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INTRODUCTTON 

The detection problem introduced by Robertson (1978) concerns the time 
taken to form the first recessive homozygote in finite populations. The 
diallelic model previously studied assumes that heterozygote carriers, Aa, are 
indistinguishable from the normal homozygote, AA. Various distributional 
properties of the time to detection or loss of the a-allele were determined 
using the traditional method of diffusion approximation to the relevant 
Wright-Fisher discrete process. The novelty in the diffusion structure here 
rests on the appearance of a killing rate corresponding to the aa-genotype 
detection events; see Karlin and Tavare (1980). The analysis was extended 
in Karlin and Tavare (1981a), referred to henceforth as Part I, to take 
account of various forms and levels of natural selection effects. 

In this part we will study the effects of partial penetrance in heterozygotes 
or, equivalently, the effect of partial detection, resulting from a screening 
program that can in some cases detect the presence of the a-allele in 
heterozygous form. These considerations are appropriate in view of recent 
progress in biochemical techniques which permit greater ability to detect 
differences in phenotypically similar genotypes. 

Utilizing the advancing technology, increasingly more genetic disease 
screening programs (e.g., sickle cell anemia, a number of thalassemia 
disorders, Tay Sachs syndrome, phenylketonuria) are available for purposes 
of identifying heterozygous carriers. In this perspective we envision the 
detection problem under the conditions where recessive homozygotes are 
instantly detected as before, but in addition, a heterozygous carrier can be 
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ascertained or will express itself with probability a. If a is “significant” then 
the recessive allele will usually be first detected among heterozygotes. For a 
“very small,” the heterozygotes are indistinguishable from normal 
homozygotes and allele a will usually be revealed with the appearance of a 
recessive homozygote. The distribution of the detection time differs sharply 
in these two cases. The detailed comparisons and contrasts of these models 
are set forth in the following section. 

Another class of models takes account of family structure, motivated prin- 
cipally by artificial selection schemes (Section 2). We have also tried to 
assess the effect on detection of examining more individuals than are used as 
parents in the subsequent generation. If we use N parents and examine M 
offspring (usually M > N )  then the detection probability is increased, as 
expected. A quantitative assessment of this procedure is developed. 

We also consider a model of N independent breeding individuals per 
generation which produce families of T offspring. All offspring are examined 
and the process is terminated if a recessive homozygote appears. This model 
can easily be extended to allow random family sizes. 

The presence of family structure shows qualitatively the same 
distributional properties of the detection times as the case of families with 
one offspring. We also treat a mixed reproduction scheme in which any 
undetected recessive homozygotes are replaced by a random sample from a 
large population with fixed proportions of AA and A u  individuals. 

One aim of this study is to assess the stability of the order of magnitude 
Nu3 generations until detection that was first noted by Robertson (1978). As 
will be seen, in several of the problems studied here the time scale Nu’ is no 
longer the only scaling that leads to an appropriate diffusion process with 
killing; further, the different orders of magnitude are often reflected by 
processes whose infinitesimal parameters are functionally different. In this 
analysis it is our intention to discuss qualitative aspects of these variants; the 
methods described in Karlin and Tavare (1980) can readily be evaluated in 
the present context. Derivations of a variety of differential equations 
satisfied by relevant probabilistic functions are given in Karlin and Tavare 
(1981b). Further discussion of the background of this problem appears in 
Part I. 

- 

1. INCOMPLETE DETECTION SCHEMES 

It is a common practice in medical genetics to screen an “at risk” 
population for the presence of carriers (for example, screening for carriers of 
Tay Sachs disease). In this section, we analyze the effects of such a screening 
system. Suppose that any heterozygote Aa that appears in the population can 
be detected with probability a, independently for different individuals. As 
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before, homozygous aa-genotypes are assumed to be visible, and so are 
detected as soon as they are formed. Another way to interpret the parameter 
a is to suppose that the a-allele has incomplete penetrance in heterozygotes, 
such a person being phenotypically distinguishable from AA with probability 
a. The reproduction process terminates with the detection of either a 
heterozygote or a recessive homozygote. 

To model this problem, we proceed as follows. Let X, denote the number 
of heterozygotes in the population of size N at time n. If X , ,  I = j ,  the 
process continues as long as no heterozygote is detected (probability 
(1 - a)’) and no recessive homozygotes are formed. The transition matrix of 
the chain {X, , }  is then given by 

where q, = (i/N)( 1 - i/2N), pi = ( 1  - i/2N)*. Denoting the killing state by H, 
we have 

! P , , = l - ( ~ , + q , ( l - a ) ) ~ ,  i=O, l ,  ..., N. (2 1 
As in Part I, we will try to approximate this chain by an associated 

diffusion process. It is clear that the resulting process should depend on the 
relative magnitude of the parameter a; we will try scalings of the form 
a = c(Uv)-! y > 0. Again, the time and state space scalings are of the form 

the approximating diffusion then being given by Y(t )  = limN+m PN)(t) .  Using 
the method illustrated in Part I, and some routine calculations based on (1) 
and (2), we can determine the relationship between y and S that results in a 
limiting diffusion process. As will be seen below, this diffusion is no longer 
functionally unique. In Table I, we give the mean, variance, and killing 
parameters, ,u(x), 02(x), k(x), respectively, of the diffusions. The state space 
of Y(r) is [0, ao). 

It is possible to give a simple intuitive explanation of the parameters in 
Table I. In case (a), the magnitude of the detection probability a is too small 
to significantly afTect the detection problem; the diffusion process is 
functionally identical to the case a = 0 (cf. Karlin and Tavare, 1980), and 
the process effectively terminates with detection of a recessive homozygote. 
In case (b), which we call weak detection, the detection probability is of 
large enough magnitude to ensure that the process ends by detection of either 
a heterozygote or a homozygote. In case (c), referred to as strong detection, 
the process effectively ends with detection of a heterozygote. In all three 
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TABLE I 

Diffusion Limits for Incomplete Detection Model' 

~ ~~ ~ 

(a) 6 = f, Y > f 0 x x2/2 
(b) S = f ,  y = f  0 x cx+x2/2 

(c) 0<6<+, y=26 0 X cx 
weak detection 

strong detection 

' Time scale for diffusion is of order (UV)' generations. y 
is the index of the detection probability, a. 

cases, of course, the processes can terminate in loss of the a-allele from the 
population, The strong detection model no longer has a time scale of order 
(2N)v3, but is now of order (2N>', 0 < 6 < 1/3. We analyze this case first. 

(a) Strong Detection 

the a-allele is the solution of the equation 
The probability u(x) of never detecting a carrier (Aa or aa)  before loss of 

x d2u 
2 dx 
-7- cxu = 0; u(0) = 1, #(to) = 0. 

Clearly, 
u(x) = exp(-Ox); e = (2c)v2, (4) 

and so the probability of ending with detection is given by o(x)= 1 - 
exp(-8x). In order to approximate the probabilities for the underlying chain 
{X"}, recall that i z x(UV)', a = c(~N)-~', and 80 (2c)"'x z (2a)v2 1. Thus 
in large populations starting with i heterozygotes, the probability of detecting 
a carrier is approximately 

u(i) = 1 - exp[-(2a)v2 i ] .  (5  1 
For example, if i = 1, a = 0.1, then o(1) = 0.361. 

appropriate Green's function G(x, y ) ;  formally, G(x, y )  = 
where P(t, x, y )  is the transition density function of U(t). We obtain 

Further analysis of this model proceeds most readily by evaluating the 
P(f ,  x y )  df, 
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c 

Using (6), the mean life time M ( x )  starting from Y(0) = x of the process is 
given by 

e - e ~  et - e-e t  (eex - e - e ~ )  -et 

M ( x )  = - e I:e t d t +  e Ixm + dt. (7) 

Recall that 8 = (2c)V2 = (2a)u2(2N)G = (2a)v2/b,  where, for notational 
convenience, b = (2N)-&. For x = kb (k  = 1,2 ,3 ,  ...), we see from (7) that 

be- ( 2 0 )  vzk kb Ie (2a )V2Ub - e - ( 2 a ) v 2 U b  

dt 
( 2 a ) ~ '  I, t '  

M(kb)  = 

b { p ) V 2 k  - e - ( 2 a ) V 2 k  1 e - ( 2 a ) v 2 V b  

dt. 
(2a)" j k b  t 

+ 
The change of variable z = ( 2 c ~ ) ~ ' t / b  reduces the integral above to 

Recalling that one unit of time in the diffusion corresponds to b-I 
generations in the discrete model, we see that the mean time to loss or 
detection in the discrete process is given approximately by b-'M(kb), 
X, = k = 1,2,  ... . For k = 1, the mean is approximately 2.50 generations, a 
result that is again independent of population size. In Table 11, we give the 
results of 5000 simulations of the discrete process for a variety of population 
sizes. 

TABLE I1 

Simulation Results for Time to Detection 
or Loss for Discrete Model' 

~~~ ~ 

N Mean Variance 

5 2.08 f 0.04 2.22 
10 2.15 f 0.05 2.70 
20 2.22 f 0.05 2.87 
50 2.35 f 0.05 3.69 

100 2.30 f 0.05 3.59 
500 2.33 f 0.05 3.59 

a = 0.1 ; figures are approximate 95% 
confidence intervals. X, = 1. 



220 KARLIN AND TAVARE 

The most interesting part of the detecting problem involves focusing 
attention only on those sample paths which result in detection. In what 
follows, we will use the subscript D to denote properties of the process 
conditional on detection occurring as opposed to loss of the a-allele. The 
conditional Green's functions G,(x, y )  central to the analysis are given by 

where G(x, y), u(x) are given explicitly by (4) and (6), respectively. The 
mean detection time is given by 

,ex - e-  ex Jxa e-"(l - e - e f )  
d! 

t MAX) = e( 1 - e - ex) 

e - e x  x (eel - e-t")(l - e-el) 
dt. 

+ e(i - e-ex) I, t 

As x + 0, we evaluate MD(0) = ( 2 / 4  [e-"( 1 - e-")/t] dt = (2 In 2)/8. It 
follows that in large populations starting with a very small number of 
heterozygotes, the mean time to detection is approximately given by MD = 
2U2(ln 2)/au2 generations. For example, if a = 0.1, M, = 3.10. For 
comparison, we give some simulation results in Table 111. 

In the next paragraphs, we will mention briefly some other functionals of 
the process conditioned on detection which aid in our understanding of the 
detection process. The derivation of these quantities is based on results given 
in Karlin and Tavare (1981b). The first of these involves the computation of 

TABLE 111 

Simulation Results for Mean Time to Detection M, 
Based on m Runs of Discrete Model 

That Ended in Detection" 

N m Mean Variance 

5 1822 2.40 f 0.07 2.58 
10 1811 2.58 f 0.08 3.12 
20 1705 2.77 f 0.09 3.65 
50 1724 2.95 f 0.10 4.56 

100 1651 2.90 f 0.11 4.80 
500 1666 2.94 f 0.10 4.70 

a u = 0.1, N = population size; f figures are approx- 
imate 95% confidence intervals. X, = 1. 
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the average total number of heterozygotes that appear in the population 
before detection. Denoting this quantity by H&), we find that 

HD(x)  =jm y)y &, 
0 

while HD(0) = 1/02 = 1/2c. The average number of heterozygote carriers 
before detection in the discrete population is then H D  x 1/2a, as long as the 
populaion size is large, and the initial generation comprises a very small 
number of heterozygotes. 

As another measure of the “genetic cost” of the h-allele in the population, 
we can compute the distribution of the maximum number of heterozygotes 
that appear before detection. We have 

Pr(max Y(u) > y I Y(0) = x, allele a detected) 
u>o 

= 1 ,  y Q x  

(eex - e-@X)( 1 - e-@Y) 
(e@Y - e-W)(l  - e-@X) ’ r > x .  - - 

The mean maximum number of heterozygotes is 

with T,(O) = 2(ln 2)/8. This corresponds to about 23/2(1n 2) a-u2 individuals 
in populations starting with a very small number of heterozygotes. 

One particularly descriptive function of the detection processes is the 
position at which detection takes place. This allows us to compute the most 
likely number of heterozygotes in the population when detection occurs. 
Defining PD to be the place at which detection occurs, the density function 
wD(x; y )  of PD given Y(0) = x is given by 

(cf. Karlin and Tavart, 1981b). Specializing to the case in which x = 0, we 
see that PD has the exponential density 

~ ~ ( 0 ;  y )  = Oe-ey, y > 0. (10) 
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The shape of these densities backs up the conclusions of the previous 
sections, showing that detection will occur very quickly starting from any 
position, since the mode of the detection distribution is at x, the starting fre- 
quency. 

Finally, we mention briefly some aspects of the time-dependent behavior 
of this model. It is possible to evaluate an explicit expression for the tran- 
sition density P ( t , x , y )  of the process ( Y ( t ) } ,  and consequently for the 
process conditioned on detection. The rate of decline of this density is 
dominated by e-ef ,  in that 

p(t, x, y )  = 402xe-e(X+y)e-@f + o(e-2@'), t -+  43 (11) 

(Karlin and Tavart, 1981b). The rate e-" is that at which the time- 
dependent functionals decline. As a consequence of (1 l), we can derive the 
asymptotic distribution aD(y)  given detection has not occurred yet of the 
process conditioned on ultimate detection. Denoting by &, the time to 
detection, then 

=28e-ey(1 -e-@')&. 

We deduce from (12) that if the process has been running a long time, and 
detection has not yet taken place, then the average number of heterozygotes 
is approximately 3/2(2a)"', with variance approximately 5/8a. 

We comment before continuing with the weak detection model that in the 
case of strong detection, the functionals are effectively independent of 
population size; this result, which stands in marked contrast to the results of 
Part I, will be discussed further in the summary. 

(b) Weak Detection 
As shown in Table I, the infinitesimal parameters in this case are given by 

p(x)  = 0, d ( x )  = x, k (x)  = (x2/2) + cx. The probability of detection before 
loss is then given by 

A(x + 2c) 
' 

v(x )=  1 - (13) 

where A ( x )  is the Airy function of the first kind. Functionals of this process 
can be evaluated in the usual way using the Green's function, G(x, y). These 
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where C(y; 2u) =B(x + 2c) - [ B ( k ) / A ( k ) ]  A(x + 2c) (compare Part I, 
formula (29)). The order of magnitude of the time to detection is propor- 
tional to (2N)‘/’ generations, the variance of this time being of order (2N)“3 
generations, provided the population commences with a very small number 
of heterozygotes. This approximating process models the competition that 
arises between the two possible detection events: detection of a carrier, or 
detection of a “recessive” homozygote. Notice that the time scale of this 
process is “longer” than that of the strong detection case, where detection or 
loss occurs more rapidly. 

2. FAMILY STRUCTURE 

1 
In the following sections, we will try to assess the role of a variety of 

“family structure” models. The first of these is a testing procedure that might 
occur in artificial selection schemes. 

(a) Examining More Children Than Are Used as Parents 
We assume that the population comprises N breeding adults, and that at 

each reproduction point, M offspring are formed. We will assume that 
M > N. These offspring are examined, and if no homozygous recessives are 
found, N of them are chosen at random to be parents in the next generation. 
We would like to assess the importance of this sampling procedure on the 
detection problem. 

A simple model is as follows: 

n n  
AA N - i  M - k  N - j  
Aa i k j 
aa 0 0 0 

time no “aa” detected time 
n in offspring n + 1 I 

Let X,, be the number of heterozygotes at time n in the adult population. 
Given that no recessive homozygotes are detected in the offspring, we take a 
(hypergeometric) sample of size N to produce the next generation of breeding 
adults. Assuming that X , =  i, and that no homozygote recessives are 
produced in the offspring, there will be M -  k AA-individuals, k Aa- 
individuals with probability 

2(M- k)  (?)[$ ( l - & ) I k ( l - & )  . 
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After sampling N of these individuals, the number of heterozygotes in the 
next generation will be j with probability 

2(N- / )  i 2  M - N  

= ( ~ ) [ ~ ( I - - & ) ~ ( l - - & )  ( 1 - 3 )  , O < i , j < N ,  

while 

P,=1-  ( 1 - -  ;i2 )”. 
If we set r = M / N  2 1, then a familiar diffusion analysis of the transition 
matrix (15) shows that the processes 

will converge to a limiting diffusion Y(t) as N +  00, with infinitesimal 
parameters given by 

p(x) = 0, d ( x )  = x, k(x) = rx2/2. (16) 

The detection probability is then given by 

which, for very small values of x, is approximated by o(x)-O.729yx- 
0 . 1 6 7 ~ ~ ~ ~ .  We can use the result in (17) to determine how large r should be 
to ensure that, starting from 1 heterozygote in the initial generation, the 
process ends by detection (as opposed to loss) with probability at least 0.5. 
Setting x = (2N)-u3 shows that U ( ( ~ N ) - ~ ’ )  2 1/2 if A[(r /2N)’ l3]  <A(0)/2 = 
0.17751, or M20.874N2. Clearly, we need to examine a large number of 
children to alter significantly the detection probability. 

Qualitatively, the conclusions that can be drawn in this sampling scheme 
correspond closely to the standard case r = 1 (Karlin and Tavare, 1980). 
The time scale of events is still of order (2N)1’3 generations. For example, in 
populations starting with a very small number of heterozygotes (taking 
x = 0), then conditioned on detection, the mean time to detection is approx- 
imately 2.090Nu3/y generations. Starting from the same initial position, and 
again conditioned on detection, we find that the mode of the distribution of 
the detection point (PD before Eq. (9)) is at the point 0.885/y, corresponding 
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to detection being most likely to occur at a frequency of about 1.12N1'3/y 
heterozygotes. More formal evaluations of properties of the process are 
found using the Green's function, 

A (w)  = 2 n q y x ;  0 )  - , 
YY 

(b) Screening Sibs 

Suppose now that the population comprises N "reeding indh ...dah, each 
of which produces a family of r offspring. For simplicity, we suppose that 
r >  1. We examine all offspring, again terminating the process if any 
recessive homozygotes are found. To continue to the next generation, we 
select a random individual from each family to become a parent in the next 
generation. It follows by examining the outcomes of random matings in the 
population comprising N adults, in which there are i heterozygotes, and 
N - i AA-homozygotes, that 

p, = Pr[randomly selected individual is AA I process continues] 

r-1 i 1  

The factor (3/4y-' accounts for the fact that to continue th process, none 
of this individual's r -  1 sibs can be a recessive homozygote. In a similar 
way, we find that 

q, = Pr[randomly selected individual is Aa I process continues] 
r -  I = - ( l - ; )+- ( - )2(+)  i 1 i  . 

N 2 N  

The transition matrix is then determined by 

O ( i ,  j < N ,  
." . 

(19) 
P , " = l -  ( 1 - -  i2 ( 1  - ( + ) r ) ) N ,  O<i<N.  
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Again, the approximating diffusion is that given by time scale and state 
space scale (2N)V3;  the associated parameters are 

P ( X )  = 0, CT’(X) = X ,  k(x)  = Rx2/2;  R = 4( 1 - (:)I). (20)  

In this model, the results of (a) apply with y = R ‘I3. The generalization to 
random family sizes is immediate. If each family is of size k with probability 
ck ,  k = 1,2,  ..., and @(s) = xp= skck is the probability generating function of 
{ c k } ,  then the parameter R of (20) is replaced by R = 4(1 - @(3/4)) .  Of 
course, the same qualitative conclusions as earlier apply. 

(c) Mixed Sampling Scheme 
Suppose that at time n, the population comprises i heterozygotes and no 

recessive homozygotes. To model the structure of a hypothetical artificial 
selection scheme, we suppose that k recessive homozygotes are produced by 
the breeding population of size N. With probability p any one of these is 
detected as Q recessive homozygote, while with probability ( 1  -b)  the 
individual dies (perhaps from other causes), and has to be replaced. The 
process stops if we detect any recessive homozygotes. If not, such individuals 
have to be replaced (to make up the numbers in the breeding line). To 
achieve this, replacements are chosen from the population at large which is 
supposed to contain a proportion a of heterozygotes, and no recessive 
homozygotes. Once the population is up to the right size again, reproduction 
continues. The transition matrix for this process is determined by 

pi, = 1 - ( 1  - r#, 0 Q i < N ,  
where 

i ( 1  - p )  ai2 4 - -  I - -  
‘ - N  ( ;;)+ 4N2 ’ 

( &)’ (1 - p ) ( I - a ) i 2  pi’ , r i = -  4N2 4N2 ’ p i =  1 - -  + 

To approximate this process by a diffusion, we keep a fixed (since it 
reflects the heterozygote proportions in the population at large), but take p 
varying with N in such a way that (2N)& p + b as N +  00, for some 6 2 0. 
Defining 
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TABLE IV 

Admissible Values for Diffusion Appproximation 

(i) f < e < i  0 X bx2/2 

(ii) 6 = E = f -x2( I - a/2)  X bx2/2 
6 = 3 & - 1  

we find the range of (E, 6) values that result in a limiting diffusion Y ( f )  that 
models the behavior of {Xn}. The results are summarized in Table IV. 

Some simple qualitative conclusions can be derived from Table IV; we 
focus attention on case (i) only. Firstly, the functional form of the diffusion 
parameters is identical for a range of time scalings E. The time scaling E = $ 
(corresponding to the time scale in paragraphs (a) and (b)) corresponds to P, 
the detection probability, beingfued as a function of population size N. As E 

increases from to 4, /3 gets smaller (corresponding to replacements of more 
A -alleles in the population that is reproducing) and thus the time scale of 
events will be longer, as evidenced above. The analytic formulas derived in 
the previous sections (in particular, (17) and (18)) also apply with y =  b”. 
Notice again that the time scalings are not unique, so care has to be taken in 
interpreting results for the discrete process. 

3. DISCUSSION 

In this paper, we analyzed two essentially distinct problems involving the 
detection of visible genes. Motivated by recent advances in biochemical 
techniques that have led to greater ability to distinguish genes with 
apparently identical phenotypes (e.g., heterozygote Tay Sachs genotypes, 
Gaucher’s syndrome), we have assessed the role of incomplete detection in 
heterozygotes. This could also be interpreted as incomplete penetrance, a 
heterozygote sometimes being phenotypically identical to the homozygote 
aa. Denoting the detection (or expressivity) probability by a, we found that 
the detection model is approximated by three parametrically distinct 
diffusion processes. These are determined by the order of magnitude of the 
detection probability with respect to the population size N. If a goes to zero 
like C(UV)-~ ,  then there is a competition between detection of heterozygotes 
and homozygotes only when y = 3. In this case, the order of magnitude of the 
time scale is in units of (uV)v3 generations (compare to the selection model 
of Part I). For detection rates much larger than this order (that is, 0 < y < f), 
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the strong detection case effectively ends in detection of a heterozygote, the 
homozygotes playing little role in the problem. The order of magnitude of 
the detection time is then of the order (UT)’, 0 < 6 < 4 (S= y/2). This 
particular case is especially tractable, and a variety of functionals describing 
the detection problem were analyzed in Section la. Indeed, for this problem a 
complete description of the time-dependent solutions is available, since one 
can compute explicitly the eigenstructure of the process. See Karlin and 
Tavare (1981b) for the analysis of this problem, and some elaborations on 
the theoretical methods used to derive the results of this paper. In the final 
case of incomplete detection, the detection probability parameter y is greater 
than $, the associated diffusion process ending essentially only by detection 
of a homozygote due to the small detection rate in heterozygotes. This 
parameter range is covered by the “random drift” results described in Karlin 
and Tavare (1980), the time scale being again of order (Wv3 generations. 

The second class of models we investigated-arose in the context of 
artificial selection schemes, and assessed the roles of family structure‘and the 
examination of more individuals than are used to breed. The latter situation 
again exhibited the stability of the (UV)”’ generation time scale, and the 
model can be fully analyzed in terms of the classical Airy functions. Starting 
with one heterozygote in the initial parent population, we found that we need 
M w  0.87N2, meaning that we have to examine a very large number of 
offspring in order to insure the detection probability of allele a is at least one 
half. Generally the presence of family structure shows qualitatively the same 
behavior with adjusted detection rates in the basic model. 

The final model examined involved a mixed reproduction structure in 
which any recessive homozygotes that were not detected are replaced by a 
random sample of individuals from a large population with fixed proportions 
of A A  and Aa genotypes. In this case, a wide range of time scales was 
possible, depending on the probability of detection of a recessive homozygote 
as a recessive homozygote. Only if this rate is independent of population size 
does the time scale govern detection. In other cases, rates up to 
(2N)v2 are possible. 

REFERENCES 

CROW, J. F. AND KIMURA, M. 1970. “An Introduction to Population Genetics,” Harpcr Row, 

EWENS, W. J. 1979. “Mathematical Population Genetics,” Springer-Verlag, New York. 
GRADSHTEYN, I. s. AND RYZHIK, I. M. 1965. “Tables of Integrals, Series and Products,” 4th 

JAMES, J. W. 1979. The time of detection of sex-linked recessives in small populations, Genet. 

New York. 

ed., Academic Press, New York. 

Res. (Comb.) 34. 11-17. 



DETECTION OF PARTICULAR GENOTYPES, I1 229 

KARLIN S. AND TAVARE, s. 1980. The detection of recessive visible genes in finite 

KARLIN S., AND TAVARB, S. 1981a. The detection of particular genotypes in finite 

KARLIN S., AND TAVARE, s. 1981b. Some diffusion stochastic processes with killing arising in 

ROBERTSON, A. 1978. The time to detection of recessive visible genes in small populations. 

populations, Genet. Res. (Camb.) 31, 33-46. 

populations. I. Natural selection effects, Theor. Pop. Biol. 19, 187-214. 

population genetics, J.  Appl. Math., in press. 

Genet. Res. (Camb.) 31, 255-264. 

Printed by the St. Catherine Press Ltd., Tempelhof 41, Bruges, Belgium 


