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Abstract 

We analyze a class of linear birth and death processes X(t) with killing. The 

generator is of the form Ai = bi + 0, t, = ai, y, = ci, where y, is the killing rate. 
Then P{killed in (t, t + h)JX(t) = i= 

y•h 
+ o(h), h 0. A variety of explicit 

results are found, and an example from population genetics is given. 

BIRTH-DEATH PROCESSES; KILLING; POPULATION GENETICS 

0. Introduction 

Let { Y(t), t 
-0} 

be a birth-death process on S = {0, 1, 2, - } with infinitesi- 
mal generator A = (aj) given by 

a, = 0, Ii-jI> 1 

(0.1) a, = A,, a,_, = 
,i, a, = - (A, + 

t,), 
where A, > 0 for i 

>-0, 
i > 0 for i 1, and /,o -0. If Lo > 0, the process has an 

absorbing state at - 1. It is established in [1] that in virtually all practical cases of 
birth-death processes the transition function Pq,(t) = P{ Y(t)= j I Y(0) = i} may 
be represented in the form 

0o (0.2) Pqj(t)= 1T i e-•'OQ (x)Qj (x)dp (x), i,j ?0 

where p is a positive measure on [0, oo), and the system of polynomials {Q. (x)} 
satisfies 

OQ(x)- 1 

(0.3) - xOo(x) = - (Ao+ ? o)OQ(x)+ AoO,(x) 

- xO (x)= 
1oOo_,(x) 

- (An + 
1o)O, 

(x)+ 
AOo,n(x), 

n 1, 
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and the orthogonality relations 

SQi(x)Q, 
(x)dp (x)=, i, 

j 

where 

ITo,-=l, 
n = ?I , n 1=l 

In this note we study the properties of a class of birth-death processes with 

generator of the form 

ai; =0, i-j 
>1 

(0.4) (ai.g, = Ah, a,,_,= /i, ai = - (hi + t, + Yi), 

where yi > 0, i > 0. The parameter yi may be regarded as the rate of absorption, 
or killing into a fictitious state H, say; 

P{Y(t + h)= H IY(t)= i}= yh + o(h), h 10. 

Our study of linear birth-death processes with killing was motivated in part by 
the following problem from population genetics. Consider a population of N 

individuals, each of which is classified as one of three possible genotypes AA, 
Aa, aa. A question of some interest, posed originally in [6], is: Given that the 

population currently comprises only the genotypes AA and Aa, how long does it 
take to produce the first homozygote aa? To put the problem in a simple 
framework, let (X(t), Y(t)) be the number of Aa, aa genotypes in the 

population at time t, and take (X(0), Y(0)) = (i, 0) for 0 
= 

i - N. Then we want to 

ascertain the properties of the time T defined by T = inf{t > 0: Y(t) > 0}. Since 

Y(t) is currently 0, we need only keep track of X(t), and we add an extra state H 

to the state space S = {0, 1, - - -, N} to account for any cases in which Y( -) > 0. 
We concentrate on a model in which reproduction occurs by selfing. For 

further details of the problem, see also [3], [6]. We assume that reproduction 
events occur at the points of a Poisson process of rate A. At such a point, suppose 
there are no aa individuals, i Aa and N - i AA in the population. Following 
Moran [5], we chose one individual at random to die, and one to replace him as 
the result of selfing. The probabilities PAA, PAa, Paa that the replacement 
individual is of genotype AA, Aa, aa are given by 

3i i i 
(0.5) paA =1 4N ' pAa 2N ' a 4N" 

The process X())is now identified as a birth-death process with killing on 
S = {0, 1, 

. 
, N} U {H}, and the rates (0.4) are given by 
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( i 

(0.6) 
U, 

= A k PAA 

Yi = Apaa. 

Explicit results for this process are not easy to find, but there is an 

approximating process that is readily analyzed. We take A = N (corresponding 
to speeding up the timescale), and let N--+oo. We obtain a process X() on 

{H} U {0, 1, ... } with transition rates 

(0.7) A, = 1i, ti=i, Yi = i. 

We described a number of explicit results for the process corresponding to (0.7) 
in Section 4. 

1. Preliminaries 

Although the methods we develop will apply in more general cases, we focus 
primary attention on a variety of linear processes, where explicit results are 

readily established. We start with the case of (0.1) where 

(1.1) A, = (i + 1)A, ' ,t =(i+P-1)L, A <A , P3>1. 

Here ito > 0, so there is an absorbing state at - 1. We denote the corresponding 
process by X(.) = {X(t),t >0}. The properties of this process have been 
established in detail in [2]. We record the following results. Let 

F(a, b; c;z) I= (an(b) (a) = r(an) n o n!(c), ((a) 
and define 

(1.2) op, (x) = <Pn (x ;, y) = F(-.n, - x;f3; 1- (1/y)), 

for p > 0, 0 < y < 1, and set p_, 0. The polynomials (0/),np. (x) are the classical 
Meixner polynomials. Now set 

(1.3) p. 
=(1-y)(0).nY, 

y 

Table IC of [2] establishes that if x, = (n +3 - 
1)(p -A), then P,(t)= 

P{R(t)= j X(t) = i} is given by 

(1.4) 9 (t) = 

-oe 
O, (x, )O, (x, )p, 

where 
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On (X))= 
n! 

+ 
. 

From now on we concentrate on the case 3 = 2. If we write X(t)= X(t)+ 1, 
then {X(t), t 

_ 
0} is the standard linear birth-death process on S = {0, 1, 2, ... } 

with rates 

(1.5) hi 
= iA, =ig, i !0 (A < ) 

and Pij(t) = Pi ,-,(t), i,j > 1. The explicit representation of Pij(t) given in [2], 
pp. 654-5 is also useful, but we content ourselves with recording two standard 
formulas that can also be derived from [1] and [2]. 

(1.6) Gi(z,t)= Pij,(t)z 
I 

= 
(1 - 

)+(a 
- y)z I z <1 

=,,1 

- y - ZY(I - a) ] 

where a = exp{ -((g - A)t}. We note the notation of a here differs from [2]. 

(1.7) Yj(1 -y 
i')[j(A- 9)]-1', O< i 

<-j Gj =j Pi (t )dt = 

2. Linear birth-death with killing 

We now focus on the special case of (0.4) in which the process X( ) = 

{X(t), t 0} has state space {H} U {0, 1,2, ... }, and generator determined by 

(2.1) A; = bi, yi = ci, ui = ai, 

where a, b, c > 0. 
In what follows, let vo and vi be the roots of the equation 

(2.2) bv + (a/v)= a + b + c; 0< vo< 1 < v. 

It is clear that either X is absorbed at 0 or killed at H in finite time. Standard 

probabilistic arguments show that 

qj = P{X(t) hits 0 before H X(0) = i}= v,, i0. 

So we are led to look at the associated process {X(t),t O0} obtained by 
conditioning on {0} being reached first. The transition probabilities are given by 

(2.3) Pii (t) = Pi (t)vMvV-o', i, i 0. 

Observe that P,+i.(h)= Pi.,(h)vo= ibvh + o(h) and P,; ,(h)= (ia/vo)h + o(h). 
Therefore, X( ) is a linear birth-death process with transition rates given by 

(2.4) Ahi = ibvo; ,i =- = ibv, i O. vo 
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(The last equation results since the product of the roots of (2.2) is voyV = a/b.) 
Clearly, Ai = ibvo < 

xi, 
= ibv . It follows immediately that X( ) is generated as a 

special case of (1.5). Hence, for z I-_- 1, 

Gi (z, t) = Pj (t)z' = o'VPq (t)z' = 
voG, (zvo-, t). 

j=o j=o0 

Using the identifications A = bvo, A = a/vo, y = A/IA = vo/v1, we have 

(2.5) G ,(z,t)= 
[vov(1-o-)+ z(vijo-vj) 

v - Vov- z (1- 0) 

where in this case o- =exp{- b(vi - vo)t}. We also record from (1.7) that 
G•, = fo P4 (t)dt = v',vo'Gi, is given by 

[jb(v,-vo)]-'vo'(v'-v'), 
O<i j 

(2.6)G,= 
[jb(vi - vo)]-'vO(vo'- v'), i j. 

We shall now discuss some of the properties of the killing process. Denote by 
TH the hitting time of H. Since P, {T, > t} = Pi {0! X(t)< oo} = CG (1, t), (where 
P,, E, denote probabilities and expectations given X(O)= i), we have 

(2.7) 
Pt(T,>t=[ 

{T(v0- 1)+(-Vo] i+ >1. [v(vI - 1) + v0(1 - vo) 

(2.7) establishes, letting t-)oo and hence o--0O, that P{TH < oo} = 1 - vo, which 
confirms that indeed X(.) ends at {0} or {H}. The mean termination time is 
given by E, [T] = E,(To A TH) = 1' l G*j. 

In what follows, we shall consider only those sample paths that end at {H} 
rather than {0}. Denote this process by X*(t), with transition functions P,*(t), 
i,j _ 

1. Since in this process {H} is hit with probability 1, it makes sense to define 
the killing position K = X*(TH). We shall derive the distribution of K in the 
following lemma. 

Lemma 1. Let {X(t), t O0} be a birth-death process with infinitesimal 
parameters (0.4). Assume P, {TH < oo} = 1 for all i E S. Then P, {K = j} = Gy,, 
i, jE S. 

Proof. Pi{X(t)= j, t < TH 5 t + h} = 
P,(t)-yih + o(h), h 1 O. So P,{K = j} = 

fo" P, ( t )ydt 
-- 

yiG. 
For the process at hand, the relevant Green's function G,* is given by 

G = P (t)dt= P, (t)dt =- i ), , S1v0 .I 1-vo 
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and since y, = cj(1 - vi,)-' (the rate of killing given eventual killing) we find that 

P {K = j} = cjG(1 - v) = 
Ic[b(vI - 

vo)]-l(1 
- vo)- 'v '(vl - Vi), 0 < i j 

c [b(v, - vo)]-'(1 - v)- 'vo(vo'- vi), i0 j. 
(2.8) 
When i = 1, we see that P,{K =j} = (1- 

1I/v)(1/vI•', 
j 1. 

To describe the behavior of X(-) and X*(.) before killing takes place, we 

shall study the asymptotic conditional distributions given by 

ai = lim P,{X(t)= j ITo A TH > t}, 

(2.9) 
a* 

= lim Pi {X*(t)= j T,, > t}. 

These are straightforward to compute from (2.5), via the following lemma. 

Lemma 2. 
lim_..•o-(d• 

(Z, t)- v)) = - v A(z), i 
, 

where a = 

exp{ - b(vI - vo)t} and A (z)= (v, - vo)(vo- z)I(v - z), O Z < vi. 

Proof. From (2.5), we can write 

G, (z,9t)V= V)- o-eA(z) 1- 
0 

Vl-z Hence 

The result now follows immediately as a ->0 when t - 0. 

To establish the first of (2.9), we use Lemma 2 to see that for 0 z 1, 

,(~t) o - GrA (zt) -G G( 
O-,t) 

==1 Pi 
(,f(t)= 

J IT > t}zj = (z, t)- 
(i,(0, 

t) 

;-- 
= G, (1, t) 

- 
, (0,/t) 

- A (z)+A(0) as t-00 
- A (1) + A (0) 

The limit is precisely the probability generating function of ii, which leads on 

simplification to 

Using similar considerations, we see that for 0 
_ 

z 
- 

1 
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P,{X*(t)= jI TH 
> 

t}z' = Pi (t) 

01 

(t)P z 
j=1 k=1 j=1( 

Gi (z, t)- Gi(zvo, t) 

Gi(1, t)- Gi,(vo, t) 

So another application of Lemma 2 shows that 
{a*,j 

1} has probability 
generating function given by 

Sa*z' 
-A(z)+A(zvo) 

j=1 -A(1)+A(vo) 
The probabilities {a } are given by 

V, 
- 

vo 1 1 ' Vo(V 
- 

) Vo Vo a 
- 1 - 

O 
1 j, 21 S 

v,(1-Vo) vI 
-v v,(1- o) 1 

, -- 

3. Linear birth-death process with immigration and killing 

In this section, we concentrate on the birth-death process X(t) with killing on 
state space {O, 1, - - - } U {H} with infinitesimal transition rates given by 

(3.1) di+.,+ 
= bi + , ,_, 

= ai, i,, = - [i(a + b + c)+ 0] 

where a, b, c, 0 > 0. 
The following observation simplifies the analysis. Let v = vo be the smaller 

solution of Equation (2.2), and define 

(3.2) a*=a/lv, b*=vb, 0* = Ov, K = 0(1- v). 

Recall from (2.4) that a*> b*. Let X(t) be a birth-death process with rates 

(3.3) A, = ib * + 0 *, i=ia*, i0 

and let P,, (t) be its transition functions. Define 

(3.4) Pi (t) = 
v-'v'P,, 

(t)e-K' i, j 

Lemma 3. The functions {P, (t), t > 0} satisfy 

P,' (t) = aiP-,_, (t) - {i(a + b + c)+ 0}P,j (t) + (bi + 
O)P+,,, 

(t), i,j > 
0 

and P,j(t)= P{X(t)= j I X(O) = i}. 

Proof. P/,(t)= v-'v'Pi (t)e-Kt' - KP,(t), i,j > 0. 

Now use the backward equation satisfied by {P,1 (t), t > 0} to see that 

P (t) = e -"'v-'v' [a * 

iP-,1 
(t)+ (b*i + 

*)P,+, 
(t) 

- ((a * + b *)i + 0 *)P. (t)] - KPi (t) 

= 
aiP,i_,. 

(t) + (bi + O)P+,, (t) - {(a + b + c)i + O}Pq; (t). 
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Since {P, (t), t _ 
0} satisfy the requisite equations for {X(t), t _ 0}, and because 

the infinitesimal rates are linear they determine a unique process. We may then 
take P,, (t)= P {X(t) = j I (O) = i}, and the proof is complete. 

It is worth while noting that if in (3.2) we specify v = vi (the larger solution of 

(2.2)) the resulting X(t) is identical to that determined from v = v,. 
The X(-) generated by (3.2) and (3.3) is a linear birth-death process with 

immigration which has been extensively studied. In particular, the spectral 
decomposition (0.2) is given in [2], Table 1F. From [2], 

(3.5) P, (t)= irj e -'QO(x)QO(x)dp(x) 

with 

(3.6) o = exp{- b(v - vo)t}. 7 = (j 

)=b 

= 
0 

v, 
v i b b V1 

where the measure p() has masses of size p, (cf. Equation (1.3)) at points 

x, 
= nb(vi- vo), n = 0,1,2,- , and 0~ (x)= Pn (x/b(v,- v0), 3, y (cf. (1.2)). 

(3.5) reduces then to 

(3.7) P1 (t)= 0- n 
,i" ;(n)cpj(n)pn. n=0 

The spectral representation 

Pj (t)= if, 
e -'Qi (y)Qj(y)dpf(y) 

is now-accessible. 
In fact 

P,i (t) = v v'je K'P,(t), 

and from (3.5) we get 

P,• 
(t) = v' vo-'e- K'Tjf eQ-'O(x)Q (x)dp(x) 

=~ 
T e ....( + "?t j,( [v• Q•, (x )]dp(x) 

= Ir" e- [vO, (y - K)L[v O;(y - K)]dp(y - K). 

The spectral measure 5 is given by p3(E)= p(E - K), that is p concentrates mass 

p, of (1.3) at K + nb(v,- vo), n =0,1,2,.--., and 

(3.8) O, (x)= v ,, (x - K), i 
-0. 
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Now X(-)is positive recurrent and lim,,~ eK"Pf,(t)= vvo'Vjrjpo. Further, the 

sequences m- = 
r ivo' (i > 0), 6 = vto (i O0) satisfy the invariance properties 

mi (t) = e -K'mj, j 0 

(3.9) 

•P; (t)? = 

e-K,5,, 
i > 0. 

It follows in particular that Z(t) = e'"vu' is a martingale. 
The spectral representation yields in a simple way the recurrence properties of 

X(t); see also [4]. The explicit form for 
P,/ (t) 

now follows from (3.4) and [2], p. 
655. Hence, we have 

G, (z, t)=E P, j(t)z' j=0 

(3.10) 
1 - y - z (1 - a) 

1 
f1 

- 
- y0J '1 

where 

r 
= e 

-(<,- 
o)' y v 

o - v b 

and so 

G, (z, t)= Pi (t)z 
j=0 

= C 
vo'v;P,(t)e "'zI 

j=0 

= ve-"'Gi(zvo', t). 

Again, denoting by T the killing time, we have 

Pi{IT> t}= Gj(1, t) = 
voe-"'G, 

(v,', t), 
i=>0; (3.11) S(3.11) [o(V,-1)+ vr(1- vo)][(v ,-1)+ T(1-vvo) i 

. 
- [ 1v-1+o(1-vo j) vi-vo ? 

For the case i = 0, we find 

Eo[ T] = Go(1, t)dt 

-v -_ v 1 F 1- vo 1- Vo vo-1 
v,-1 0 

0(1-vo) Fv,1v 
?- vo 

v, 
-vol v,-1 

Lemma 1 shows in principle how to find the distribution of the detection 
position, once the Green's function 

G,= f P, (t)dt = 

,vvo'f 
e-"'P; (t)dt 

) 
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is computed. This seems difficult to do in an explicit way. However, the 

asymptotic conditional distribution is easy to find. The method of Section 2 
shows that 

j=0 - i (1, t) 1 - Vo 

as t - o. Hence the asymptotic conditional distribution {ai,j > O} is negative 
binomial, with 

a;= lim P { fX(t) = jI T > t} = (1 - vo) V'o j 20, 

where p = 0/b. The mean is E jaj = (1 - vo)-'fvo. 
We remark that the generating function G, (z, t) can be found using a simple 

compounding argument based on Poisson immigrations of rate 0, and the linear 
birth-death process studied in Section 2. However, direct evaluation of the 

spectral representation leads to more detailed results. The general theory 
established in [1] can be used to evaluate first-passage problems. Here is another 

example. Let qj be the probability that X( ) reaches {0} before {H}. Then 

( -K 
q , =Q(0)o= v,,OQ(- K) = ( 

(b... vo)) 

4. An example from population genetics 

We highlight in this concluding section several explicit results for the 
birth-death process with rates (0.7). This is a special case of the process studied 
in Section 2 (2.1) with b = 1/2, a = 1, c = 1/4. We get vo = 0.7192, vi = 2.7808, 
and it follows that the probability that formation of any aa-individuals occurs 
before fixation of the A allele is 1 - q, = 1 - (0.7192)', i _ 

0. This will give a good 
approximation to the underlying process (0.6) when N is large. In a genetic 
context, we are most interested in the behavior of the process when X(0) = 1, 
corresponding to the appearance of a single mutant a -allele. For the general 
case of Section 2, we have from (2.6) 

(4.1) E,(T) = EI(To T) •) = , = 
--In 

1-- 

This reduces to E,(T)= 0.891 in the present case, and corresponds to a value of 
0.891N for the process (0.6) with A = 1. In a similar way, we find 

(4.2) 
E,(TH I TH < 

oc) = G,*, In 
, 

Th- b(v, 
- 0lN o 

This gives a value of EI(TH I T, < 0)= 1.043, or 1.043N for (0.6) with A = 1. 
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