 

while 

(2) 
i( 1 + s )  
N + i s , '  

qi = Pr{Aa after selection I X, = i }  = 

A and a alleles are then formed in the ratio xi:  1 - x i ,  where 

4i xi = p i  + T .  (3) 
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We now have a conceptually infinite pool of gametes A, a in proportions 
x,: 1 -x,.To form the gametes used to produce the next generation,we take a 
sample size W. For definiteness we will consider the classical Wright-Fisher 
sampling scheme, so that the probability of producingj a-alleles (and W - j 
A-alleles), given f a-alleles at time n, is 

O&i ,  j < N .  (4) 

We now need to pair up the genes to form the diploid individuals at time 
n + 1. Clearly, the process continues if we form no aa genotypes, whereas if 
we form an “aa,” then the process stops by detection. It is clear that we need 
to compute the probability Cj of producing no aa-pairs, given 2N - j A’S, j 
a’s, and using random pairing. It is elementary to verify that 

2jN!(UV - j ) !  
cj = ( W ) ! ( N -  j ) !  ’ j = 0, 1, ..., N 

( 5 )  
= 0, j = N + 1, ..., 2N. 

Cf. Robertson (1978). It follows that if X,, = i, then X,,,, = j  with 
probability P,, = p,,Cj. Using (4) and ( 5 )  we have 

In the terminology of Markov chains, a transition matrix such as that 
given in (6) is called sub-Markovian, because the transition matrix no longer 
has all the row-sums equal to unity. In our model, this follows because the 
process can be terminated by the appearance of an aa-homozygote. 

In the discrete state space case, we can add on an extra state, H, to 
transform the process into a standard Markov chain. The transition 
probabilities into the state H are given by 

N 

P,, = 1 - 1 P, = 1 - (1 - (1 - xf)2)N, 0 < i < N, (7) 
j = o  

while 

Of course, state 0 is absorbing, since once the population comprises only A 
alleles, we can never observe an aa-homozygote. 
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In the case of the model involving no selection (s =0) the transition 
matrix reduces to 

as given by Robertson (1978). See also Karlin and.Tavare (1980). 

(ii) An Alternative Derivation of the Model via Random Mating 
There is another instructive way to derive the form of the transition 

matrices in (6) and (9), which is the more natural for generalization. We 
work with the diploids all the time, and assume random mating in our 
population of size N. Let i = ( i l ,  i , ,  i 3 )  be a vector denoting the number of 
AA, Aa, aa genotypes at time n. Of course, i ,  + i ,  + i ,  = N,  and since we are 
assuming that no recessive homozygote has yet appeared, i is of the form i = 
(N - i, i, 0). Selection alters the relative odds of being AA or Aa in the ratio 
p i :  qr , where p, is given by (1). In order for the process to continue to time 
n + 1, and for X,, = j ,  we must transform the vector i = (N - i, i, 0 )  into 
the vector j = (N - j ,  j ,  0). The probability of this event, computed by 
considering the outcomes of the three possible mating types at  time n under 
Wright-Fisher sampling of N zygote offspring yields 

The transition matrix in (10) is precisely that derived in (6) by the pairing 
method. Eqs. (10) and (6) merely reaffirm the equivalence of random mating 
and random union of gametes in this finite population context. We remark 
that it would be easy to derive corresponding models using sampling 
schemes other than the classical Wright-Fisher model, but we will not do so 
here. 

The problems of interest include the following. What is the probability of 
never observing a recessive homozygote? This is just the probability of 
reaching state O- the  a-allele is lost from the population-before reaching 
state H. In principle, this can be solved by finding the solution (uo, u ,  ,..., uN) 
to the system of equations 
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under the initial condition u,, = 1. This system can be solved numerically for 
small values of N, but it seems difficult to get explicit results for the q. 
Secondly, what is the mean time taken to observe a recessive homozygote 
conditional on this event occurring? Similarly, what is the mean time until 
the process stops, either by reaching the absorbing state 0 or the detection 
state H? Again, for small values of N it is possible to use standard theory 
and numerical methods to get some insights to these problems (cf. 
Robertson, 1978). 

In order to analyze these models, we will resort to the method of diffusion 
approximation with the added contingency of killing, corresponding to the 
detection event. This will enable us to determine the effects of selection on 
the model, and to ascertain the appropriate time-scale and state space scale 
under which a recessive homozygote will be seen "instantly," "never," or 
when the process can be modeled in a way that allows both possibilities. 

3. THE DIFFUSION APPROXIMATION 

(i) The Selection Model 
In order to illustrate the methods, we now analyze in some detail the 

selection model defined by Eqs. (6) and (7). If we suppose that s > 0, one 
might expect that large s would facilitate observation of the recessive 
homozygote, whereas negative s would lead to a higher chance of loss of the 
a-allele. 

In this section we will suppose that (2N)Ys = S,  and try to find y so that 
we have a limiting diffusion process to approximate the X,, process. In this 
manner we can assess the order of magnitude of s for which the diffusion 
approximation reflects both the fixation of allele A and the possibility of 
killing of allele a. To do this we look at state space scalings of the form 
Y,, =X,, (2N)-", for some a > 0, and compute the "infinitesimal" 
parameters of the Y,, process. To this end, let d Y  = Y , + ,  - Y ,  = 
(2N)-"(X,,+ , - X,,). Using Eqs. (6) and (7) we find that if x = i(Uv)-", 

1 x 3 s  - 
2x2 + ...), (12 )  (.s - 2(21\91-2" (2N)'-y-" E [ d Y (  Y , , = x ]  =- 

(2N)y 

2x2 - 2~' + ...), (13) 
1 (' - (2N)'-" (2N)'-*" E[(dY)2I Y , , = x ] = -  

(2N)" 

+ ...). (14) 2 s x  
+ y + l - 3 0  (2N) 

Pr{ Y killed I Y,, = x )  = 
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From (12)-(14), we see that necessarily a = y, and 1 - 3a = 0, which is the 
unique scaling required to produce a diffusion approximation with killing 
that incorporates the selection parameter S. If we let 

X [  ( 2 N ) ” 3 r ]  
Y N ( f )  = 

then Y N ( f )  converges as N --t 00 to a diffusion Y(t )  with state space [0, a), 
and with infinitesimal parameters specified by 

p(x)  = lim ( 2 ~ ) ”  E[AY I Y,(r) = x ]  = SX, 
N - m  

d ( x )  = Iirn ( 2 ~ ) ~ ’  E[(AY)’ I Y,(t) = x ]  = x, 
N-m 

X Z  k(x)  = lim (2N)y3 Pr( Y killed 1 YN(t)  = x }  = - 
N-m 2 ‘  

The time and state units of the approximating diffusion are translated in 
terms of the original process as follows. A time unit for the Y process 
corresponds to (2N)”j generations of the X process and a state value y for Y 
refers to y(2N)v3 heterozygotes for X. 

The killing function k(x)  possesses the interpretation that k(x)  h + o(h) is 
the probability of the Y process being killed (Le,, an aa-homozogote being 
formed) during the time interval (t, t + h), given the process had value x at 
time t. 

It is useful to discuss the behavior of the process which is obtained by 
ignoring the killing term k(x).  The resultant process has infinitesimal drift 
p ( x )  = Sx, and infinitesimal variance d(x) = x ;  this arises in other contexts 
as the diffusion approximation to certain dynamic population growth 
processes; see Karlin and Taylor (1981, Chap. 15). It is possible to give a 
representation of the behavior of the Y process solely in terms of this 
process. In particular, the boundary behavior of this diffusion is germane. 
Using standard methods, we ascertain that the boundary point { 0) is an exit 
(or absorbing) state, while the boundary at 00 is natural. Hence, if the 
process is never killed, then it must be absorbed at {O} and so Y mirrors the 
behavior of our original discrete model. 

It is worth making a few comments about the order of magnitude of the 
selection parameters s = s N  as the population size N increases. If, for 
example, S, = S/N,  corresponding to “weak” selection pressure, then the 
infinitesimal mean is effectively zero and selection has no influence. If 
S, = S(2N)-y with 0 < y < 1/3, then the parameter in (12) grows, 
corresponding to “instantaneous” detection. If, for example, y > 1/3 then 
effectively selection is zero. The sensitive order of magnitude for s, is 
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sN = S(2N)-v3, which allows for quite strong selection pressure. We can 
conclude that if X, = i w xNv3, then both detection of the recessive 
homozygote and fixation are possible, and the time to detection is of the 
order of Nv3  generations. 

(ii) Methods of Analysis 
Diffusion processes with killing can be analyzed by a method similar to 

the case with no killing. Let us define u(x, t) = Pr{ Y process has not been 
killed by time t I Y(0) = x } .  Then u(x, t )  satisfies the differential equation 

au 1 a2u au 
ax at = T a’@) 9 + p(x)  - - k(x)u. 

Clearly, u(x, t )  is a positive decreasing function of t. Hence, as t + 00, u(x, t )  
converges to a limiting value u(x, 00) = u(x), and au/at + 0. The function 
u(x)  is the probability that the process is never killed for an initial state x. 
Since 0 is an exit boundary, we conclude that u(x)  is the probability of 
fixation at 0, Le., the probability that we never observe an aa-homozygote. 
From (16), u(x)  satisfies the differential equation 

1 d2u du 
2 dx2 dx 
- u’(x) - + P ( X )  - - k(x)u  = 0, 

with boundary condition u(0) = 1, u(00) = 0 and u(x) decreasing in x. 
If we let T be the lifetime of the process (the minimum of the time to loss 

and the time to detection of allele a), then we are often interested in 
computing the expected value 

1 w(x) = E (lor f (Y(u)) du I Y(0) = x 

for suitable functions $. For example, if we set f ( x ) =  1, then w(x)= 
E[T(  Y(0) = X I ,  the expected lifetime. Standard theory (e.g., Karlin and 
Taylor (1981, Chap. 15, Sect.4)) shows that w(x)  of (18) satisfies the 
differential equation 

subject to appropriate boundary conditions. The solution may be written in 
the form 
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where G(x, y )  is the Green’s function of the process. G(x, y )  may be inter- 
preted informally as the mean time the process spends at y ,  given that it 
started at x, before the process stops (Le., up to loss or detection). In what 
follows, we give the function G(x, y) and use (20) to determine w(x). 

To facilitate the subsequent analysis, we introduce a differential equation 
of particular use in the present context. The Airy equation is given by 

u”(x)  - xu(x)  = 0. (21) 

This equation arises in the study of radio waves .and light spectra (Airy, 
1838), and has been extensively analyzed. The two standard solutions of 
(21) are the so-called Airy functions of the first and second kind, A(x) and 
B(x), respectively. These are represented by 

and 

where I”(-)  is the Bessel function of imaginary argument of order 0. These 
functions have been tabulated (e.g., Miller, 1946). A(x) is monotone 
decreasing for x positive, B(x) monotone increasing, and their asymptotic 
behavior as x+  00 is as follows: 

See, for example, Abramowitz and Stegun (1970). 

model. 

(iii) The Probability of Detection 
Using Eq. (17), we can compute the probability u(x)  of never detecting the 

homozygous genotype, aa. Substituting from (15) into (17) shows that u(x)  
satisfies the differential equation 

With these preliminaries at hand, we return to the analysis of the selection 

(25)  
d2u du - + 2s --xu = 0, 
dx2 dx 
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with u(0) = 1 and u(a0) = 0. To solve this equation we make the preliminary 
transformation u(x) = e-”q(x), which results in the equation 

-- d2q(x) (x  + S2) q(x)  = 0. 
dx2 

A decreasing positive solution is 

q(x)  = A (x + S2), (27) 

and hence (imposing the normalization u(0) = 1) 

We can contrast the qualitative effect of positive and negative selection 
coefficients on the probability of loss or detection of the a-allele as expressed 
in formula (28). Direct analysis reveals that u(x, S )  of (28) is monotone 
decreasing in S. Moreover, for S > 0, u(x, S )  is convex decreasing while for 
S < 0, u(x, S )  is first concave, then convex with a single inflection point as 
depicted schematically next. 

Shape of u(x, S )  = probability of loss of allele a. 

0 X 

This qualitative behavior is also shown in the discrete model. See Fig. 1. 
For moderate values of S, the tabulated values of the Airy function can be 

used to evaluate the expression in (28). As an example, we chose s = kO.1 in 
the discrete model, and examined the approximation to the detection 
probability ~ ( x )  = 1 - u(x). For ppulations starting with one heterozygote, 
we take x = (2N)-v3 and S = S ( U Y ) ~ ~  in (28). The results, together with 
matrix results for the discrete case, are given in Table I. 

(iv) Moments of Detection and Fixation Times 

Expected values of functionals of the process can be computed using (20) 
once the appropriate Green’s function G(x,y)  has been identified. We can 
establish that 
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FIG. 1. Probability of loss of a-allele occurring before detection in populations of size 50. 

0 - selection coefficient s = -.5 
A - selection co&cient s = .O 
W - selection cocEcient s = . l  

Matrix results. 



200 KARLIN AND T A V A ~  

TABLE I 

Detection Probability for s = fO.l, Starting from 1 Heterozygote" 

s = -0.1 s = 0.1 

N S DA Exact DA Exact 

5 0.1710 0.395 0.340 0.26 1 0.223 
10 0.2154 0.340 0.299 0.194 0.162 
20 0.2714 0.297 0.264 0.141 0.1 16 
50 0.3684 0.253 0.232 0.088 0.07 1 

100 0.4642 0.229 0.215 0.059 0.047 
500  0.7937 0.197 0.186 f 0.011* 0.019 0.015 f 0.003* 

* Simulation result. 
"DA is diffusion approximation, N is population size. Exact results refer to the matrix 

solution of (1 1). 

where C(y; e) = B ( y  + e) - (B(B)/A(O))A(y + 8). Hence if T is the time to 
detection or loss then its mean value is 

where G is given by (29). For small values of x, analysis of this result shows 
that the mean lifetime is of order 1nN generations in the discrete model 
starting from Xo = 1. 

In Table I1 we give the mean and variance of the lifetime of the discrete 
process (i.e., time until loss or detection) for a variety of population sizes. 
The exact results were computed using standard matrix methods for 
absorbing Markov chains (cf. Kemeny and Snell, 1976). 

It is of interest to exhibit the relative dependence of M(x, S) on the 
selection parameter. The curves M(x, S) and M(x, S') for S' > S intersect 
once as drawn below. 

The picture agrees with our intuition since an increased selection coef- 
ficient for Aa diminishes the chances of loss of allele a but enhances the 
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chance of detection, especially with greater heterozygote numbers. These 
conclusions are backed up by the discrete results in Fig. 2. 

(v) Cumulative Number of Heterozygotes Sustained until Detection or Loss 

We consider next the expected total number H(x)  of heterozygotes that 
appear before detection or fixation, starting with Y(0) = x.  We use (20) and 
(29) with f ( x )  = x. This leads to 

of Allele a 

H ( x )  = 2ne-'*A(x t S2) I' C ( y ;  S2) esy dy 
0 

To interpret (31) in units of the original process, the cumulative 
heterozygosity becomes (uv)y3 H(x). 

TABLE I1 

Mean and Variance of Lifetime of Discrete Process Starting 
from One Heterozygote' 

s = +0.1 s=-O.l 

N MCan Variance Mian Variance 
~ ~ 

5 2.7 1 4.62 2.50 4.09 
10 3.09 6.94 2.75 5.84 
20 3.53 10.38 2.99 8.15 
50 4.15 17.40 3.29 12.04 

100 4.67 25.24 3.49 15.49 
500* 6.08 f 0.17 36.30 3.76 f 0.13 22.98 

* Simulation result. 
N is the population size, s the selection parameter. 
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FIG. 2. Mean lifetime (time to detection or loss) in populations of size 50. Matrix results. 
0 - selection coefiicient s = -3 
A - selection coefficient s = .O 
- selection coefficient s = . I  

X, = i - initial number of heterozygotes 
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The factor Nu3 is argued as follows: 
Let T be the time to detection or fixation. We want to approximate 

where is the time in diffusion units 

1 - ( 2 ~ 1 ~ 3 ~  [ ,b Y ( ~ )  du I Y(O) = 

= ( N ) Y ’ H ( x ) .  

4. THE DIFFUSION APPROXIMATION CONDITIONED ON DETECTION 

The functionals of primary interest in the present context involve only 
those sample paths which result in detection. We denote by YD(t)  the process 
conditioned on detection occurring. This process is again a diffusion (cf. 
Karlin and Taylor, 1981, Chap. 15) with infinitesimal coefficients 

Ui(X) = u2(x), (32) 

where v(x)  = 1 - u(x)  is defined by (28). 
The Green’s function of the process conditioned on detection is given by 

With the aid of (33)  paralleling subsections (iii)-(v) of Section 3 we can 
efficatiously compute various functionals of the { YD(t)}  process. 
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(i) Mean Time to Detection, MD(x), Conditioned that Detection Occurs 
We find that 

= lom GD(x,  Y )  dy* 

(The subscript D keeps in view the conditioning event of eventual detection.) 
For small values of x, MD(x) is approximately constant (MD(x) -+ C as 
x + 0), from which we deduce the following: in populations of size N with 
one initial heterozygote, the mean time to detection is of order C(UV)”’ 
generations. The constant C for S = 0 is approximately 1.66. With general 
selection the constant is 

00 eSYA(y + 9) u ( y )  C = MD(O + ) = 2{SA(S2)  - A ‘ ( S 2 ) } - ’  J dY. 
0 Y 

It is expected and indeed it is correct that the mean time to detection 
MD(x, S) is monotone decreasing as a function of S for fixed x. The behavior 
of the discrete process is exhibited in Fig. 3 and Table 111. 

The variance of the time until detection conditioned on detection is of 
order ‘Nu’, and the mth moment of the distribution of this detection time is of 
order N*’. 

(ii) Aggregate Numbers of Heterozygotes Conditioned on Detection 
This is derived analogously to (v) of Section 3. The result is 

Its evaluation for x small is the constant value C*, where 

C* = HD(0 + ) = 2 { S A ( S z ) - A ’ ( S z ) } - 1 ~ w e S Y A ( y + S z ) u ( y ) d y .  0 

Therefore, in terms of ihe discrete process, the cumulative number of 
heterozygotes until detection conditioned on detection, starting from 1 (or a 
few) heterozygotes, is C*(2N)y3. The intuitive reason for the order (uv)y3 
derives from the fact that the cumulative heterozygosity is initial number x 
multiplied by the lifetime of each, which are measured in (uv)u3 units per 
generation (cf. subsection (v) of Section 3). When S = 0, C* = 1.12. 

It follows that the average number of heterozygotes produced before 
detection, starting from a single initial carrier is approximately C* (2Wy3, 
which is a higher order of magnitude than the corresponding result for the 
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FIG. 3. Mean conditional detection time in populations of size N = 50. Matrix results. 
0 - selection coefficient s = -3 
A - selection coefficient s = .o 
W - selection coefficient s = . l  

X, = i - initial number of heterozygotes 
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TABLE I11 

Mean and Variance of (Conditional) Detection Time in Discrete Populations of 
Size N Starting with One Heterozygote” 

s=o.1  s = -0.1 

N Mean Variance Mean Variance 
~_________ ~ 

5 3.49 5.34 3.31 5.06 
IO * 4.43 8.3 1 4.17 1.85 
20 5.62 12.81 5.12 12.07 
50 1.61 22.53 6.63 20.14 

100 9.64 33.61 7.93 30.29 
500* 16.14 f 0.59 83.93 11.21 f 2.22 93.89 

* Simulation result. 
O s  is the selection parameter. 

process allowing for both loss and detection of allele a. The result is then of 
order C(2N)v3 for an initial population size of one heterozygote carrier 
which is derived from (31) with x = (2N)-v3. The intuitive reason behind 
this is that in order to be detected, the process must build up a larger number 
of heterozygotes; for the process where fmation is allowed, most of the 
outcdmes result in rapid fixation, and hence the production of fewer 
heterozygotes. 

(iii) The Number of Heterozygotes in the Population at the Time of 
Detection. 

Given that the process ends in detection, the position PD at which 
detection occurs is a bona-fide random variable. Using a result derived in 
Karlin and Tavare (1981a), the density function w ~ ( x ;  y) of the position of 
detection given an initial value YD(0) = x is given by 

W D ( x ;  Y) = GD(x,  Y) k D ( Y ) ,  Y 2 (35) 

Using (29), (32), (33), it follows that 

A (s’) Ire-”A (x  + s’) Y ~ “ ~ C (  B; S’) 
[A(s’) - e-’”A(x + s’)] 

A (s’) ne-”C(x; s’) yesyA ( y + S’) 
[A  (s’) - e-SXA (x  + s’)] 

9 Y Q X  

9 Y 2 X .  

wD(x; Y )  = 

(36) 
- - 

For a small initial number of heterozygotes, interest focuses on the form 

W,(O + ; y) = {sA(s’) - A r ( S 2 ) } - l y e S y A ( y  + S’), y 0. (37) 

of the density as x +  0. From (36), the resultant density is given by 
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TABLE IV 
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Mode yo of Detection Position Density (37) 

S 
0.1 
0.0 

-0.1 
-0.5 

Yo 
0.945 
0.885 
0.825 
0.709 

The densities specified in (37) are unimodal; the mode is at the solution yo of 
the equation - A ( y  + S 2 ) / A ' ( y  + 27;) = y(1 + Sy)-'. Some values of the 
mode are given in Table IV. 

For example, the most likely number of heterozygotes in the population at 
the time of detection starting from a single heterozygote will be about 
(2N) 'I3y0 individuals. 

5. DISTRIBUTION OF DETECTION TIMES WITH DIFFERENTIAL FERTILITY 
RATES 

In this section we analyze the effect of differential fertility schedules 
among the different mating types. If, for example, the aa-genotype is lethal, 
then it is conceivable that the mating type Aa X Aa is less productive than 
the others. 

Since no aa-genotypes have yet appeared we only need to specify the 
fertilities of the mating types: 

A A X A A  f , ; A A x A a  f 2 ; A a x A a  f , .  

X, will again denote the number of heterozygotes in the population at time n. 
The transition probability matrix of the chain is then given by 

piH = 1 - (1 - 0 Q i Q N, 
where 

- 2  

p i = c  ] (  1-- ;) f 1 + $ ( l - f ) f 2 + & J 3 [  , 

Ci2 
4N2 3 '  

r i = -  f 
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and C is the normalizing constant 

We will examine two cases of this model in some detail. 

( 0  f1= f. = L f 3  =f 
We look for scalings of the form 

X, = i = x(2N)", f = F ( 2 q - y .  

In the spirit of the previous sections, we find the sizes of a and y in such a 
way that the resulting diffusion process reflects the possibilities of both 
fixation and detection. The results are summarized in Table V. Case (a) in 
Table V shows that it is possible to have constant (that is, independent of N) 
fertility f among heterozygote x heterozygote matings. In this case, the 
correct time scale is again in units of (2N)1'3 generations, as in the models 
discussed earlier. There is another interesting way of describing this model. If 
we suppose that in the gene pool of AA, Aa, cia individuals, a fraction 1 - f 
of the aa-genotype die before sampling (corresponding, perhaps, to 
spontaneous abortion), then we obtain a model formally equivalent to (i). 

Note that in this model, there is no unique approximating diffusion, 
although, as shown in TableV, the functional form of the approximating 
process is constant over a range of a-values. The case described in (c) is the 
'boundary' case. 

TABLE V 

Diffusion Approximation to Fertility Model (i)' 

P(X) &) W )  

1 
3 

1 1 

(a) a = - , y = O  

(b) ~ < ~ < - , ~ = 3 ~ - 1  2 

1 
(c) a = y = -  

2 

0 

0 

-2.2 

X 

X 

X 

Fx' 
2 
- 

F x 2  
2 
- 

Fx2  
2 
- 

'a is the state space index, y the fertility index. The time scaling is always in units of 
( 2 N ) S  
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We will indicate briefly some of the results for cases (a) and (b). The 
probability of detection is given by 

A(FV3x) 
3 b  

A (0) 
v ( x ) =  1 - 

which can be evaluated simply through use of the tables in Miller (1946). 
The Green's function of the process is given by 

where q = F1l3. When y = 0, so that (a) obtains, we use this result to show 
that the mean time to detection, conditional on this happening, is again of 
order (2N)V3 generations in the original model starting with one 
heterozygote. In this case, (38)  shows that the detection probability is 
smaller than the case when F = f = 1. 

For populations starting with one heterozygote, we have the approximate 
result for the detection probability 

1/3 
v z 0 . 7 2 9 0  (&) -0.1667 (&), (39)  

leading to the values in Table VI. 

(ii) f l = 1 , f 2 = 1 - d , f 3 = f  
We now suppose that X, = i = x(2N)", f = F(2N)-Y, and d = D(2N)-'. In 

this case, the balance between the indices a, 6, y is given in Table VII. 
Some qualitative conclusions can be drawn immediately from Table VII. 

First, we can see that the parameter d has to go to zero as the population 
size increases at a rate at least that of the state space scale. If not, the 
process (effectively) does not produce enough heterozygotes in order to be 
able to detect tha aa-genotype. However, as model (i) case (a) shows, the 
fertility in the A a  x Aa matings can be constant, when a = 6 = 1 /3 ,  y = 0. In 
this case, the time scale is again in units of ( 2 N y 3  generations, and so will 
be the (conditional) mean time to detection. 

As a sample of the results we obtained for this model, we compute the 
detection (or fixation) probability in the case given in Table VII(ai). The 
fixation probability u(x)  satisfies the equation 

X Fxz 
2 2 - u"(x)  - Dxut(x) - - u(x )  = 0, 
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TABLE VI 

Probability of Detection in Population of Size N 
with Aa x Aa Fertility Rate? 

f N=50 N =  100 

0.01 
0.1 
0.2 
0.4 
0.6 
0.8 
0.9 
0.99 

0.034 
0.073 
0.092 
0.1 I5 
0.132 
0.145 
0.150 
0.155 

0.027 
0.058 
0.073 
0.092 
0.105 
0.115 
0.120 
0.124 

‘Results computed from (39). They agree with 
values computed from tables of the Airy function. 
Population starts with 1 heterozygote. 

TABLE VI1 

Diffusion Approximations to Variable Fertility Model (ii)” 

(i) 6 = a  

I 1 
(a) I + y - 3 ~ = 0 , - < ~ < -  

3 2 
-Dx X 

Fx2 
2 
- 

Fx’ 
2 
- -Dx - 2 ~ ’  X 

(ii) 6 > a 
As in Table V. 

In all cases, the time scale is of order (2N)”. 

subject to u(0) = 1, u ( c 0 )  = 0. The solution is given by 

A(FU3x + F - Y 3 D Z )  
A(F-U3D2) u(x)  = 8” 
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The corresponding Green’s function are given by 

where A, (x )  =A(FU3x + F-Y3D2),  and B , ( x )  = B(FV3x + F-u3Dz).  
The Green’s functions derived in this section can be used as described 

earlier to quantify the role of the parameters F and D on the detection 
problem. 

6. DISCUSSION 

This paper continues the study of the problem of ascertaining the 
distributional properties of the time to first appearance of a visible recessive 
homozygote in a finite population. This question was addressed first by 
Robertson (1 978) using simulation and numerical methods. We provided in 
.Karlin and Tavare (1980) a natural analytical setting (a diffusion stochastic 
process with killing rate) by which to study the Robertson model and many 
variations. In this framework we calculated explicit formulas for a wide 
variety of functionals germane to the detection problem. In particular, apart 
from the probability and mean time to detection or loss of the recessive gene, 
we determined 

(a) the aggregate heterozygosity (“genetic cost”) sustained in the 

(b) the maximum level of heterozygote numbers ever reached before 

(c) the heterozygote numbers at the time of detection. 

population until loss or detection of the recessive allele; 

detection; 

In this paper we further analyze the effects of superimposed viability 
selection differentials and also variable fertility rates with respect to the 
genotype and mating types, respectively. 

The corresponding results of the detection model with superimposed 
viability selection can be summarized as follows. If we suppose that selection 
acts on the heterozygotes, the selection difference being s (which may be 
positive or negative), then the diffusion method shows that the time and state 
scalings again have to be of order (2N)1’3, as long as the selection coefficient 
is of order ,~$3(2N)-~~. If s = O(N-3, y > 1/3 the diffusion approximation has 
infinitesimal coefficients p(x )  = 0, a2(x)  = x ,  k(x)  = x2 /2  identifying the 
process as the same as that in Karlin and Tavare (1980). The “usual” scaling 
of the selection coefficient in the setup of the Wright-Fisher model is N - I ;  
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this fact shows that we can have quite strong selection intensities before we 
significantly alter the probability of detection. It is interesting that for all 
values of the selection parameter S, the fixation probability is a monotone 
decreasing function and, as expected, this probability is monotone decreasing 
with respect to S. The effect of selection favoring the homozygote wild type 
(S < 0) produces an initial concave dependence on the heterozygote 
numbers. 

We calculated for the process conditioned on detection a variety of 
functionals. We highlight several of the numerical evaluations for an initial 
state corresponding to a single heterozygote with no selection differentials, 
S = 0. Specifically the expected time until detection conditioned on eventual 
detection, is 2.09NU3 generations. The average aggregate numbers of 
heterozygotes over the life of this process is 1.78Ny3. During this period the 
probability exceeds 1/2 that the maximum number of heterozygotes achieved 
a level exceeding 2.OUvv3. The same calculations can be done for any initial 
population state and analytic formulas are available. Conditioned on 
detection, starting with a single heterozygote, the number of heterozygotes at 
the time of detection has a modal value l.12NV3 heterozygotes in the discrete 
model and a mean number of about 1.73N1/3 individuals. Explicit results are 
given for the case of general selection coefficient S. In Figs. 1-3, and 
Tables I-IV a variety of matrix results for the discrete process are given for 
comparison. 

The consequences of the action of differential fertility rates f, , f2, f3 
expressed on the three feasible mating types AA X A A ,  AA X A a  and 
Aa x A a  respectively, are more varied. Under fertility selection some 
modifications on the scalings are sometimes required. The associated 
diffusion models relate to classical differential equations involving 
combinations of Bessel functions. In these terms many biologically 
interesting functionals are explicitly available as elaborated in Sections 2-5. 

We investigated two levels of fertility rates. The first case prescribes 
f, = 1 ,  f2 = 1 ,  f3 = f where a fraction 1 - f of the progeny from A a  x Aa 
matings die unobserved. When f is very small (f - F/(2N)"), the time scale 
of the discrete model needs, in some cases, to be modified (increased) to 
(2N)", f > a > 4 to allow for aa-detection, and then the heterozygote 
numbers are counted to order (2N)", (see Section 5 for the details). If y = 0, 
(f = F) so that a fraction 1 - f of Aa x Aa abort or die in each generation 
without observation, we ascertained that the chance for detection of the 
recessive allele is of the same order as with no selection and only the 
detection killing rate in the diffusion approximation model is reduced from 1 
by a factor F, and to this degree the aa-homozygote detection contingencies 
are reduced. 

In the same general model with parameters f, = 1, f2 = 1 - d ,  f3 = f = 
F/(2N)Y and d = 0/(2N)' the effects on the detection problem paraphrase a 

* 
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viability selection mechanism as in Section 2 with heterozygote disadvantage, 
viz., with S = - D. However, the interpretations for the discrete case can 
involve different time and state scalings. 

Thus, for f, = 1, f 2  = 1 - d = 1 - D/(2N)’, f3 = F/(2N)y, the parameter d 
induces a viability selection against the heterozygote while f3 merely reduce 
the detection (killing) rate. 

Unlike the viability selection model, the usual time and state scaling 
( 2 i ~ ) I ’ ~  may be altered in the variable fertility model, requiring 
normalizations to the order (2N)’, f Q 6 Q f. In certain finite population 
studies allowing very strong selection effects (Robertson and Narain, 197 1) 
and in situations of variable mutation rates (Karlin and McGregor, 1964), 
normalizations of the order NU’ have occurred. For example, if the fitnesses 
of genotypes AA, Aa, aa in a finite size population of N are 1, 1 - hS, and 
1 - S, respectively, where S is fixed, h - l/N’” and initial numbers of aa- 
homozygotes of the order NU’, then the expected time to elimination of the 
recessive type is of the order NU’. For the detection problem in all cases of 
viability selection the time to detection conditional on this occurring is of 
order (2N)v3 generations. 
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