LINEAR BIRTH AND DEATH PROCESSES WITH KILLING

SAMUEL KARLIN,* Stanford University
SIMON TAVARÉ,** Colorado State University

Abstract

We analyze a class of linear birth and death processes $X(t)$ with killing. The generator is of the form $\lambda_{i}=b i+\theta, \mu_{i}=a i, \gamma_{i}=c i$, where γ_{i} is the killing rate. Then $P\{$ killed in $(t, t+h) \mid X(t)=i\}=\gamma_{i} h+o(h), h \downarrow 0$. A variety of explicit results are found, and an example from population genetics is given.

BIRTH-DEATH PROCESSES; KILLING; POPULATION GENETICS

0. Introduction

Let $\{Y(t), t \geqq 0\}$ be a birth-death process on $S=\{0,1,2, \cdots\}$ with infinitesimal generator $A=\left(a_{i j}\right)$ given by

$$
a_{i j}=0, \quad|i-j|>1
$$

$$
\begin{equation*}
a_{i, i+1}=\lambda_{i}, \quad a_{i, i-1}=\mu_{i}, \quad a_{i i}=-\left(\lambda_{i}+\mu_{i}\right), \tag{0.1}
\end{equation*}
$$

where $\lambda_{i}>0$ for $i \geqq 0, \mu_{i}>0$ for $i \geqq 1$, and $\mu_{0} \geqq 0$. If $\mu_{0}>0$, the process has an absorbing state at -1 . It is established in [1] that in virtually all practical cases of birth-death processes the transition function $P_{i j}(t)=P\{Y(t)=j \mid Y(0)=i\}$ may be represented in the form

$$
\begin{equation*}
P_{i j}(t)=\pi_{j} \int_{0}^{\infty} e^{-x t} Q_{i}(x) Q_{j}(x) d \rho(x), \quad i, j \geqq 0 \tag{0.2}
\end{equation*}
$$

where ρ is a positive measure on $[0, \infty)$, and the system of polynomials $\left\{Q_{n}(x)\right\}$ satisfies

$$
Q_{0}(x) \equiv 1
$$

$$
\begin{align*}
& -x Q_{0}(x)=-\left(\lambda_{0}+\mu_{0}\right) Q_{0}(x)+\lambda_{0} Q_{1}(x) \tag{0.3}\\
& -x Q_{n}(x)=\mu_{n} Q_{n-1}(x)-\left(\lambda_{n}+\mu_{n}\right) Q_{n}(x)+\lambda_{n} Q_{n+1}(x), \quad n \geqq 1, \tag{7}
\end{align*}
$$

Received 18 August 1981.

* Postal address: Department of Mathematics, Stanford University, Stanford, CA 94305, U.S.A.
** Postal address: Department of Statistics, Colorado State University, Fort Collins, CO 80523, U.S.A.

Research supported in part by NIH Grant 5R01 GM10452-18 and NSF Grant MCS-24310.
and the orthogonality relations

$$
\int_{0}^{\infty} Q_{i}(x) Q_{i}(x) d \rho(x)=\frac{\delta_{i j}}{\pi_{j}}, \quad i, j \geqq 0
$$

where

$$
\pi_{0}=1, \quad \pi_{n}=\frac{\lambda_{0} \lambda_{1} \cdots \lambda_{n-1}}{\mu_{1} \mu_{2} \cdots \mu_{n}}, \quad n \geqq 1 .
$$

In this note we study the properties of a class of birth-death processes with generator of the form

$$
\begin{align*}
a_{i j} & =0, \quad|i-j|>1 \\
a_{i, i+1} & =\lambda_{i}, \quad a_{i, i-1}=\mu_{i}, \quad a_{i i}=-\left(\lambda_{i}+\mu_{i}+\gamma_{i}\right), \tag{0.4}
\end{align*}
$$

where $\gamma_{i}>0, i>0$. The parameter γ_{i} may be regarded as the rate of absorption, or killing into a fictitious state H, say;

$$
P\{Y(t+h)=H \mid Y(t)=i\}=\gamma_{i} h+o(h), \quad h \downarrow 0 .
$$

Our study of linear birth-death processes with killing was motivated in part by the following problem from population genetics. Consider a population of N individuals, each of which is classified as one of three possible genotypes $A A$, $A a, a a$. A question of some interest, posed originally in [6], is: Given that the population currently comprises only the genotypes $A A$ and $A a$, how long does it take to produce the first homozygote $a a$? To put the problem in a simple framework, let $(X(t), Y(t))$ be the number of $A a, a a$ genotypes in the population at time t, and take $(X(0), Y(0))=(i, 0)$ for $0 \leqq i \leqq N$. Then we want to ascertain the properties of the time T defined by $T=\inf \{t>0: Y(t)>0\}$. Since $Y(t)$ is currently 0 , we need only keep track of $X(t)$, and we add an extra state H to the state space $S=\{0,1, \cdots, N\}$ to account for any cases in which $Y(\cdot)>0$.

We concentrate on a model in which reproduction occurs by selfing. For further details of the problem, see also [3], [6]. We assume that reproduction events occur at the points of a Poisson process of rate λ. At such a point, suppose there are no $a a$ individuals, $i A a$ and $N-i A A$ in the population. Following Moran [5], we chose one individual at random to die, and one to replace him as the result of selfing. The probabilities $p_{A A}, p_{A a}, p_{a a}$ that the replacement individual is of genotype $A A, A a, a a$ are given by

$$
\begin{equation*}
p_{A A}=1-\frac{3 i}{4 N}, \quad p_{A a}=\frac{i}{2 N}, \quad p_{a a}=\frac{i}{4 N} . \tag{0.5}
\end{equation*}
$$

The process $X(\cdot)$ is now identified as a birth-death process with killing on $S=\{0,1, \cdots, N\} \cup\{H\}$, and the rates (0.4) are given by

$$
\begin{align*}
\lambda_{i} & =\lambda\left(1-\frac{i}{N}\right) p_{A a} \\
\mu_{i} & =\lambda \frac{i}{N} p_{A A} \tag{0.6}\\
\gamma_{i} & =\lambda p_{a a} .
\end{align*}
$$

Explicit results for this process are not easy to find, but there is an approximating process that is readily analyzed. We take $\lambda=N$ (corresponding to speeding up the timescale), and let $N \rightarrow \infty$. We obtain a process $\tilde{X}(\cdot)$ on $\{H\} \cup\{0,1, \cdots\}$ with transition rates

$$
\begin{equation*}
\lambda_{i}=\frac{1}{2} i, \quad \mu_{i}=i, \quad \gamma_{i}=\frac{1}{4} i . \tag{0.7}
\end{equation*}
$$

We described a number of explicit results for the process corresponding to (0.7) in Section 4.

1. Preliminaries

Although the methods we develop will apply in more general cases, we focus primary attention on a variety of linear processes, where explicit results are readily established. We start with the case of (0.1) where

$$
\begin{equation*}
\lambda_{i}=(i+1) \lambda, \quad \mu_{i}=(i+\beta-1) \mu, \quad \lambda<\mu, \quad \beta>1 \tag{1.1}
\end{equation*}
$$

Here $\mu_{0}>0$, so there is an absorbing state at -1 . We denote the corresponding process by $\bar{X}(\cdot)=\{\bar{X}(t), t \geqq 0\}$. The properties of this process have been established in detail in [2]. We record the following results. Let

$$
F(a, b ; c ; z)=\sum_{n \geqq 0} \frac{(a)_{n}(b)_{n} z^{n}}{n!(c)_{n}}, \quad(a)_{n}=\frac{\Gamma(a+n)}{\Gamma(a)},
$$

and define

$$
\begin{equation*}
\varphi_{n}(x)=\varphi_{n}(x ; \beta, \gamma)=F(-. n,-x ; \beta ; 1-(1 / \gamma)) \tag{1.2}
\end{equation*}
$$

for $\beta>0,0<\gamma<1$, and set $\varphi_{-1} \equiv 0$. The polynomials $(\beta)_{n} \varphi_{n}(x)$ are the classical Meixner polynomials. Now set

$$
\begin{equation*}
\rho_{n}=(1-\gamma)^{\beta}(\beta)_{n} \frac{\gamma^{n}}{n!}, \quad \gamma=\frac{\lambda}{\mu} . \tag{1.3}
\end{equation*}
$$

Table 1C of [2] establishes that if $x_{n}=(n+\beta-1)(\mu-\lambda)$, then $\bar{P}_{i j}(t)=$ $P\{\bar{X}(t)=j \mid \bar{X}(t)=i\}$ is given by

$$
\begin{equation*}
\bar{P}_{i j}(t)=\left(\frac{\lambda}{\mu}\right)^{j} \frac{j!}{(\beta)_{j}} \sum_{n=0}^{\infty} e^{-x_{n} t} Q_{i}\left(x_{n}\right) Q_{i}\left(x_{n}\right) \rho_{n} \tag{1.4}
\end{equation*}
$$

where

$$
Q_{n}(x)=\frac{(\beta)_{n}}{n!} \varphi_{n}\left(\frac{x}{\mu-\lambda}-\beta+1\right)
$$

From now on we concentrate on the case $\beta=2$. If we write $X(t)=\bar{X}(t)+1$, then $\{X(t), t \geqq 0\}$ is the standard linear birth-death process on $S=\{0,1,2, \cdots\}$ with rates

$$
\begin{equation*}
\lambda_{i}=i \lambda, \quad \mu_{i}=i \mu, \quad i \geqq 0 \quad(\lambda<\mu) \tag{1.5}
\end{equation*}
$$

and $P_{i j}(t)=\bar{P}_{i-1, j-1}(t), i, j \geqq 1$. The explicit representation of $\bar{P}_{i j}(t)$ given in [2], pp. 654-5 is also useful, but we content ourselves with recording two standard formulas that can also be derived from [1] and [2].

$$
\begin{equation*}
G_{i}(z, t)=\sum_{j=0}^{\infty} P_{i j}(t) z^{i}=\left[\frac{(1-\sigma)+(\sigma-\gamma) z}{1-\sigma \gamma-z \gamma(1-\sigma)}\right]^{i}, \quad i \geqq 1, \quad|z|<1 \tag{1.6}
\end{equation*}
$$

where $\sigma=\exp \{-(\mu-\lambda) t\}$. We note the notation of σ here differs from [2].

$$
G_{i j}=\int_{0}^{\infty} P_{i j}(t) d t=\left\{\begin{array}{cl}
\gamma^{j}\left(1-\gamma^{-i}\right)[j(\lambda-\mu)]^{-1}, & 0<i \leqq j \tag{1.7}\\
{[j(\lambda-\mu)]^{-1}\left(\gamma^{j}-1\right),} & i>j
\end{array}\right.
$$

2. Linear birth-death with killing

We now focus on the special case of (0.4) in which the process $\tilde{X}(\cdot)=$ $\{\tilde{X}(t), t \geqq 0\}$ has state space $\{H\} \cup\{0,1,2, \cdots\}$, and generator determined by

$$
\begin{equation*}
\lambda_{i}=b i, \quad \gamma_{i}=c i, \quad \mu_{i}=a i \tag{2.1}
\end{equation*}
$$

where $a, b, c>0$.
In what follows, let v_{0} and v_{1} be the roots of the equation

$$
\begin{equation*}
b v+(a / v)=a+b+c ; \quad 0<v_{0}<1<v_{1} . \tag{2.2}
\end{equation*}
$$

It is clear that either \tilde{X} is absorbed at 0 or killed at H in finite time. Standard probabilistic arguments show that

$$
q_{i}=P\{\tilde{X}(t) \text { hits } 0 \text { before } H \mid \tilde{X}(0)=i\}=v_{i,}^{i}, \quad i \geqq 0
$$

So we are led to look at the associated process $\{X(t), t \geqq 0\}$ obtained by conditioning on $\{0\}$ being reached first. The transition probabilities are given by

$$
\begin{equation*}
P_{i j}(t)=\tilde{P}_{i j}(t) v_{0}^{j} v_{0}^{-i}, \quad i, j \geqq 0 \tag{2.3}
\end{equation*}
$$

Observe that $P_{i, i+1}(h)=\tilde{P}_{i, i+1}(h) v_{0}=i b v_{0} h+o(h)$ and $P_{i, i-1}(h)=\left(i a / v_{0}\right) h+o(h)$. Therefore, $X(\cdot)$ is a linear birth-death process with transition rates given by

$$
\begin{equation*}
\lambda_{i}=i b v_{0} ; \quad \mu_{i}=\frac{i a}{v_{0}}=i b v_{1}, \quad i \geqq 0 . \tag{2.4}
\end{equation*}
$$

(The last equation results since the product of the roots of (2.2) is $v_{0} v_{1}=a / b$.) Clearly, $\lambda_{i}=i b v_{0}<\mu_{i}=i b v_{1}$. It follows immediately that $X(\cdot)$ is generated as a special case of (1.5). Hence, for $|z| \leqq 1$,

$$
\tilde{G}_{i}(z, t)=\sum_{j=0}^{\infty} \tilde{P}_{i j}(t) z^{j}=\sum_{j=0}^{\infty} v_{0}^{i} v_{0}^{-j} P_{i j}(t) z^{j}=v_{0}^{i} G_{i}\left(z v_{0}^{-1}, t\right)
$$

Using the identifications $\lambda=b v_{0}, \mu=a / v_{0}, \gamma=\lambda / \mu=v_{0} / v_{1}$, we have

$$
\begin{equation*}
\tilde{G}_{i}(z, t)=\left[\frac{v_{0} v_{1}(1-\sigma)+z\left(v_{1} \sigma-v_{0}\right)}{v_{1}-\sigma v_{0}-z(1-\sigma)}\right]^{i}, \tag{2.5}
\end{equation*}
$$

where in this case $\sigma=\exp \left\{-b\left(v_{1}-v_{0}\right) t\right\}$. We also record from (1.7) that $\tilde{G}_{i j}=\int_{0}^{\infty} \tilde{P}_{i j}(t) d t=v_{0}^{i} v_{0}^{-i} G_{i j}$ is given by

$$
\tilde{G}_{i j}= \begin{cases}{\left[j b\left(v_{1}-v_{0}\right)\right]^{-1} v_{1}^{-j}\left(v_{1}^{i}-v_{0}^{i}\right),} & 0<i \leqq j \tag{2.6}\\ {\left[j b\left(v_{1}-v_{0}\right)\right]^{-1} v_{0}^{i}\left(v_{0}^{-j}-v_{1}^{-j}\right),} & i \geqq j\end{cases}
$$

We shall now discuss some of the properties of the killing process. Denote by T_{H} the hitting time of H. Since $P_{i}\left\{T_{H}>t\right\}=P_{i}\{0 \leqq \tilde{X}(t)<\infty\}=\tilde{G}_{i}(1, t)$, (where P_{i}, E_{i} denote probabilities and expectations given $\left.\tilde{X}(0)=i\right)$, we have

$$
\begin{equation*}
P_{i}\left\{T_{H}>t\right\}=\left[\frac{v_{0}\left(v_{1}-1\right)+v_{1} \sigma\left(1-v_{0}\right)}{\left(v_{1}-1\right)+\sigma\left(1-v_{0}\right)}\right]^{i}, \quad i \geqq 1 \tag{2.7}
\end{equation*}
$$

(2.7) establishes, letting $t \rightarrow \infty$ and hence $\sigma \rightarrow 0$, that $P_{i}\left\{T_{H}<\infty\right\}=1-v_{0}^{i}$, which confirms that indeed $\tilde{X}(\cdot)$ ends at $\{0\}$ or $\{H\}$. The mean termination time is given by $E_{i}[T]=E_{i}\left(T_{0} \wedge T_{H}\right)=\sum_{j=1}^{\infty} \tilde{G}_{i j}$.

In what follows, we shall consider only those sample paths that end at $\{H\}$ rather than $\{0\}$. Denote this process by $X^{*}(t)$, with transition functions $P_{i j}^{*}(t)$, $i, j \geqq 1$. Since in this process $\{H\}$ is hit with probability 1 , it makes sense to define the killing position $K=X^{*}\left(T_{H}\right)$. We shall derive the distribution of K in the following lemma.

Lemma 1. Let $\{X(t), t \geqq 0\}$ be a birth-death process with infinitesimal parameters (0.4). Assume $P_{i}\left\{T_{H}<\infty\right\}=1$ for all $i \in S$. Then $P_{i}\{K=j\}=G_{i j} \gamma_{j}$, $i, j \in S$.

Proof. $\quad P_{i}\left\{X(t)=j, t<T_{H} \leqq t+h\right\}=P_{i j}(t) \gamma_{i} h+o(h), h \downarrow 0$. So $P_{i}\{K=j\}=$ $\int_{0}^{\infty} P_{i j}(t) \gamma_{j} d t \equiv \gamma_{j} G_{i j}$.

For the process at hand, the relevant Green's function $G_{i j}^{*}$ is given by

$$
G_{i j}^{*}=\int_{0}^{\infty} P_{i j}^{*}(t) d t=\frac{1-v_{0}^{j}}{1-v_{0}^{i}} \int_{0}^{\infty} \tilde{P}_{i j}(t) d t=\frac{1-v_{0}^{j}}{1-v_{0}^{i}} \tilde{G}_{i j},
$$

and since $\gamma_{j}=c j\left(1-v_{0}^{j}\right)^{-1}$ (the rate of killing given eventual killing) we find that

$$
P_{i}\{K=j\}=c j \tilde{G}_{i j}\left(1-v_{0}^{i}\right)^{-1}= \begin{cases}c\left[b\left(v_{1}-v_{0}\right)\right]^{-1}\left(1-v_{0}^{i}\right)^{-1} v_{1}^{-j}\left(v_{1}^{i}-v_{0}^{i}\right), & 0<i \leqq j \tag{2.8}\\ c\left[b\left(v_{1}-v_{0}\right)\right]^{-1}\left(1-v_{0}^{i}\right)^{-1} v_{0}^{i}\left(v_{0}^{-j}-v_{1}^{-j}\right), & i \geqq j\end{cases}
$$

When $i=1$, we see that $P_{1}\{K=j\}=\left(1-1 / v_{1}\right)\left(1 / v_{1}\right)^{j-1}, j \geqq 1$.
To describe the behavior of $\tilde{X}(\cdot)$ and $X^{*}(\cdot)$ before killing takes place, we shall study the asymptotic conditional distributions given by

$$
\tilde{a}_{j}=\lim _{i \rightarrow \infty} P_{i}\left\{\tilde{X}(t)=j \mid T_{0} \wedge T_{H}>t\right\}
$$

$$
\begin{equation*}
a_{j}^{*}=\lim _{t \rightarrow \infty} P_{i}\left\{X^{*}(t)=j \mid T_{H}>t\right\} . \tag{2.9}
\end{equation*}
$$

These are straightforward to compute from (2.5), via the following lemma.
Lemma 2. $\lim _{t \rightarrow \infty} \sigma^{-1}\left(\tilde{G}_{i}(z, t)-v_{0}^{i}\right)=-v_{0}^{i-1} A(z), \quad i \geqq 1$, where $\quad \sigma=$ $\exp \left\{-b\left(v_{1}-v_{0}\right) t\right\}$ and $A(z)=\left(v_{1}-v_{0}\right)\left(v_{0}-z\right) /\left(v_{1}-z\right), 0 \leqq z<v_{1}$.

Proof. From (2.5), we can write

$$
\tilde{G}_{i}(z, t)=\left\{v_{0}-\sigma A(z)\left[1-\sigma\left(\frac{v_{0}-z}{v_{1}-z}\right)\right]^{-1}\right\}^{i}
$$

Hence

$$
\begin{aligned}
\tilde{G}_{i}(z, t)-v_{0}^{i} & =\sum_{k=0}^{i}\binom{i}{k}\left\{-\sigma A(z)\left(1-\sigma\left(\frac{v_{0}-z}{v_{1}-z}\right)\right)^{-1}\right\}^{k} v_{0}^{i-k}-v_{0}^{i} \\
& =\sum_{k=1}^{i}\binom{i}{k}\left[-\sigma A(z)\left\{1-\sigma\left(\frac{v_{0}-z}{v_{1}-z}\right)\right\}^{-1}\right]^{k} v_{0}^{i-k} .
\end{aligned}
$$

The result now follows immediately as $\sigma \rightarrow 0$ when $t \rightarrow \infty$.
To establish the first of (2.9), we use Lemma 2 to see that for $0 \leqq z \leqq 1$,

$$
\begin{aligned}
\sum_{i=1}^{\infty} P_{i}\{\tilde{X}(t)=j \mid T>t\} z^{j} & =\frac{\tilde{G}_{i}(z, t)-\tilde{G}_{i}(0, t)}{\tilde{G}_{i}(1, t)-\tilde{G}_{i}(0, t)} \\
& \rightarrow \frac{-A(z)+A(0)}{-A(1)+A(0)} \quad \text { as } t \rightarrow \infty .
\end{aligned}
$$

The limit is precisely the probability generating function of \tilde{a}_{i}, which leads on simplification to

$$
\tilde{a}_{i}=\left(1-\frac{1}{v_{1}}\right)\left(\frac{1}{v_{1}}\right)^{i-1}, \quad j \geqq 1 .
$$

Using similar considerations, we see that for $0 \leqq z \leqq 1$

$$
\begin{aligned}
\sum_{i=1}^{\infty} P_{i}\left\{X^{*}(t)=j \mid T_{H}>t\right\} z^{i} & =\left[\sum_{k=1}^{\infty} P_{i k}^{*}(t)\right]^{-1} \sum_{j=1}^{\infty} \frac{\left(1-v_{0}^{j}\right)}{\left(1-v_{0}^{i}\right)} \tilde{P}_{i j}(t) z^{i} \\
& =\frac{\tilde{G}_{i}(z, t)-\tilde{G}_{i}\left(z v_{0}, t\right)}{\tilde{G}_{i}(1, t)-\tilde{G}_{i}\left(v_{0}, t\right)}
\end{aligned}
$$

So another application of Lemma 2 shows that $\left\{a_{i}^{*}, j \geqq 1\right\}$ has probability generating function given by

$$
\sum_{i=1}^{\infty} a_{j}^{*} z^{j}=\frac{-A(z)+A\left(z v_{0}\right)}{-A(1)+A\left(v_{0}\right)} .
$$

The probabilities $\left\{a_{j}^{*}\right\}$ are given by

$$
a_{j}^{*}=\frac{v_{1}-v_{0}}{v_{1}\left(1-v_{0}\right)}\left(1-\frac{1}{v_{1}}\right)\left(\frac{1}{v_{1}}\right)^{j-1}-\frac{v_{0}\left(v_{1}-1\right)}{v_{1}\left(1-v_{0}\right)}\left(1-\frac{v_{0}}{v_{1}}\right)\left(\frac{v_{0}}{v_{1}}\right)^{j-1}, \quad j \geqq 1 .
$$

3. Linear birth-death process with immigration and killing

In this section, we concentrate on the birth-death process $\tilde{X}(t)$ with killing on state space $\{0,1, \cdots\} \cup\{H\}$ with infinitesimal transition rates given by

$$
\begin{equation*}
\tilde{a}_{i, i+1}=b i+\theta, \quad \tilde{a}_{i, i-1}=a i, \quad \tilde{a}_{i i}=-[i(a+b+c)+\theta] \tag{3.1}
\end{equation*}
$$

where $a, b, c, \theta>0$.
The following observation simplifies the analysis. Let $v=v_{0}$ be the smaller solution of Equation (2.2), and define

$$
\begin{equation*}
a^{*}=a / v, \quad b^{*}=v b, \quad \theta^{*}=\theta v, \quad \kappa=\theta(1-v) . \tag{3.2}
\end{equation*}
$$

Recall from (2.4) that $a^{*}>b^{*}$. Let $X(t)$ be a birth-death process with rates

$$
\begin{equation*}
\lambda_{i}=i b^{*}+\theta^{*}, \quad \mu_{i}=i a^{*}, \quad i \geqq 0 \tag{3.3}
\end{equation*}
$$

and let $P_{i j}(t)$ be its transition functions. Define

$$
\begin{equation*}
\tilde{P}_{i j}(t)=v^{-j} v^{i} P_{i j}(t) e^{-\kappa t}, \quad i, j \geqq 0 . \tag{3.4}
\end{equation*}
$$

Lemma 3. The functions $\left\{\tilde{P}_{i j}(t), t>0\right\}$ satisfy

$$
\tilde{P}_{i j}^{\prime}(t)=a i \tilde{P}_{i-1, j}(t)-\{i(a+b+c)+\theta\} \tilde{P}_{i j}(t)+(b i+\theta) \tilde{P}_{i+1, j}(t), \quad i, j \geqq 0
$$

and $\tilde{P}_{i j}(t)=P\{\tilde{X}(t)=j \mid \tilde{X}(0)=i\}$.
Proof. $\quad \tilde{P}_{i j}^{\prime}(t)=v^{-i} v^{i} P_{i j}^{\prime}(t) e^{-\kappa t}-\kappa \tilde{P}_{i j}(t), i, j \geqq 0$.
Now use the backward equation satisfied by $\left\{P_{i j}(t), t>0\right\}$ to see that

$$
\begin{aligned}
\tilde{P}_{i j}^{\prime}(t)= & e^{-\kappa t} v^{-j} v^{i}\left[a^{*} i P_{i-1, j}(t)+\left(b^{*} i+\theta^{*}\right) P_{i+1, j}(t)\right. \\
& \left.-\left(\left(a^{*}+b^{*}\right) i+\theta^{*}\right) P_{i j}(t)\right]-\kappa \tilde{P}_{i j}(t) \\
= & a i \tilde{P}_{i-1 . j}(t)+(b i+\theta) \tilde{P}_{i+1 . j}(t)-\{(a+b+c) i+\theta\} \tilde{P}_{i j}(t) .
\end{aligned}
$$

Since $\left\{\tilde{P}_{i j}(t), t \geqq 0\right\}$ satisfy the requisite equations for $\{\tilde{X}(t), t \geqq 0\}$, and because the infinitesimal rates are linear they determine a unique process. We may then take $\tilde{P}_{i j}(t)=P\{\tilde{X}(t)=j \mid \tilde{X}(0)=i\}$, and the proof is complete.

It is worth while noting that if in (3.2) we specify $v=v_{1}$ (the larger solution of (2.2)) the resulting $\tilde{X}(t)$ is identical to that determined from $v=v_{0}$.

The $X(\cdot)$ generated by (3.2) and (3.3) is a linear birth-death process with immigration which has been extensively studied. In particular, the spectral decomposition (0.2) is given in [2], Table 1F. From [2],

$$
\begin{equation*}
P_{i j}(t)=\pi_{i} \int_{0}^{x} e^{-x t} Q_{i}(x) Q_{i}(x) d \rho(x) \tag{3.5}
\end{equation*}
$$

with

$$
\begin{equation*}
\sigma=\exp \left\{-b\left(v_{1}-v_{0}\right) t\right\}, \quad \pi_{j}=\left(\frac{v_{0}}{v_{1}}\right)^{j} \frac{(\beta)_{j}}{j!}, \quad \beta=\frac{\theta}{b}, \quad \gamma=\frac{v_{0}}{v_{1}} \tag{3.6}
\end{equation*}
$$

where the measure $\rho(\cdot)$ has masses of size ρ_{n} (cf. Equation (1.3)) at points $x_{n}=n b\left(v_{1}-v_{0}\right), n=0,1,2, \cdots$, and $Q_{n}(x)=\varphi_{n}\left(x / b\left(v_{1}-v_{0}\right), \beta, \gamma\right.$ (cf. (1.2)). (3.5) reduces then to

$$
\begin{equation*}
P_{i j}(t)=\pi_{j} \sum_{n=0}^{\infty} \sigma^{n} \varphi_{i}(n) \varphi_{j}(n) \rho_{n} \tag{3.7}
\end{equation*}
$$

The spectral representation

$$
\tilde{P}_{i j}(t)=\tilde{\pi}_{j} \int_{0}^{\infty} e^{-y t} \tilde{Q}_{i}(y) \tilde{Q}_{j}(y) d \tilde{\rho}(y)
$$

is now accessible.
In fact

$$
\tilde{P}_{i j}(t)=v_{0}^{i} v_{0}^{-i} e^{-\kappa t} P_{i j}(t),
$$

and from (3.5) we get

$$
\begin{aligned}
\tilde{P}_{i j}(t) & =v_{0}^{i} v_{0}^{-j} e^{-\kappa t} \pi_{j} \int_{0}^{x} e^{-x t} Q_{i}(x) Q_{i}(x) d \rho(x) \\
& =\frac{\pi_{j}}{v_{0}^{2}} \int_{0}^{\infty} e^{-(\kappa+x) t}\left[v_{0}^{i} Q_{i}(x)\right]\left[v_{0}^{i} Q_{i}(x)\right] d \rho(x) \\
& =\tilde{\pi}_{j} \int_{\kappa}^{\infty} e^{-x t}\left[v_{0}^{i} Q_{i}(y-\kappa)\right]\left[v_{0}^{j} Q_{i}(y-\kappa)\right] d \rho(y-\kappa) .
\end{aligned}
$$

The spectral measure $\tilde{\rho}$ is given by $\tilde{\rho}(E)=\rho(E-\kappa)$, that is $\tilde{\rho}$ concentrates mass ρ_{n} of (1.3) at $\kappa+n b\left(v_{1}-v_{0}\right), n=0,1,2, \cdots$, and

$$
\begin{equation*}
\tilde{Q}_{i}(x)=v_{0}^{i} Q_{i}(x-\kappa), \quad i \geqq 0 . \tag{3.8}
\end{equation*}
$$

Now $X(\cdot)$ is positive recurrent and $\lim _{t \rightarrow \infty} e^{\kappa t} \tilde{P}_{i j}(t)=v_{0}^{i} v_{0}^{-i} \pi_{j} \rho_{0}$. Further, the sequences $m_{i}=\pi_{i} v_{0}^{-i}(i \geqq 0), \xi_{i}=v_{0}^{i}(i \geqq 0)$ satisfy the invariance properties

$$
\begin{array}{ll}
\sum_{i} m_{i} \tilde{P}_{i j}(t)=e^{-\kappa t} m_{j}, & j \geqq 0 \\
\sum_{i} \tilde{P}_{i j}(t) \xi_{j}=e^{-\kappa t} \xi_{i}, & i \geqq 0 . \tag{3.9}
\end{array}
$$

It follows in particular that $Z(t)=e^{t \kappa} v_{0}^{X(t)}$ is a martingale.
The spectral representation yields in a simple way the recurrence properties of $\tilde{X}(t)$; see also [4]. The explicit form for $\tilde{P}_{i j}(t)$ now follows from (3.4) and [2], p. 655. Hence, we have

$$
\begin{align*}
G_{i}(z, t) & =\sum_{j=0}^{\infty} P_{i j}(t) z^{j} \\
& =\left[\frac{1-\sigma-z(\gamma-\sigma)}{1-\sigma \gamma-\gamma z(1-\sigma)}\right]^{i}\left[\frac{1-\gamma \sigma-\gamma z(1-\sigma)}{1-\gamma}\right]^{-\beta}, \quad i \geqq 0, \tag{3.10}
\end{align*}
$$

where

$$
\sigma=e^{-b\left(v_{1}-v_{0}\right) t}, \quad \gamma=\frac{v_{0}}{v_{1}}, \quad \beta=\frac{\theta}{b}
$$

and so

$$
\begin{aligned}
\tilde{G}_{i}(z, t) & =\sum_{j=0}^{\infty} \tilde{P}_{i j}(t) z^{j} \\
& =\sum_{i=0}^{\infty} v_{0}^{-j} v_{0}^{i} P_{i j}(t) e^{\kappa t} z^{j} \\
& =v_{0}^{i} e^{-\kappa t} G_{i}\left(z v_{0}^{-1}, t\right) .
\end{aligned}
$$

Again, denoting by T the killing time, we have

$$
P_{i}\{T>t\}=\tilde{G}_{i}(1, t)=v_{0}^{i} e^{-\kappa t} G_{i}\left(v_{0}^{-1}, t\right), \quad i \geqq 0
$$

$$
\begin{equation*}
=e^{-\kappa t}\left[\frac{v_{0}\left(v_{1}-1\right)+v_{1} \sigma\left(1-v_{0}\right)}{v_{1}-1+\sigma\left(1-v_{0}\right)}\right]^{i}\left[\frac{\left(v_{1}-1\right)+\sigma\left(1-v_{0}\right)}{v_{1}-v_{0}}\right]^{-\beta}, \quad i \geqq 0 . \tag{3.11}
\end{equation*}
$$

For the case $i=0$, we find

$$
\begin{aligned}
E_{0}[T] & =\int_{0}^{\infty} \tilde{G}_{0}(1, t) d t \\
& =\left(\frac{v_{1}-v_{0}}{v_{1}-1}\right)^{\beta} \frac{1}{\theta\left(1-v_{0}\right)} F\left(\beta, \beta\left(\frac{1-v_{0}}{v_{1}-v_{0}}\right) ; \beta\left(\frac{1-v_{0}}{v_{1}-v_{0}}\right)+1 ; \frac{v_{0}-1}{v_{1}-1}\right) .
\end{aligned}
$$

Lemma 1 shows in principle how to find the distribution of the detection position, once the Green's function

$$
\tilde{G}_{i j}=\int_{0}^{\infty} \tilde{P}_{i j}(t) d t=v_{0}^{i} v_{0}^{-j} \int_{0}^{\infty} e^{-\kappa t} P_{i j}(t) d t
$$

is computed. This seems difficult to do in an explicit way. However, the asymptotic conditional distribution is easy to find. The method of Section 2 shows that

$$
\sum_{i=0}^{\infty} P_{i}\{\tilde{X}(t)=j \mid T>t\} z^{j}=\frac{\tilde{G}_{i}(z, t)}{\tilde{G}_{i}(1, t)} \rightarrow\left[\frac{1-z v_{0}}{1-v_{0}}\right]^{-\beta}
$$

as $t \rightarrow \infty$. Hence the asymptotic conditional distribution $\left\{a_{j}, j \geqq 0\right\}$ is negative binomial, with

$$
a_{j}=\lim _{i \rightarrow \infty} P_{i}\{\tilde{X}(t)=j \mid T>t\}=\left(1-v_{0}\right)^{\beta} v_{0}^{j} \frac{(\beta)_{i}}{j!} \quad j \geqq 0,
$$

where $\beta=\theta / b$. The mean is $\sum j a_{j}=\left(1-v_{0}\right)^{-1} \beta v_{0}$.
We remark that the generating function $\tilde{G}_{i}(z, t)$ can be found using a simple compounding argument based on Poisson immigrations of rate θ, and the linear birth-death process studied in Section 2. However, direct evaluation of the spectral representation leads to more detailed results. The general theory established in [1] can be used to evaluate first-passage problems. Here is another example. Let q_{i} be the probability that $\tilde{X}(\cdot)$ reaches $\{0\}$ before $\{H\}$. Then

$$
q_{i}=\tilde{Q}_{i}(0)=v_{0}^{i} Q_{i}(-\kappa)=v_{0}^{i} \varphi_{i}\left(\frac{-\kappa}{b\left(v_{1}-v_{0}\right)}\right) .
$$

4. An example from population genetics

We highlight in this concluding section several explicit results for the birth-death process with rates (0.7). This is a special case of the process studied in Section 2 (2.1) with $b=1 / 2, a=1, c=1 / 4$. We get $v_{0}=0.7192, v_{1}=2.7808$, and it follows that the probability that formation of any $a a$-individuals occurs before fixation of the A allele is $1-q_{i}=1-(0.7192)^{i}, i \geqq 0$. This will give a good approximation to the underlying process (0.6) when N is large. In a genetic context, we are most interested in the behavior of the process when $\tilde{X}(0)=1$, corresponding to the appearance of a single mutant a-allele. For the general case of Section 2, we have from (2.6)

$$
\begin{equation*}
E_{1}(T)=E_{1}\left(T_{0} \wedge T_{H}\right)=\sum_{j=1}^{\infty} \tilde{G}_{i j}=-\frac{1}{b} \ln \left(1-\frac{1}{v_{1}}\right) . \tag{4.1}
\end{equation*}
$$

This reduces to $E_{1}(T)=0.891$ in the present case, and corresponds to a value of $0.891 N$ for the process (0.6) with $\lambda=1$. In a similar way, we find

$$
\begin{equation*}
E_{1}\left(T_{H} \mid T_{H}<\infty\right)=\sum_{i=1}^{\infty} G_{i j}^{*}=-\frac{1}{b\left(v_{1}-v_{0}\right)} \ln \left(\frac{v_{1}-1}{v_{1}-v_{11}}\right) . \tag{4.2}
\end{equation*}
$$

This gives a value of $E_{1}\left(T_{H} \mid T_{H}<\infty\right)=1.043$, or $1.043 N$ for (0.6) with $\lambda=1$.

References

\rightarrow Karlin, S. and McGregor, J. (1957) The classification of birth and death processes. Trans. Amer. Math. Soc. 86, 366-400.
[2] Karlin, S. and McGregor, J. (1958) Linear growth birth and death processes. J. Math. Mech. 7, 643-662.
[3] Karlin, S. and Tavaré, S. (1981) The detection of a recessive visible gene in finite populations. Genet. Res. (Camb.) 37, 33-46.
[4] Kingman, J. F. C. (1963) The exponential decay of Markov transition probabilities. Proc. Lond. Math. Soc. 13, 337-358.
[5] Moran, P. A. P. (1962) The Statistical Processes of Evolutionary Theory. Clarendon Press, Oxford.
[6] Robertson, A. (1978) The time to detection of recessive visible genes in small populations. Genet. Res. (Camb.) 31, 255-264.

