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A CLASS OF DIFFUSION PROCESSES WITH KILLING 
ARISING IN POPULATION GENETICS* 

SAMUEL KARLINt AND SIMON TAVAREt 

Abstract. An interesting class of diffusion stochastic processes is studied. These processes arise from 
discrete models of gene formation and detection in finite populations. The diffusion processes are governed 
not only by the usual infinitesimal drift and diffusion terms, but also by a state dependent killing rate, 
which corresponds to formation of certain types of individuals. For one case, the spectral decomposition 
of the transition function is available, which allows a complete study of the process. Its behavior is compared 
with other variants of the detection problem. 
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Introduction. In this paper we analyze a class of Markov diffusion processes with 
killing that arise from the following problem in population genetics. Consider a 
population of N individuals. We classify each individual as one of the three genotypes 
AA, Aa, aa, and suppose that individuals of genotype aa are visible as being "defective" 
in some way. This may correspond, for example, to the a-allele being lethal (showing 
a lethal disease) when in homozygous form (i.e., when occurring in double doses), or 
to the aa-genotype being visibly different to the other genotypes. 

Given that the population currently comprises no aa-individuals, how long does 
it take to produce the first one under some given mating scheme? The study of this 
question was initiated by the geneticist Robertson (1978), using discrete Markov chain 
methods and simulations. The analysis of such first-formation times is considered to 
be an important problem in evolutionary theory since the results also apply to the 
time to appearance of a new allele in homozygous form, this allele arising as the result 
of mutation or recombination. Interest in the problem also derives from application 
of the results to artificial selection schemes and medical genetic screening. 

In this paper, we take account of the possibility that the heterozygous individuals 
Aa may be phenotypically identical to the visible genotype aa. This may be interpreted 
in a different way by supposing that some genetic screening system sometimes results 
in the detection of heterozygous individuals as well as detection of aa-individuals. 
The method we use to analyze first-detection times begins with a discrete-time, 
discrete-state Markov chain describing the evolution of heterozygote numbers through 
time. These Markov chains are defective in the sense that the process will end either 
by loss of the a-allele from the population (formation of a homozygous aa-individual 
is then impossible) or the process may end in detection (either an Aa or an aa-individual 
is found); the Markov chain is then sub-Markovian (see ? 1). In common with many 
investigations in population genetics theory, analysis is simpler via the use of diffusion 
process approximations (cf. Ewens (1979)). In the case at hand, we are led to a class 
of diffusion processes on the interval (0, oo) which are killed whenever a detection 
event occurs. In this class of models, a full description of the detection process can 
be obtained via spectral decomposition of the transition density (see ? 3) of the process. 
A variety of other functionals of these processes are also derived. For a wide range 
of qualitative results assessing the effects of partial penetrance, family structure, and 
superimposed natural selection forces, see Karlin and Tavare (1981a, b). 
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1. The models. Let Xn denote the number of heterozygotes in the population 
of fixed size N at times n = 0, 1, 2, ** - . Suppose that at time n, the population 
comprises N - i AA-genotypes and i Aa-heterozygotes; we assume that detection 
has not yet taken place so that there are no aa-genotypes in the population. To 
produce the individuals of the next generation, we use a standard diploid Wright-Fisher 
model (cf. Ewens (1979, Chap. 5)), which determines that the population at time 
(n + 1) will comprise N -j - k AA, j Aa and k aa-types with probability 

(1) Nl ~~~~~~~. 2(N-i-k)( . 2k 

(1) j~~!k!(N-j-k-)!('2N) N 

Let a be the probability that a heterozygote carrier is detected (equivalently, a 
is the probability that a heterozygote appears the same as the genotype aa, which is 
detected immediately). Assuming that detection operates independently for each 
heterozygote, the probability that X,+1 = j and that detection has not yet occurred is 
given from (1) by 

(2) (X)(i 1 ('-j)i i 1 -a) 

i, j =O, 1,'* , N. This follows because we require k = 0, and if j heterozygotes are 
formed, none is detected with probability (1-a )'. The matrix determined by (2) is 
substochastic, since the row sums are not unity. To remedy this we can add on a 
fictitious state H, which accounts for all population configurations in which detection 
occurred. Then 

N r 2.\N 
(3) pi=l- F Pi=l-=1-4N2 aNki 2N1J 

while PHi = 0, PHH = 1. Properties of the evolution of this Markov chain can be found 
by matrix numerical methods, although explicit results seem hard to find. Instead, we 
will resort to the method of diffusion approximation. The aim is to find the infinitesimal 
parameters of the associated diffusion process {Y(t), t_} 0} which mirror the behavior 
of {Xn, n _ 0}. In the present case the diffusion process is determined by the infinitesimal 
mean , (x) and variance o_2(x) in conjunction with a killing rate k (x) which derives 
from the process terminating whenever a detection event occurs. 

The infinitesimal parameters of {Y(t), t _ 0} are identified from those of {X", n -} 0 
in the following way: 

Define the processes YN (t) by 

(4) YN(t)=X[(2N))t] t_O, N'-1 

where y > 0, and suppose that, for some 8 > 0, (2N)8a -e A > 0 as N -e cc. We look 
for the relationship between y and 8 that makes YN (t) converge to a diffusion process 
Y(t) asN -oo. 

To this end write ANt = (2N)-f. Straightforward computations based on (2) and 
(3) show that if 8 = 2,y, 0 < y < 3 and (2N)-fi - x as N - oo then 

(ANtY (i1 E P,) - Ax, ( U -i)Pi] -e 0, 

(AN(t))( E (i i)2P) - X, (AN(t))3 E (j i)4Pii = O(ANt) 
=0 ij=O 
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and N -e cc, uniformly for x in compact intervals of (0, co). If F is a function with at 
least two bounded continuous derivatives, then a Taylor expansion together with (5) 
shows that 

(6) (ONtO E PijF(jANt)-F(iANt)] -* F"(x)-AxF(x) asN -oo. 

This examination of the infinitesimal generators of YN( ) suggests that as N - 
a), YN(t) -+ Y(t), where Y(*) is a diffusion process on [0, cc) with infinitesimal para- 
meters o2(x)=x, ,(x)=0, k(x)=Ax, in the case 0<y<3, 8 =2y. 

There are two other diffusion approximations available for this process, depending 
on the relative magnitude of y and 6. In both cases, o-2(x) = x, ,u (x) 0, but the killing 
rate k(x) changes: 

2 
1 ~~~~x 

Ry=3, 8=23: k(x)=-+Ax, 3 ~~2 
2 

1 x>2 k(x)=2 

These are derived analogously to (5) and (6). 
The parameters are summarized in Table 1. 

TABLE 1 
Diffusion approximation to detection process. Time scale in units of (2N)' generations. 

A = limN,c (2N)8a. Y(.) is a diffusion on interval [0, cc) with infinitesimal parameters: 

mean, , (x) variance, o-2(x) killing, k(x) 

(a) Airy model 

Y = 1, 8 >2 0 x x2/2 

(b) Weak detection model 
1 _ 3, 8 = 32 0 x x2/2+Ax 

(c) Strong detection model 

0<y3<, 8 =2y 0 x Ax 

The preceding calculations suggest that the discrete process determined by (2) and (3) 
can be approximated by a diffusion process in three functionally different ways, 
depending on the magnitude of the detection probability a of heterozygotes. We are 
immediately led to a qualitative description of these processes. In case (a), the detection 
probability is so small as to be effectively irrelevant and the process ends by detection 
of a homozygote. We call this the Airy model (cf. Robertson (1978), Karlin and 
Tavare (1981a). In case (b) the process can end by detection of either a homozygote 
or heterozygote. We call this case the weak detection model. Finally, in case (c), the 
strong detection model, the detection probability a is so large that the process 
effectively ends in detection of a heterozygote. 

2. Methods of analysis and notation. The behavior of the detection process 
Y(t), t _ 0, must include a specification of the nature of the boundary at 0. For all 
the models described in Table 1, 0 is an exit boundary; that is, if Y(t)= 0, then 
Y(t + s) =0 for all s >0. This corresponds to the absorbing nature of the state 0 in 
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the discrete process specified in (2) and (3). Since k (0) =0, the behavior of such a 
process splits naturally into two groups of sample paths, those ending in detection 
(before loss of the a-allele), and those ending in loss of allele a (before detection). 

We will use the notation P {A} for P{AI Y(O) = x}, Ex[Z] for E[Zj Y(O) = x]. In 
what follows, TL denotes the time to loss, while TD denotes the time to detection. 
Both TL and TD are, in general, defective random variables. If we let 

g = TD A TL= min (TD, TL) 

be the lifetime of the process with infinitesimal parameters ao2(x), ,u (x), k (x), then 
many interesting functionals of the form w (x) = E. [Jof(Y(u)) du] are computed as 
solutions to differential equations of the form 

ol2(X) 
(7) Yw(x) = 2( )w"(x) +,g(x) w'(x) - k(x) w(x)=-(x), 

for bounded continuous functions f over [0, cx] and boundary conditions on w (cf. 
Karlin and Taylor (1981, Chap. 15)). 

Solutions of (7) are given in the usual way by 

(8) w(x)= J G(x, y)f(y) dy, 

where G(x, y) is the relevant Green's function of the problem. 
Since the sample paths split naturally into two groups, it is then of some interest 

to ascertain properties of the process conditioned on either detection occurring first 
or on loss occurring first. We use a subscript D to denote the condition that detection 
occurs before loss. For example, the conditioned Green's function is denoted by 
GD(x, y). A subscript L denotes quantities conditioned on loss occurring first. 

Ideally, one would like to describe the complete time-dependent behavior of the 
detection process. That is, we would like to identify the transition density function 
p(t, x, y) of Y(t), such that for any J c (0, co), 

Px{Y(t)cJ}= jp(t, x, y) dy. 

In the present problem, taking J = (0, oo) results in JO p (t, x, y) dy = P.{g > t}, and so 
the distribution of the lifetime can be readily evaluated. The spectral representation 
of the transition density can be found for the strong detection model (see ? 3), although 
it seems harder to ascertain explicit formulas in the other cases. As a consequence, 
we will compare the behavior of time-independent properties of the different detection 
processes, deriving a number of differential equations for probabilistic functionals of 
the detection processes. We begin, however, with the strong detection model. 

3. Time-dependent behavior of strong detection model. Let p (t, x, y) be the 
transition density of a diffusion process Y(t) with infinitesimal parameters 
a'2(x), u (x), k(x) given in Table 1. For bounded continuous functions f(y) define the 
function g(x, t) by 

00 

g(x,t)= p(t,x,y)f(y)dy, x>0, t>O. 

Then g(x, t) satisfies the differential equation 

ag _ 2(X) a2g ag k 
(9) ~at =9=2 ax' x 

axk xgx) 
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with g(x, 0) = f(x), x >0, and with a boundary condition depending on the nature of 
the boundary point {0}. In this case the spectral representation involves only a discrete 
spectrum. Formal separation of variables in the usual way in (9) produces the spectral 
expansion 

00 

(10) g(x, t)= E e n-anDn(x), x t > 0, 
n =O 

where the eigenfunctions 'Dn(x) satisfy, ?TkIn = -AnADn, 'Dn(0) =0, since 0 is an exit 
boundary in the present case. The {'In} are orthogonal with respect to the weight 
function 

m (x) = [2(x) exp{(2J (y)/o2(y))dy}] = _ (Dn J (Dn (X) X=mnlr n ' x ~~~~x 
and, from completeness of the system Qtm(x)} in L2((0, oc) dxlx), we have an= 
lrn J f(Y )'Dn (y)m (y) dy. The transition function p is then given by 

00 

(11) p(t, x, y) = m(y) X, eAn' n(x)Dn(y)(D n, t, x, y >0. 
n =O 

We now specialize to the case in which o2(x) = x, , (x) =0 and k (x) =Ax. It 
remains to determine the system {Am, 1Dn (x)}. To this end, let 

0 = +v'2A, 

and define 

(Dn (X) = x e xL (')(2 69x) x _--0, n'- 0O, 

where L(')(z) is the Laguerre polynomial (Erdelyi, et al. (1953, p. 188, (7)) 

Ln yz (_1)mt n +1 )Z 
m=O n-m m!' 

We have 

.TIn (x) = xO e ox[2OxL(1)"(26x) + (2 -26x)L(2)'(26x) -L(1)(26x)] 

= -O(n + 1)x ex0xL(1)(2Ox) = -O(n + 1)Fn(x)D 

For the second equality, see, e.g., Abramowitz and Stegun ((AS)) (1970, p. 781, 
22.6.15). Completeness of the system {4Dm(x)} in L2((0, co), dxlx), follows from com- 
pleteness of L(l'(x) in L2((0, oo), x e -x dx) by transformation; see Szeg6 (1975, p. 1 10). 
Using AS (p. 775, 22.2.12), iri1 = (n + 1)/462, and the spectral expansion of the 
transition density follows from (11) as 

00 Lo(+ )tL(26x)L(1(20y) (12) p(t, x, y) = 42x e-0(x+Y) E e-o(n+l)tn t,xn y >0. 
n=0 n +1 

Thus, p(t, x, y) = 482x e-0(X+Y+t) + O(e-20t) as t -* X. 

It is useful at this stage to compute the Laplace transform 
00 

(y, t;x) = J evYp(t, x, y) dy, Y >0. 

This relies on the readily verified identity 
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and the result that 

(13b) ~~~00 z n+1L(n1)(x) 1-exp (xz/(z-1)) 
n=O n +1 x 

valid for x > 0, zI < 1; cf. Erdelyi et al. (1953, p. 215 (27)). Using (13a, b), we arrive 
at 

?(y,t;x)=4O2xe-OX E exp[-6 (n+1)tjL()(26x) 
00 

P,(Y, ; x = 2 

neOx Y+. j e-(Y+O)YL(1)(269y) dy 

(14) =2Hxe6 
flX E exp[ @(n+l)t>((n=O n+ 1 ( )+l) 00 exp [-O(n +1)tL (1(2Ox)( -Y+6n 

(14) = 20x e -Ox Y. n 
-Ox 

_ y V+Ob (t)} o_ x} = exp {-Ox -~" } exp { b()1 
where b (t) = (1 - e-t)/(1 + e -0t). 

From (14), we can evaluate the distribution of the lifetime g = TL A TD of the 
rocess. For x > 0, ^(O+, t; x) = Jp P (t, x, y) dy = Px { > t}, whence 

(15) Px{g>t}=exp{-6xb(t)}-exp { -b(t)} x >0. 
b (t) ' 

The Green's function (8) can be computed in the standard way or via 

G(x, y ~~~~-O(x+y) n Ln(O)~~2y G(x, y)= Jp(t, x, y) dt=4Ox e Y.O (+1)2 10 ~~~~~~~~~n=O (n +1 
(16) _ (y)-1 e ox (eoY -e-0y), y <x, 

l(0y)-l(eox -e-ox) e-Y, y x, 

the final equality resulting from an identity of Erdelyi, et al. (1953, p. 215 (21)). 
Notice from (15) that Px{g > t}-* 0 as t -*oo for x >0, showing that the process 

must terminate. Indeed, if we set u (x) = Px{TL< TD}, then u(.) solves ?u =0 with 
u (0) = 1 and u (x) decreasing positive. The required solution is 

(17) u(x)=e6x > x_0. 

It follows that the probability that detection occurs first is 

v(x)= 1- u(x)= 1-e- x, x0 _. 

Finally, the mean time to termination M(x) = EX [i] is given by 

o o M(x)=G(x,y) dy IPx{J~> t}dt. 

4. The process conditioned on detection. From a biological standpoint, the most 
interesting sample paths of the process involve those which result in detection. In this 
section, we analyze the behavior of the associated diffusion processes conditioned 
on killing (detection) occurring before the exit boundary is hit. The conditioned process 
is Markovian and setting v (x) = PX{TD < TL}, a simple probabilistic argument shows 
that the conditional transition density PD is given by 

(18) PD (t, X, Y) P(t x, Y)v(Y) 
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and this satisfies a backward diffusion equation of the form 

aPD O-'Dx aPD aPD (19) at 2 ax 2 ID (X) ax kD (X)PD 

To identify the infinitesimal parameters aD (x), AtD (x), kD (X), we use (18) in conjunction 
with the diffusion equation satisfied by p (t, x, y) to show that 

aPD o (X) a PD I + PDX] P . X 
aPD 02(X ax2D+ 1(X) +o-_2(X) v'(X) aPD 'v (x) P at 2 aX 

2 
+vl1(X)+S (x )J ax v(x) 

But tv (x) = Y(1 - u (x)) = -Yu (x) - k (x) = -k (x), and so the infinitesimal parameters 
of the process conditioned on detection are identified as: 

(20) ,D ( ( D (x) = , (x) + a (x) kD(x) = v (x) v (x)' 

Returning to the case of strong detection, we can give an explicit form for PD (t, x, y) 
using (12), (18) and the result that v(x) = 1 -e-OX. It then follows from (14) that the 
conditional Laplace transform 1D (y, t; x) = lowe YYPD (t, x, y) dy is given by 

(21) D(y, t; x) = [exp{ -Ox [ ( ] }-exp - ox [Y+ 0 + ) )]}](l-e X 

The distribution of the time to detection TD, given TD < TL, is then determined by 

1 -e-Oxb(t) (22) PX{TDTD< TL}=J1 PD(O+,t;x)= 1 -ox t > 0, x > 0, 

where, as earlier, b (t) = {1 - e 6't}/{1 + e -'}. The conditional density function of TD is 
given by 

f()=Oxb'(t) e-Oxb(t) 
(23) f- (t- x) f (t)x t>O, x>0. 

One case of particular interest is that in which the initial number of heterozygotes is 
very small. Taking x I 0 in (23) shows that 

fD(t; 0+) = 26 02 t _0, 

the mean time to detection then being 2 ln 2/0. In terms of the original discrete 
process, this corresponds to about 12 ln 2/la generations. 

5. The process conditioned on loss. The other set of sample paths are those 
resulting in loss. Denoting the conditioning event that TL < TD by L, an argument 
paraphrasing that leading to (20) identifies the infinitesimal parameters of this condi- 
tioned process as 

2o(X)=uk 2X), IL(X o(x )u '(x) (24) aL(x = Ax,,L(X)= ) +,uk (x), kL(X) = 0, 
u (x) 

where u (x) = PX{TL < TD}, and recall u (x) = e -x. In the context of the strong detection 
model, these parameters reduce to l(x) = x, ,L(X) = -Ox. The resulting conditioned 
process is then identified as a diffusion branching process, where the transition density 
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has the form (cf. Karlin and McGregor (1960, p. 173 (13)) 

(25) PL(t, x, y) = 402y e-2yO E e-o(n+1)tLn (20x)Ln(26y) t, x, y > O, 
n=O n +1 

and the corresponding Laplace transform is given by 

(26) PL(Y, t; x) = exp__ -2(xy e 0ot exp -O2lx p ~~20 +y(l -7 Ot) eot-1 J 

Given that TL < TD, the mean and variance of Y(t) are given by x e-o' and 
(x/@) e t(1 - e 0'), respectively, while the distribution of the loss time TL is given by 
(27) PX{TL?tITL<TD}=exp J -20x t>0. 

PxITL tiTL < TD I = 
Ot-1 

This process is classical; see Feller (1951, p. 235) and Cox and Miller (1965, p. 235). 

6. Asymptotic conditional distributions. The long-term transient behavior of 
these processes can also be described by their asymptotic conditional distributions. 
For A c (0, o), we define 

b (A) = lim P{ Y(t) E A t}, 
t-*oo 

(28) 
c (A) = lim lim PI{Y(s) E A, s. < tg > t}. 

s -* t -0. 

These distributions describe the behavior of the processes after a long time has elapsed, 
given that termination has not yet occurred (Seneta (1966)). The densities are given 
explicitly as 

b (dy) = (Do(y)m (y) dy/ (j DO(u)m(u) du), 
(29) 

c (dy) = m (y )lo[(Do(y )]2 dy, 

which follows from the representation (11). For the strong detection process, and 
their conditioned counterparts, we find that 

(30) b(dy)=6e-0Y dy, bL(dy)=2Oe 20y dy, bD(dy)=2O(e 0Y-e-20y) dy. 

The means and variances of these distributions are m = 0-1, mL = (20)-1q mD = 3(20)-' 
and v = 0-2, VL = (20)-29 VD = 5(2y)-2, respectively. This confirms the intuitive observa- 
tion that if the process ends in loss it should be "nearer 0" than the process conditioned 
on detection. However, the distribution c () is invariant to conditioning and is given 
by 

c (dy) = 402y e-20y dy. 

This is a gamma distribution with parameters (2, 20). 

7. Functionals of the Airy model. It appears to be difficult to evaluate the 
spectrum of the Airy model explicitly, although application of the Rayleigh-Ritz 
method to the eigenvalue problem (x/2)qSn'(x) - (x2/2)On (x) = -An(Sn (x), (On (0) =0, 
n = 0, 1, ... using a system of Laguerre functions as a basis yields estimates Ao = 1.07, 
A1 = 2.740, A2 = 4.718. We can conclude that time-dependent properties in the Airy 
model decrease at a rate proportional to e-1 07t as t -+ o. 
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Before continuing to the next section, we record without details (cf. Karlin and 
Tavare (198 la)) two results for the Airy model with infinitesimal parameters 2(x) =x, 
u (x) =0, k (x) = x2/2. The probability u (x) that loss Qccurs before detection is given 
by 

(31) U(X)=PX{TL <TD}= 
A (x) 
A(O)' 

where A (x) is the (first) Airy function represented explicitly by 

(32) A(x) I-11[ 3 (2x3) Il/3(23)] 

where Iv is the modified Bessel function, 
1 (X2 /4)k I. (x) = (X) S x 

The appropriate Green's function of the process is given as 

2ir (B (x) - V3 A (x))A (y)/y, x ' y, 
(33) G (XI Y) == 2i 2(B (y) - V3 A (y))A (x)/Y, x _ yI 
B(x) being the (second) Airy function: 

B(x) = [ (I -) +I1h, (X)] 

8. The place at which detection occurs. The final question we consider in this 
paper involves a description of the place at which detection occurs. The distribution 
of the place P at which detection occurs can then be used to assess how many 
heterozygotes are carried in the population at the time of detection. Let W(x, J) = 
P,{process killed in J}, J c (0, oc). It is easy to prove 

(34) W(x, J) = G(x, y)k(y) dy, 

and it follows that W(x, ) has a density 
(35) w(x,y)=G(x,y)k(y), y>O. 

We remark that P need not be a bona fide random variable. Indeed, 

J G (x, y)k (y) dy = W(x, (0, oo)) = PX {TD < TL}= 1-u(x) 
0 

for the processes with no conditioning. We will examine the density w (x, y) for the 
strong detection model and the Airy model described in Table 1. 

For the strong detection model, the density w (x, y) is given from (16) and (35) by 

2e-ox(eOY-e-Y), y_x 
(36) w(x, y) x 

_ e -oy(eox - e-ox), y >'X. 

It is readily verified that Jl w(x, y) dy = 1 -eOX = 1- u(x), in agreement with (17). 
Using either (36) or (35) in conjunction with the conditioned parameters (20), the 
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detection position P, conditional on detection occurring, has density 
De6 y(e -e /) 

2(1-e-ox) ' y x (37) WD (X, Y OeOY(eOx-e-x) 

2(1 -e ox) 

This density has Laplace transform WD(x; y) = SO e YYwD(X, y) dy given by WD(x; y) = 
02(e-ox -e-x)/((,y2 -2)v(x)), and it follows that 

x ~~2 x 2 . 11 
Ex [P1 =-~ varx [PI1=---2--- 1 1+- x[ ] V(X)' x 02 v(x) V (x)' 

where v (x) = 1 - e -ox. In the particular case that x = 0, P has an exponential distribution 
with parameter 0. 

We move on now to the Airy model. In this case, the detection rate described 
after (1) is so small relative to the population size N that the approximating diffusion 
has infinitesimal parameters a 2(x) = x, ,u (x) 0 O, k(x) = x2/2. The density WD(X, y) of 
the detection position, given detection occurs first, is given from (31) and (32) by 

[A (0)IrA (x)y [B (y) -V3A (y)] 0 < 
(38) wD(x,y)= A(0)-A(x) 0yx 

A (0)47r[B (x) - V3 A (x))]yA (y) >-x 
A A(0)-A(x) y' x 

Focusing attention again on the case x = 0 leads to the density 
(39) wD(0, y) = 213 ITA(O)yA(y), y _ 0. 

The density WD (0, y) is unimodal, as the following argument shows. At any point 
satisfying [yA(y)]' = 0, we must have y' = -A'(y)/A(y) = g(y), say. But since A"() = 
eA(e) 

g() -AyA ) + (A A(Y = (A(y)) 

Starting from A"(x) -xA(x) = 0, multiplying by A'(x) and integrating from y to infinity 
yields [A'(y)]2 = y[A(y)]2 + J0 [A (X)]2 dx _ y[A(y)]2. Hence, g'(y) >O. Hence, the 
graphs of l/y and g(y) intersect exactly once and so the density is unimodal, as 
claimed. (Incidentally, the preceding argument also shows that A(y) is log-concave 
on (0, oc).) Numerical solution of the equation [yA(y)]' = 0 gives the mode at yo .885, 
showing that the most likely detection position starting from a very small number of 
heterozygotes in the discrete model is about 1.12N1/3 individuals. We see a distinct 
qualitative difference in the behavior of the two systems. The strong detection model 
ends in detection much faster than the Airy model, and this is reflected in the fact 
that the mode of the detection position in the strong case is at 0, whereas in the Airy 
case it is at .885. 

Moments of the detection position starting from x = 0 can be readily evaluated 
00 ~~~~~~~~~~~~~~~~~~1 using the result that for n _3, gn =lo ynA(y) dy = (n - 1)(n -2)gn_3, where go=3, 

gl = -A'(0) and g2 = A(0). For example, Eo[P] = 243 rTA2(0) 1.372, while varo [P] = 
.693. The expected position of detection corresponds to about 1.73N1/3 individuals 
in the discrete process, a much higher number than in the strong detection case. 
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