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ABSTRACT 

We investigate the time to formation of particular genotypes in populations with 

nonrandom mating systems. We employ two main techniques. The first is a study of 

branching processes with “killing”; these are models which behave just like a standard 

Galton-Watson branching process with the added possibility of being terminated by the 

occurrence of a special event in the process. In our case, this special event corresponds to 

formation or detection of a group of individuals carrying a specific genotype. We then use 

these results and some natural approximation methods to analyze and interpret the gene 

formation problem in a simple way. 

INTRODUCTION 

The basic framework is the following. In a population comprising N 
individuals, each classified as one of three possible genotypes AA, Aa, aa, 

how long does it take to produce or form the first au-genotype under 
different mating and selection regimes? Under the assumption of a classical 
Wright-Fisher reproduction scheme, Robertson [ 1 l] ascertained by matrix 
numerical methods and simulation that if the population contained initially 
one heterozygote (the remaining individuals being AA), then the time to 
formation (and detection, since the au-genotype is assumed visible on forma- 
tion) of the first aa individuals takes about 2N’j3 generations. By compari- 
sion, the time to fixation of the a-allele, given that it is a new mutant destined 
for fixation, is about 4N generations [IO]. Robertson’s original model and a 
variety of extensions have been analyzed by the authors 15-71 using the 
method of diffusion approximation to the underlying Markov-chain models. 

*Supported in part by NIH Grant NIH SRO1 GM10452-18 and NSF Grant MCS79- 

24310. 

MATHEMATICAL BIOSCIENCES 59~57-75 (1982) 

QElsevier Science Publishing Co., Inc., 1982 

52 Vanderbilt Ave., New York, NY 10017 

57 

0025-5564/82/03057+ 19$02.75 



58 S. KARLIN AND S. TAVARk 

The novelty in the analysis lies in the use of diffusion processes with killing, 
this killing term deriving from the appearance of the new visible genotypes. 
For example, the time to detection of au-types corresponds to the killing time 
of the diffusion process. Using this approach we were able to confirm and 
extend Robertson’s results, and provide a natural way to analyze formation 
or detection times. 

Implicit in these analyses is the appearance of an approximation process 
that is continuous both in its time scale and its state space. However, under a 
variety of reproduction schemes typically involving nonrandom mating or 
strong selection effects, the approximating process is no longer continuous in 
this way, but is discrete in both time and state space. It is these processes we 
want to discuss in this paper. 

The layout of the paper is as follows. In Section I, we describe a simple 
model of a branching process with killing corresponding to the detection in 
the population of individuals that are defective in some way. As will be seen, 
processes of this sort arise in the later sections as approximations to our 
genetic models, and so we highlight their behavior at the beginning. 

Section II discusses the detection problem in the case of selfing schemes 
where we assess the effects of selection and incomplete penetrance in 
heterozygotes on the time to formation of the au-genotype. We also discuss 
the behavior of a sex-linked trait (cf. [4]). In Section III we focus attention on 
models which lead to multidimensional branching processes. Among these, 
we analyze the effects of imperfect (partial) visibility of the au-genotype. We 
also study sib-mating and parent-offspring-mating systems. 

Although our primary interest is in the genetic applications, we include a 
brief appendix on the nature of the approximation methods used in Section 

II. 

I. BRANCHING PROCESSES WITH KILLING 

In this section we will develop briefly some results concerning one-dimen- 
sional Galton-Watson branching processes with killing. The results and 
methods derived here are used to analyze the approximating processes 
described in Section II. Motivated by these applications, we will use the term 
detection interchangeably with the word killing, so no confusion will arise. 

We consider a population of individuals that reproduces in the following 
way. Each individual alive at a particular time produces, independently of the 
others alive at that time, a random number of offspring, each with the 
distribution of a random variable 2 satisfying 

Pr{Z=k}=p,, ka0; PO’09 PO + P,<l. 

An offspring born to a particular individual has a probability I- (Y of being 
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found to be defective in some way. We assume in this simplest case that 
detection of defectives is independent in a family, and over families. To avoid 
trivialities, we also will assume that 0 < a -C 1. A family of size k survives to 
reproduce if, and only if, all k individuals are normal. This has probability 
pkak, k 2 0. It follows that if f(s) = EkaOpksk is the p.g.f. of Z, then the 
(improper) p.g.f. of the number of offspring born to an individual with no 
defective offspring is 

g(s)=f(as), (2) 

and 1 - g( 1) = 1 - f(a) is the probability that a family contains any defective 
individuals. The population now evolves as follows. Let X, be the number of 
individuals alive at time n. The population continues to the next generation 
only if no defective individuals are born. Otherwise, we say the process has 
ended by a killing (or detection) event. Under the simple detection scheme 
introduced above, it is in principle straightforward to analyze the process. We 
take X0 = 1, and define the iterates of g( .) by 

go(s)=s, g,w=g(g”-lw)~ n>l. (3) 

Intuitively, it is clear that the process ends either in extinction or in 
detection. Let q be the probability that extinction prevails. It is simple to 
show that if 0~ a < 1, then q is the unique root satisfying 0~ q < 1 of the 
functional equation g(s) = f( as) = s; if X0 = i > 1, then the extinction proba- 
bility is qi. 

The probability that the detection time TD is greater than n is given by 

Since g,(s) is decreasing in n for s~(q,s,), where S, is the larger root of 
f( as) = s satisfying s, > 1, we conclude that g,,(l) + q as n -) 00. This estab- 
lishes that indeed the process terminates either by detection or by extinction. 
The probability that detection prevails is then 1 - qi if X0 = i. 

Two relevant distributions in the study of detection times are the (condi- 
tional) detection time T,, and T =min(T,, T,), the time to extinction or 
detection. We have 

Pr[T,>nJT,<co]= g,(l)- 4 
l-q ’ 

n SO, 

and 

Pr[T>n]=g,(l)-g,(O), n20. (5) 

We determine the asymptotic behavior of (4) and (5) as follows. Let 
y = g’(q)= af’( aq)< 1. A modification of the proof provided by Athreya 
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and Ney [ 1, pp. 38-411 establishes the existence of 

Q(s)=~~~y-‘(gn(s)-q), oss<s,, (6) 

where Q(s) satisfies the functional equation Q(g(s)) = ye(s), subject to 
Q(q) = 0, Q’(s)=l, and Q’(S) >O for every SE [O,s,). It follows im- 
mediately that Pr[T>n]=O(y”), and Pr[T,>>lT,<oo]=O(y”),n~oo. 
Hence both T and T, (conditioned on TD <co) have finite moments of all 
orders. We can use’the result in (6) to establish other interesting asymptotic 
properties of the transition probabilities. We give one example involving the 
asymptotic conditional distribution. 

Fix X,=1, and set aj”)=Pr[X,, =j(T>n] and define up= 
8~&;“‘S’, 1st Gl. Using (4) and (5), we find that q(“)(s) = [g,(s)- 

g,(O)]/[ g,( 1) - g,,(O)]. Now use (6) to see that 

cp(,,)(s) = y~“k&)- q)+ y-“(q-g,(O)) ---f Q(s)-Q(O) 

Y “(g,(l)-q)+y-“(q-g,(O)) Q(l)-Q(o) 
as n-co. 

(7) 

The right-hand side of (7) is the probability generating function of the 
asymptotic conditonal distribution a, = lim, _ 3. a:“). 

Loosely speaking we interpret a, as follows. If the process has been 
running for a long time, and neither detection nor extinction has occurred, 
then X is in state j with probability a,. The mean of this asymptotic 
conditional distribution is B ,,,ju,=Q’(l>/[Q(l)-Q(o>l. 

There are essentially only two cases where explicit forms for the iterates of 
g(.) are available. One is the trivial casef(s)=p+(l-p)s, O<p<l, and 
the other is the linear fractional p.g.f. 

f(s)= 
r+s(1-r-p) 

I-ps ’ 
O<r<l, O<pCl, p+r<1, (8) 

which corresponds to 

;;-r)(l-p)pk-( 
k=O, 
kzl. (9 

In this latter case, we have 

g(s)= 
r+sa(1-r-p) 

I-pas (10) 
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Let 0~ s0 -C 1~ s, be the roots of the equation g(s)= s, and define 
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K= 
l-pas, 

I-PUS; (11) 

It is readily checked that 0~ K-C 1, and using a standard method for iterating 
a linear fractional function (cf. [8, p. 403]), one obtains 

S$,( K” - 1)+ s(so - K”s,) 
g,(s)= (K”s,_s,)_s(K”_l) ’ os~csl. (12) 

It follows immediately from (11) that P(T, d n) = g,(O)- s0 as n ---f 00, so that 
~7 = P(T, =C cc) = sO. Further, from (4), 

P[T,wlp-,<co]= K”(J, -so> 
K”(l-s,)+(s,-1). 

(13) 

In this case, K = y, and so the function Q( .) is given, referring to (11) by 

(14) 

The asymptotic conditional distribution {aj} specified at (7) has generating 
function 

Q(S)-Q(O) = s(l-3;‘) 
Q(l)- Q(O) I-ST’S ’ 

OGsCl, 

showing that { aj} is the geometric distribution 

a,=(l--s;‘)s;J, j>l, (15) 

with mean (l-s;‘)-‘. 
Another pertinent conditioning focuses attention on those paths that 

become extinct, rather than those that end in detection, The process { &, n > 
0} that arises by conditioning on extinction is again a branching process, 
with offspring p.g.f. given by 

f(+ g(v) - P as,+s[l-ppa(s,+so)] -- 
4 l-spas, ’ 

OGs<l. 

The process is subcritical (as it must be) with offspring mean p(l)= Kc 1. 
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For comparison with the paths allowing both extinction and detection, we 
will evaluate the asymptotic conditional distribution of X,,. Let p, be the time 
to hit {O}. Then it is straightforward to show that if X,,, = 1, 

j a 1. (16) 

This distribution has mean (1 - so/s,)-‘. Comparing this with the result of 
(IS), we see that the mean number of individuals, conditional on the process 
being “alive”, is rather lower in this last case than when detection is also 
allowed. 

2. DETECTING SPECIAL GENES IN FINITE POPULATIONS 

2.1. SELFINGSCHEMES 

We consider a diploid population of N individuals, and focus attention on 
a single locus at which there are two possible alleles, denoted by A and a. To 
model the evolution of this population, we let X, denote the number of Aa 
genotypes in the population at time n, n ~0, 1,2,. . . We assume that the 
population reproduces by selfing, that the population currently comprises 
only AA and Aa genotypes, and that homozygotes aa are visible (and 
therefore detected) as soon as they are formed. We want to ascertain the 
properties of the time taken to detect or form the first aa-individuals. To 
introduce the methods, and relate them to the results of Section 1, we look at 
the simplest case first. 

Suppose that no aa individuals have been formed up to time n, and that 
X, = i. Under the selfing scheme the genotypes AA, Au, aa are produced in 
proportions q, , p, , r, , where 

i 3i i 
P,=2N’ 4,=++ ‘l=m (17) 

To form the next generation, we take a multinomial sample of size N 
according to the probabilities specified in (17). The process continues to the 
next reproduction stage only if we select no aa-homozygotes, and hence 
X II+1 = j with probability p,, , where 

(18) 

The transition probabilities in (18) no longer have row sums unity, corre- 
sponding to our not considering those outcomes in which a positive number 
of aa-genotypes are produced. To remedy this, we may add on an extra state 
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H, say, and define the transition probabilities to H by 
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N 

Pl?f ‘I- qllN9 
J=o 

Pm=*, pHi=O, OGiG N. (19) 

The process here ends either by hitting the absorbing state at 0 (correspond- 
ing to the population comprising only AA individuals), or by hitting the 
absorbing state H (corresponding to detection of the au-genotype). Standard 
Markov chain methods show that the probability ui that 0 is reached before 
H starting from X0 = i satisfies the system of equations 

N 

ui=PiO+ 2 Pij”jf Q-1. (20) 
J=I 

Even for the innocent-looking probabilities specified by (17) and (18) this 
system is hard to solve explicitly. For small values of N, one could use 
numerical methods, but for large N this is impractical; we will resort to 
finding a suitable approximating process that should be good for large values 
of N. Details of the approximation method may be found in the appendix. 
Define 

@‘(.s)= ; pijsj=(p$ + qJN, (Sj<l. (21) 
J=o 

For the probabilities given in (17) and (18), this reduces to 

#ys)= [ *+$ ;_a ( 11 
N. 

Letting N -, cc gives 

cp’,N)(s)-v,(s)=exp(i( i-a)). 

This shows that we may approximate the behavior of {X,, , n 2 0} by another 
Markov chain with transition probabilities given by 

p,j=exp( -$) (ii’+, i,jaO, 

and killing probabilities 

p,,=l-exp -d , 
( ‘1 

i >O. 

(23) 

(24) 
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The form of (22) shows that this process is a Galton-Watson process 
involving killing as described in Section 1, with a Poisson offspring distribu- 
tion of the form 

f(s)=exp{-h(l-s)}, (25) 

with X =a and a=!. Although explicit formulae are not available for the 
iterates of g(s) =exp {s/2 - a}, the fixation and detection probabilities are 
readily found. The root q of g(s) = s lying between 0 and 1 is readily found 
to be q-0.6556, and we conclude that if the process starts with just one 
heterozygote, then the detection probability is u = 1 - q =0.3444. Starting 
with i heterozygotes, the detection probability is l-(0.3444)‘. These values 
should be a good approximation to the results for the underlying model even 
for moderate values of N. Of course, we can use the theory outlined in 
Section 1 to 

a 

single 

2 
n=l ’ (26) 

and this be numerically to MD(l)= 

THE EFFECT OF SELECTION 

In this section, we discuss the effects of selective differentials among the 
genotypes on the detection probability. Suppose that the relative fitnesses of 
genotypes AA and Au are in the ratio 1 : I+ 0, where 0 > - 1. We obtain the 
genotype formation probabilities (17) as 

r, = 1 - pi - 4,, 

(27) 

and, the transition probabilities are then given by (18) and (27). Paraphrasing 
the argument of (21) and (22) shows that the approximating process is a 
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TABLE 1 

Detection Probability o = I- q 
in Large Populations Starting with a Single Heterozygote. 

tIa 4 0 

-0.4 .8140 .1860 
-0.1 .6966 .3034 

0 .6556 .3444 
0.01 .6515 .3585 
0.1 .6144 .3856 
0.4 .4948 .5052 

aSelection parameter. 

branching process with 

so that the underlying branching process has Poisson offspring p.g.f. given by 
(25) with h = $( I+ 8), (Y = $. The detection probability is b = I- q, where q 

is given by the root of g(s)= cp ,(s)= s. Numerical results are provided in 
Table 1 to give an idea of the effects of selection. 

2.3. INCOMPLETE PENETRA NCE IN HETEROZYGOTES 

It is conceivable that there is incomplete penetrance in heterozygotes, 
resulting in some Au heterozyotes being phenotypically identical to the 
au-genotype. We will assume that any heterozygote has probability fi of 
being phenotypically an aa-type, this operating independently for all hetero- 
zygotes. We call j3 the penetrance probability. Our process now terminates 
either by detection of any au-individuals or in the detection of an Aa 
individual who is phenotypically au. For simplicity, we will suppose that 
there are no selective differentials operating in the system. The genotype 
formation probabilities are now given by 

Pi~~(l--P)~ 

3i 
q;=l-4N, i-,=1-p,-qi, (28) 

and the transition probabilities are specified by (28), (18), and (19). A now 
familiar analysis leads to the branching process approximation with Poisson 
offspring distribution (25), and with (Y = 2( 1 - 8)/3 and X = a. As should be 
the case, the continuation probability (Y here is smaller than in the case p = 0 
(Section 2.1) since we have the additional possibility of ending by detection 
of a heterozygote. To find the fixation probability q, we solve for the smallest 
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TABLE 2 

Detection Probability o 

In large populations 

Starting from a Single Heterozygote 

P” 

0 

4 0 

I5556 .3444 

0.01 .6524 .3476 

0.1 .6261 .3739 

0.5 .5407 .4593 

0.9 .4839 .5161 

0.99 .4735 .5265 

“Penetrance probability. 

positive root of s = exp { - $ +( 1 - (~).r/2}. Some numerical examples are 
provided in Table 2. 

Table 2 shows that the detection probability is only markedly changed 
when there is a very high penetrance probability /3. Indeed, the probability of 
detection occurring before fixation of the A-gene exceeds 0.5 only when 
/I >0.7725. 

2.4. SEX-LINKED TRAITS 

We would like to assess the effect of sex linkage on the detection 
probability of a (perhaps lethal) gene in males. We formulate the problem in 
the following way. Consider a population of N males and N females. Females 
carry the genotypes AA, Au, au, while males are either AY or aY. We 
suppose that the haplotype UY is the one we are trying to detect. Let X, be 
the number of Au genotypes in the population at time n, and suppose that all 
males at time n are A Y. The process continues to the next time point if the 
system produces no UY types in males. For reasons that will become apparent 
later, we will assume there are no au-genotypes in females. By analyzing the 
results of possible matings, the transition probability matrix is found to be 

p;,=( :‘)( &)‘( +!m-)“-‘( I-&)“, 0~i,jGN, (29) 

while the detection probability is 

This time, H refers to the appearance of the lethal in males, while X, keeps 
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track of heterozygotes in females. Of course, if X ever reaches 0, the 
population of females comprises only A genes, so the aY can never appear. 
(0) is again an absorbing state. We have assumed that there are no 
au-genotypes among the females; apart from this keeping the process one-di- 
mensional, original au-females would disappear in the next generation any- 
way. Yet again the approximating process is of the type determined by (25), 
with A = 1, a = 4, and so q, the fixation probability starting from a single 
female carrier Au, is the solution less than unity of the equation s = exp { - 1 
+ s/2}. The solution is q=O.4639, and so the detection probability is 
D =0.5361. In this case, there is quite a high chance of the gene appearing in 
males before it is lost in the females. 

If we want to use a screening program which will find with some 
probability y (independent for each) carriers in females, then assuming we 
stop on detection of either a female carrier or any UY males, the matrix in 
(29) and (30) becomes 

p,,= ( :)[~(l-y)]j(l-~)2y-‘, OGi,jGN, 

P,H=l-[( l-A)( l-$)I”, OGiGN. 

The approximating branching process has transition matrix 

i(l-y) ’ 1 pij=e-’ - 
[ 1 2 33 i, jao, 

(31) 

(32) 

(33) 

Pin=l-e --(‘/2)(‘+y), i 20, again a special case of (25), with X = 1, (Y =(l- 
y)/2. In Table 3 we give the detection probabilities 0 for different values of 

Y. 

TABLE 3 

Probability o of Detecting 

a Female Carrier A a or a Male 0 Y 

in Large Populations 

Starting with a Single Female Heterozygote 

Ya 4 V 

0 .4639 S361 

0.1 .4506 .5494 

0.3 .4212 S728 

0.1 .3900 .6100 

0.9 .3748 .6252 

“Probability of finding a carrier female. 
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For a rather different approach to some aspects of detecting genes in a 

sex-linked trait, see also James [4]. 

3. MULTITYPE MODELS 

In this section we will analyze several schemes which result in multitype 
branching-process approximations. Although we have not explicitly set forth 
the background results as we did for the one-dimensional case in Section 1, 
their derivation is straightforward. 

3. I INCOMPLETE DETECTION IN HOMOZYGOTES 

This example is an extension of the selfing case treated in 2.1. In field 
experiments using artificial selection schemes, it is likely that the au-genotype 
is not visible as soon as it is formed, and so the detection process need not 
end as soon as any au-homozygotes are produced. To model the effects of 
this, we might proceed as follows. We keep the population at fixed size N in 
each generation, and let (X,, Y,) denote the numbers of Aa- and aa-geno- 
types in the population at time n. We suppose that there is a probability j?, 
0 <p c 1, that an au-individual is detected, this acting independently for all 
such individuals. We say that a killing or detection event occurs if at least 

one au is found. 
Suppose that the population has continued to generation n without 

detection occurring, and that X, = i, Y, = j(0 =G i + j d N). By considering 
the output of (selfing) matings in the populations, we find that the genotypes 
AA, Au, au are produced in proportions q : p : r respectively, where 

i 
P=G’ r=$+-&, q=l-p-r. 

To produce the next generation of I Au, m au (and thus N - I - m AA) we 
take a multinomial sample of size N according to the probabilities p, q, r at 
(34). In order to continue without ending in detection, we find that this has 
probability 

P(r./)(l. m) = ( 1 ,yrn p’[r(l--P)l”qN-‘-“, (35) 

while the probability of a detection event is 

(36) 
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The relevant approximating process is now a two-dimensional one, whose 

transition functions are evaluated as follows. Let 

Then from (34), we see that as N + cc, qCi, jj w (z, w) + q+,,,)(z, w), where 

q,,j)(z,w)=exp ((j+~)(l-p)w+;-~-j). (38) 

The detection probability is then P(~,,),~ =l-exp{-/3(j+i/4)}. Equation 
(38) identifies the process as a (Poisson-generated) branching process with 
killing. To find the fixation probability at (O,O), which corresponds to a 
population comprising only AA genotypes, we use a modification of the 

method of Section 2. Let (za, wO) be the unique solution of the pair of 
functional equations 

V+,o,(z,w) =z, pco. I)(z, w) = w. (39) 

satisfying in our case 0 < zO, w, < 1. Then the probability that fixation 
obtains before detection, starting from an initial configuration (i, j), is zbwo/, 
and so the detection probability is q(,,,, = I- zkwo/, i, j 2 0. 

In the present case, the equations (39) are 

and 

exp{$(l-/?)w++z-$}=z 

exp((l-/3)w-l}=w. 

In Table 4, we give the value of (z,, wa) for different values of /3. 
For comparison with the one-dimensional case analyzed in Section 2.1, 

notice that the detection probability starting from i heterozygotes and no 

TABLE 4 

Fixation Probabilities (z,,, w,,) 

P” 20 WO 
.I .8349 .6159 

.5 .7161 .4639 

.7 .6872 .4169 

.9 .6650 .3822 

‘Homozygote visibility probability. 
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au-individuals is qcr,oj = 1 - zb. For the case p = 1 of Section 1.1, we obtained 
z0 = 0.6556. We remark that the same methods may be used to analyze the 

effects of selection, mutation, and incomplete penetrance in heterozygotes on 
this system. 

3.2. SIB-MATING SYSTEMS 

A variety of other interesting processes arise in the study of gene forma- 
tion times in inbreeding systems. In this first case, we will consider a 
sib-mating system. Consider a population of a constant size of N individuals. 
Instead of recording the number of particular genotypes in the group, we use 
a device due to Bartlett and Haldane [2] (see also Karlin [9, p. 2911). We now 
keep track of the number of mating types among the sibs. The process will 
terminate either by production of a homozygous au-individual, or by fixation 
of the mating type AA X AA, which results in fixation of the A-gene. Let 
(X,,, Y,) be the numbers of mating types AA X Au, Au X Au in the set of N 
sibs at generation n. We do not need to record other mating types, because 
the population is assumed to contain no au-individuals. The transition matrix 
is most expeditiously computed from the following mating table: 

Proportion of offspring mating types 
AAXAA AAXAa AoXAa 

Parent AAXAA 

mating AAXAu I 

1 0 0 
! I I 
4 2 4 

types AuXAa I I ! 
I6 2 4 I 

Given that X, = i, Y, = j, mating types AA X AA, AA X Au, Au X Au are 

produced with probabilities q: p : r, respectively, where 

pP&-+& q~*_~_-c& i j 
r=4/V+G, (40) 

as follows from the mating table. For example, 

The subsequent configuration of mating types is found by taking a multi- 
nomial sample of size N according to the probabilities p, q, r at (40). Hence, 

N 
P(r.,L(l.m) = I, * ( 1 q N-‘pmrmPl~ (41) 

and 

P(r,,),H=l- l- ( T&r 
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The probability in (42) depends only on j, since au-homozygotes can only be 
formed from the Au X Au matings. The recipe of the previous section shows 
that the generating functions v(,,,,( z, w) is given by 

qC,,,,(z,w)=exp( -i(a--;-T))exp{ -j(g-4-f)), (43) 

and then the corresponding functional equations (39) have the solution 
(za, wO) = (0.8147,0.55 IO). If the population starts with just a single u-allele, 
perhaps corresponding to a new mutation, then the detection probability is 
1- q<,,o, = 0.1853. 

3.3. PARENT-OFFSPRING MATING 

The final case we examine is a repeated parent-offspring mating system. 
Again, we keep track of mating types in the group of N matings. Let 
(X,,, Y,, , Z,,) denote the number of AA X Au, Au X AA, Aa X Au matings, the 
first element being the parent genotype, the second the offspring genotypes. 
Since no au-individuals have yet appeared, the number of AA X AA matings 
is N - X, - Y, - Z,,. The mating table is now given by 

Parent-offspring mating class in next generation 

AAXAA AAXAu AaXAA AnXAa 

Parent-offspring AAXAA 0 0 

mating class AAXAa 0 I 

in current AaXAA I 
2 ,‘, 

generation AaXAo 0 I 
4 

Given (X,, , Y,, , Z,) = (i, j, k), the mating types appear in proportions 

AAXAA:p,=I-;-h-i, 

AAXAu:p,=&, 

i k 
AuXAA:~,=~+~, 

i k 
AuxA~:p,=~+~, 

and the transition probabilities are 

l (44 

with 
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The generating function is given by 

(PJ,:;.k)(G WY u) = 2 P~r,,,k,,(r’.,,.k’)z”wJ’~k’, 
(i’. j’. k’) 

and it is straightforward to see that the limiting generating function is 

A routine development establishes that the probability of fixation of the 
A-gene before detection, i.e., reaching (O,O,O) before H from an initial 
configuration (i,j,k) is given by z;w,ju$, where (zO,wO, uO) is the ap- 
propriate solution of the functional equations 

Numerical evaluation yields the solution (0.7909, 0.9012, 0.6321). Starting 
from a single heterozygote present in a parent, i.e., from state (O,l,O), the 
detection probability is given by l-0.9012 = 0.0988. 

4. DISCUSSION 

In this paper, we have analyzed the properties of a class of branching 
processes with killing that arise in the study of the process of gene formation 
in nonrandom mating systems. The study is relevant in artificial selection 
practices, as it pertains to early detection of carriers of deleterious genes. In 
evolutionary theory, this problem concerns the elapsed time to observation of 
a new mutant homozygote type. This problem also bears on objectives of 
medical genetic screening that attempts to identify carriers of defective genes 
or chromosomal anomalies. The mating patterns studied include cases of 
selfing lines and sib-mating and parent-offspring inbreeding practices. This 
framework also is appropriate for models with sex-linked traits. Several of 
the branching processes are multidimensional, and we used these to assess the 
effects of imperfect identification of recessive homozygotes. 

Many of the approximations involved Poisson “offspring” distributions. 
This is a result of our use of the clasical Wright-Fisher, or multinomial, 
sampling schemes. Other formulations of the reproduction mechanism will 
lead to non-Poisson reproduction behavior, but of course the same methods 
apply in their analysis. 

The framework of Markov models with killing seems to be a natural one 
within which to analyze the important question of gene formation times. For 
some examples in which the approximating process is a diffusion with killing, 
the problem is also tractable; see [5-71. We concentrated primary attention 
on detection probabilities. Moments of the detection or fixation times are 
accessible by the same theory, and we cited some examples in the text. 
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APPENDIX. CONVERGENCE TO BRANCHING-KILLING PROCESS 

We will prove the convergence of the family of Markov chains described 
in (18)-( 19), as N -+ cc, to the branching process (with killing) whose progeny 
p.g.f. is given in (22). To this end, we need to prove that for each i, and 
integer r 

where p1’1)( N) is the r-step transition probability matrix induced by (18) with 
pi=i/2N, q,=l--3i/4N, and P$‘) is the r-step transition probability of 
the branching process with individual (improper) p.g.f., 

cp(s)= es/2-3/4 and ; *(r) PIJ ~“=[cP,(~!]~=[cP,-I(cP(~))~‘. (46) 
j=O 

For r=l we immediately have X~=‘=,lj,j(N)s’=(l-(a-s/2)i/N)N, 
which clearly converges uniformly over O< s < 1 and for each fixed i to 
[cp(s)]‘. It follows, as all terms are nonnegative, that for O< s d 1, 

; Ifiij(N)- P:,ls'-0. 
j=O 

(47) 

LEMMA I 

For all 0~ s d 1 and all integer r 

Proof. (by induction on r). For r = 1 the result follows immediately 
relying on the inequality (I- a/N)NGe-“, valid for all a, -1G a<l. 
Consider now r 2 2; then j:jr) = Z,“=,pii, &- ‘) and the induction hypothesis 
joined with the result for r = 1 gives ZT=aF/,?sj= ~~~O~ik~~~o~~~-‘)~J~ 

%=,~&&,(r)lk c [cp((P,-l(~>l’= [cp,(s)l’. 

We next prove 

LEMMA 2 

For fixed i and uniformly in 0 G s G I we have 

lim - 
N-cc J=O 

(49) 
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Prooj: With i fixed we can choose an integer K such that ZTEK+, P,TsJ G E, 

and then from (47) we deduce for N large enough that EYE K+, ji, ( N) s J 4 2 E. 
Observe next that Z~==,P,‘f)(N)sJ~C~==,P,,Z,N=,~~,,sJ=Z~==,1’,,[1-(~- 

s/2)k/N] N. Now for 0 G k G K we can determine an integer I depending 
only on K s_uch that [1-(+-s/2)k/N]N-‘3[q(s)]k for all OGkGK. 

Thus, E_&P,,[l -(a - s/2)k/NlN 3 Z,K_,&[cp(s)]k[l -(: - s/2)k/N]’ 
=BkK,oP,k[(p(s)]k+O(l/N) and then =Z1~~,~i,[cp(s)Jk+0(1/N)-2~= 
[q2(s)]’ + 0( l/N) -2~. The result of (49) now routinely follows. An analo- 
gous argument proves 

lim $ &)(N)sJ2[cp,(s)]’ - 
N-m i=o 

uniformly for 0 G s d 1. The conjunction of (48) and (50) establishes 

J@, ,i &“(N)s’= [&>I’ (51) 
J-0 

uniformlyinO~ss1 foreachfixedi,Oci<N,andintegerr=1,2,3,.... 
Let TdN) (TAN)) be the random variable of the time to loss (detection) of 

allele a for the process (18), and rz (r,*) that for the corresponding 
branching process with killing. Obviously P{ TdN) c r 1 XCN)(0) = i} = P$)( N), 
which converges to [(p,(O)]’ = P$‘). Obviously for each integer t, P{ThN) > 

tlXN(0)=i}=Z,N_O~~~)(N) converges to P(T,*>tjX(O)=i}=[cp,(l)]‘. Ac- 
tually, the convergence is very strong, such that all moments of TAN) and 
TdN) can be well approximated by those of Ti and T$, respectively. 

The same kind of analysis applies, mututis mutandis, to all the discrete 
processes and their branching-process limits of Sections 2 and 3. 
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