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Abstract
The downstream functions of the DNA binding tumor suppressor p53 vary depending on the

cellular context, and persistent p53 activation has recently been implicated in tumor suppres-

sion and senescence. However, genome-wide information about p53-target gene regulation

has been derived mostly from acute genotoxic conditions. Using ChIP-seq and expression

data, we have found distinct p53 binding profiles between acutely activated (through DNA

damage) and chronically activated (in senescent or pro-apoptotic conditions) p53. Compared

to the classical ‘acute’ p53 binding profile, ‘chronic’ p53 peaks were closely associated with

CpG-islands. Furthermore, the chronic CpG-island binding of p53 conferred distinct expres-

sion patterns between senescent and pro-apoptotic conditions. Using the p53 targets seen

in the chronic conditions together with external high-throughput datasets, we have built p53

networks that revealed extensive self-regulatory ‘p53 hubs’ where p53 and many p53 targets

can physically interact with each other. Integrating these results with public clinical datasets

identified the cancer-associated lipogenic enzyme, SCD, which we found to be directly re-

pressed by p53 through the CpG-island promoter, providing a mechanistic link between p53

and the ‘lipogenic phenotype’, a hallmark of cancer. Our data reveal distinct phenotype asso-

ciations of chronic p53 targets that underlie specific gene regulatory mechanisms.

Author Summary

The p53 transcription factor is a frequently mutated tumour suppressor that contributes
to repairing or eliminating damaged cells. Levels of p53 are typically regulated through its
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stability; it is constantly produced and degraded, so that upon stress, p53 is up-regulated
quickly. This acutely induced p53 has been used as a major model system for studying ge-
nome-wide p53 targets. However, emerging evidence suggests that persistently activated
p53 is involved in cancer-associated phenotypes, such as cellular senescence. We investi-
gate genome-wide gene regulation by acutely induced p53 through DNA damage as well
as chronically activated p53 in oncogene-induced senescence and pro-apoptotic states. In-
terestingly, acute and chronic p53 DNA binding profiles are highly distinctive, the latter
being preferentially associated with larger and relatively open promoters called CpG is-
lands. Furthermore, our integrative analyses of both p53-dependent gene expression and
p53-binding genomic DNA profiles reveal that p53 and many of its targets in chronic con-
ditions form extensive self-regulatory hubs, where they can physically interact. The data
not only substantially extend the list of direct p53 targets but highlight unique gene regula-
tion by chronic p53. Finally we show that the cancer-associated lipogenic enzyme, stear-
oyl-CoA desaturase, is a bona fide p53-repressive target through its CpG island promoter
in chronic conditions.

Introduction
The TP53 (p53) tumor suppressor, a stress-responsive transcription factor (TF), is somatically
mutated in more than 50% of human cancers, with a range between 10% and nearly 100% de-
pending on the tumor type. Furthermore, germ line mutations of p53, in both humans and
mice, predispose individuals to malignant tumor development [1,2]. p53 plays critical roles in
the induction of cell death and cell cycle arrest in response to stress, including DNA damage,
oncogenic stress, and metabolic stress. Hence p53 is implicated in a wide range of cellular pro-
cesses, such as cell cycle checkpoint, apoptosis, senescence and quiescence [3–5]. Despite in-
creasing knowledge about p53 target genes, however, it is not entirely clear which aspects of
p53 function are attributable to each of these p53-associated phenotypes and its tumor sup-
pressor activity [6].

p53 is typically regulated at the protein level through post-translational modification. In
normal conditions, p53 is under the regulation of a strong negative feedback loop, where
MDM2, a direct p53 target, serves as the E3 ubiquitin ligase, leading to the constant proteaso-
mal degradation of p53 [7]. Thus p53 is highly unstable in non-stress conditions but upon
stress induction, such as DNA damage, it can be rapidly stabilized through its dissociation
fromMDM2. However, whether or not the prevailing model of acute p53 induction represents
the major program of p53’s tumor suppressive functions is under debate [8]. For example,
studying whole body irradiated p53 inducible knock-in mice, Christophorou et al. showed that
a late restoration of p53 function, rather than the usual acute p53-mediated pathological re-
sponse, led to a reduced lymphoma burden [9]. In addition, Brady et al. recently showed that
p53 differentially regulates specific transcriptional programs of the acute DNA damage re-
sponse (DDR) and its more chronic tumor suppression functions through its use of different
transactivation domains. Their data indicate a close correlation between p53 activities in driv-
ing tumor suppression and senescence [10]. Notably, senescence has been shown to be largely
dependent on a persistent, rather than an acute, DDR [11]. Thus these studies suggest that the
downstream effects of acutely activated p53 and p53-mediated tumor suppression may well be
separable processes.

Several studies of p53 genomic binding profile have recently been published, revealing a
number of new p53 targets, which include genes potentially associated with its tumor
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suppressor functions. An early study found p53 targets that potentially suppress metastasis
[12]. A number of autophagy genes were recently identified as direct p53 targets and p53-
induced autophagy was shown to be important for DNA damage-induced apoptosis and the
anti-transformation activity of p53 [13]. In addition, in ES cells, p53 regulates self-renewal and
pluripotency upon DNA damage [14], and early-differentiation p53 targets include many de-
velopmental transcription factors [15]. Currently, however, efforts at genome-wide p53 map-
ping have mostly been focused on acutely or dynamically activated p53. Thus comprehensive
analyses of the persistent activities of p53, which may be more relevant to its tumor suppressor
function, are still missing.

Here we show distinct regulatory mechanisms for p53-targets between acute and more per-
sistent modes of p53 activation. In addition to the classical DDR, where p53 is acutely induced
(‘acute’ p53), we have determined profiles of genome-wide p53 binding and p53-responsive
genes in two distinct cellular conditions, where p53 is persistently activated (‘chronic’ p53) in
normal human diploid fibroblasts (HDFs): oncogene-induced senescence (OIS); and trans-
formed pro-apoptotic conditions. In contrast to acute p53, chronic p53 was closely associated
with CpG island (CGI) type promoters. Although the binding profiles of p53 in the OIS and
pro-apoptotic conditions were similar, the p53-responsive genes were distinct, suggesting that
downstream gene regulation by chronic p53 is highly context dependent. Interestingly, our in-
tegrative p53 networks and pathway modeling, combined with external high-throughput data-
sets, suggest that p53 can be functionally and/or physically associated with many of its own
targets, thus forming extensive self-regulatory p53 hubs in the chronic conditions examined in
this study. Finally, together with external clinical datasets, our data reinforce the evidence for
the anti-lipogenic functions for p53. Our study not only extends our knowledge of phenotype-
associated gene regulation by p53, but also provides unique and widely useful resources for the
targets of persistently activated p53.

Results

Phenotype-specific p53-responsive gene expression
To gain a comprehensive understanding of p53 biology, we established phenotypes that are as-
sociated with p53 either acutely activated by DNA damage or persistently activated by onco-
genic stress in a single cell type (IMR90 HDFs) (Fig. 1A). During the acute DNA damage
response (acDDR) phase induced by etoposide treatment (d1), the cells were viable and had
stopped proliferating but were not yet fully senescent, whereas most cells became senescent
seven days after etoposide treatment (Fig. 1B-1C). Of note, although acDDR cells showed a
modest increase in senescence-associated ß-galactosidase activity (Fig. 1B), it was not accom-
panied by up-regulation of other functional markers of senescence, such as HMGA proteins
and p16 (Fig. 1C). As expected, p53 was transiently stabilized in the acDDR phase with a paral-
lel up-regulation of p53 targets, such as p21 and MDM2, in total cell lysates (Fig. 1C). Interest-
ingly, in chromatin-enriched fractions, p53 levels were comparable between the acute (d1) and
senescence phases (d7). This is perhaps in part due to the enlarged cellular phenotype of senes-
cent cells, the p53 level then being more diluted in total cell lysates of senescent cells.

To establish the conditions for the sustained activation of p53, we used the well-established
models of oncogenic stress [16]. Ectopic oncogenic HRASG12V induces senescence (RAS-in-
duced senescence, RIS), a state of irreversible cell cycle arrest, where p53 plays a major role
[16]. In contrast, E1A, the ‘immortalizing’ adenoviral oncoprotein, transforms HDFs when
used in combination with oncogenic HRASG12V. At the same time, E1A stabilizes p53 and
thereby sensitizes cells to apoptosis (Figs. 1A, 1D, and S1A) [17]. Thus E1A/RAS-expressing
cells are highly proliferative, yet sensitive to apoptosis due to sustained p53 activation (here we
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Fig 1. Phenotype-associated p53-responsive gene expression in IMR90 cells. (A) Schematic of the p53-associated phenotypes. (B) Cell viability,
senescence-associated ß-galactosidase activity (SA-ß-gal), and BrdU incorporation (mean ± SEM; n = 3) were measured for each condition as indicated in
(A). In addition, DNA damage-induced senescence (DDIS) was included for comparison: cells were treated with etoposide (100 μM) for two days, and
maintained for an additional five days in drug-free media. (C, D) Immunoblot analyses for the proteins indicated for total lysates and chromatin fractions from
the cells as labeled. Cyclin A2, a cell cycle marker; HMGA proteins, senescence markers. d1 and d7 correspond to acDDR and DDIS, respectively (C). Core
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call this condition ‘pro-apoptotic’, pApo). In both cases, a stable accumulation of p53 was read-
ily detectable in chromatin fractions without additional stimuli (Fig. 1D), and again the elevat-
ed levels of p53, particularly in the RIS condition, were more clearly detected in chromatin
fractions than in total lysates (Fig. 1D). These data suggest that comparable amounts of p53
can be responsible for the distinct phenotypes.

Having established highly distinct p53-associated phenotypes—acDDR, RIS, and pApo—we
performed microarray analysis, with and without sh-p53, for each condition using a miR30
RNAi design in the lentiviral backbone [18]. To reduce secondary effects of p53 knockdown,
we introduced sh-p53 after each phenotype was established in the chronic conditions. The effi-
ciency of p53 knockdown was confirmed in the chromatin fractions (Fig. 1E). The set of differ-
entially expressed (DE) genes upon sh-p53 introduction in each phenotype differed greatly
between all conditions, with only a small number of well-characterized p53 targets in common
(Figs. 1F and S1B, and S1 Table). Regulation of three representative core p53 targets was vali-
dated using a different sh-p53 (S1C Fig). Pathway analyses of DE gene sets confirmed distinct
transcriptional signatures in each phenotype (Figs. 1G and S1D), indicating that p53 can, di-
rectly or indirectly, regulate gene sets unique in terms of both their context and phenotype, i.e.
in either the ‘acute’ or ‘chronic’ p53 condition, and the RIS or pApo condition.

Distinct genomic binding profiles of p53 between the acute and chronic
conditions
We next examined whether this phenotype-associated gene regulation was achieved through a
specific p53 binding profile by using p53 ChIP-seq analyses of the acDDR, RIS and pApo con-
ditions compared with normal-growing cells (S2 Table). We used at least three replicates for
each condition (except the growing condition, with two replicates) to define high-confidence
(HC) peak sets (see materials and methods). In contrast to the strong induction of p53 during
acDDR, actual peak numbers were substantially lower than in the other conditions (Fig. 2A).
The number of HC peaks in the acDDR condition was comparable to peak sets described in
earlier reports [12,13,19–21]. Notably, as in our acDDR condition, these studies were per-
formed on cells treated for less than 24h. Our data suggest that the mode of p53 exposure,
acute or chronic, affects the affinity of p53 binding and therefore the outcome. The genomic
features of the HC p53 binding sites in the acDDR condition differed from those in RIS and
pApo. The proportion of p53 peaks that mapped to transcription start site (TSS) proximal re-
gions (core promoter) was substantially higher in the RIS and pApo conditions at 64% and
50%, respectively, compared with only 26% in the acDDR condition, where the majority of
peaks (>70%) were in introns, exons or up-stream distal regions (Fig. 2B). The preferential as-
sociation of p53 with promoter regions in the chronic conditions is not due to varied numbers
of p53 peaks between conditions, because the association was conserved when we selected the
same numbers of peaks from each condition for the analysis (S3 Table).

Through visual inspection of our ChIP-seq data using a genome browser, we noticed that
p53 peaks tended to be either sharp or broad, with acDDR peaks being substantially narrower
than in the other conditions (Fig. 2C). There are two major types of core promoter: ‘focused’
with a single or a few densely aggregated TSSs, and ‘dispersed’ with many TSSs. In vertebrates,

histones (C, D) and HMGA proteins (C) were stained with Coomassie blue. The arrow indicates non-specific bands (the Cyclin A2 blot in (C)). (E) Immunoblot
analysis in the indicated cells for chromatin fractions for p53. sh and v, sh-p53#1 and corresponding lentiviral vector (a miR30 design), respectively. For
acDDR, sh-p53 was introduced first for at least 5 days before administration of etoposide. For RIS and pApo, sh-p53 was introduced after the phenotype
establishment. Core histones were stained with Coomassie blue. (F) Venn diagram showing the numbers of differentially expressed (DE) genes upon p53
depletion with lentivirus-mediated RNAi (sh-p53#1) compared to vector, in the indicated conditions. (G) Pathway heatmap for differentially expressed genes
upon p53 depletion.

doi:10.1371/journal.pgen.1005053.g001
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Fig 2. ‘Chronic’ p53 preferably associates with CpG islands, whereas ‘acute’ p53 exhibits a diverse genomic distribution. (A, B) Number (A) and
genomic features (B) of high confidence (HC) p53 ChIP-seq peaks from the indicated conditions. The number of HC peaks from (A) is also shown in (B). (C)
Peak-width distribution in each condition. (D) Proportion of peaks associated with CpG islands (CGIs) to our HC peaks (black bars) and total peaks from
external datasets: red bar, IMR90 cells [21]; blue bars, MCF7 cells [20]. The external data are derived from single ChIP-seq experiments, thus ‘Total’ peaks
were used. (E) Proportion of CGI-type peaks vs. all peaks within the promoter regions. (F) Canonical p53 motif enrichment determined by p53 specific

Genome-Wide Analyses of Chronic p53

PLOS Genetics | DOI:10.1371/journal.pgen.1005053 March 19, 2015 6 / 28



these ‘focused’ and ‘dispersed’ promoters typically correspond to non-CGI-promoters contain-
ing core promoter elements (e.g. TATA-boxes) and CGI-type promoters, which are generally
TATA-less, respectively [22]. We examined the co-occurrence of p53 peaks and CGIs in each
condition. p53 peaks in the chronic (RIS and pApo) conditions overlapped substantially more
with CGIs than in the acDDR condition. The acDDR-associated peaks in our and other pub-
lished p53 datasets were mostly of the non-CGI type (Fig. 2D). The higher frequency of CGI-
type p53 peaks in chronic conditions is not simply due to their preferential distribution in the
promoter regions (Fig. 2B), since this tendency was retained when examining promoter regions
only (Fig. 2E). These data show the distinct genomic binding profiles of p53 between the acute
and chronic conditions, revealing extensive usage of CGI promoters in the latter.

Gene ontology (GO) enrichment of non-CGI p53 peaks mapped to genes showed that the
functional groups involved in the typical p53-associated functions, such as cell cycle, DNA
damage and apoptosis, were overrepresented particularly in the chronic conditions, whereas
for the CGI p53 peaks, we observed the most significant enrichment for functional groups in-
volved in RNA metabolism and processing (S4 Table). These data suggest that the outcome of
p53 binding in the chronic conditions is different from that of the acute condition, which has
been a commonly used experimental system, and thus our data substantially extend not only
the list of candidate p53-targets and but also their mode of regulation.

We next examined whether these p53-bound regions contained the p53 consensus motif.
Using position weight matrices, searching for known canonical p53 responsive elements
(p53REs), we identified their enrichment in both types of peaks (Fig. 2F, see Materials andMeth-
ods). Reflecting the peak shapes, p53-binding motifs were dispersed throughout the CGI-type
peaks, whereas p53REs were focused around the peak center of non-CGI-type peaks (Fig. 2G).

Such CGI-type p53 peaks have not been reported even in the promoter of CDKN1A (p21),
the best-characterized p53 target (Fig. 2H). The well-established view is that p21 has two major
canonical p53REs at around-2.3 kb (the distal p53RE) and-1.4 kb (the proximal p53RE). The
distal p53RE is bound more strongly by p53 than the proximal site [23]. We consistently ob-
served sharp p53 peaks at the distal site in all conditions (#1 in Fig. 2H). In addition, the p21
locus contained prominent p53 enrichment at the major CGI, which encompasses the classic
p21 TSS, in chronic conditions only. p53 binding to the CGI, which contained various potential
p53REs (Figs. 2 and S2A), coincided with enrichment for H3K4me3 (a marker of CGI-promot-
ers) and a downstream spreading of H3K36me3 (a marker for transcription elongation) [24]
(Fig. 2H), suggesting that this CGI is a promoter for the classic p21 transcript variant 1 (v1).
Both the classic v1 and the alternative transcripts—represented by variant 2, whose TSSs are lo-
cated in direct proximity to the distal p53RE (#2 in Fig. 2H)—were up-regulated in all condi-
tions, therefore the relative contribution of the distal p53RE and the CGI promoter to p21 v1 is
not yet clear (Figs. 2 and S2B-S2C). Nevertheless these data reinforce the unexpected associa-
tion between chronic p53 and CGI promoters.

Chronic p53 comprises extensive self-regulatory hubs
We next compared our p53-dependent expression data with our p53 binding data. In contrast
to the expression profiles (Fig. 1F), the overlap in the p53 binding profiles between conditions

position weight matrices. (G) Histogram of p53 motif occurrence position distribution in HC-peak as determined by PscanChip in the RIS condition.
Frequency of p53 motifs in each 50 bp window across 6148 CpG and 3700 non-CpG peaks is plotted across +/- 1000 bp regions around the TSS. (H)
Genome browser snapshot of ChIP-seq for p53 and the indicated histone marks at the p21 locus in each condition. The vertical lines labeled #1 and #2
indicate the classical distal and proximal p53REs. Two representative RefSeq transcripts encode the same protein. The vertical scaling of ChIP-seq tracks
for each antibody is identical between conditions.

doi:10.1371/journal.pgen.1005053.g002
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was substantially larger, and the similarity was even more striking for the peaks within the pro-
moter regions (S3A Fig). To better predict phenotype-associated p53 function, we developed
the “R-based analysis of ChIP-seq And Differential Expression” (Rcade) package, integrating
genome-wide binding profiles of TFs with their responsive gene expression profiles. Briefly, we
coupled the expression analysis to a TSS-local read-based ChIP-seq analysis, thereby circum-
venting ‘peak-calling’ and thus reducing false-positives and bias issues inherent with peak-
calling methods. However, because most of the acDDR peaks failed to fulfill the localization
criteria specified (S3B Fig), in our further analyses we only focused on the pApo and RIS
chronic conditions, where Rcade identified 1487 and 563 genes, respectively, which included
both established and many previously unknown, ‘putative’ p53 targets (S3C Fig and S5 Table).
GO analysis of the Rcade-derived genes showed that various biological processes were repre-
sented in both conditions, including typical p53-related functions (cell cycle, DNA damage re-
sponse, and apoptosis); functions of membrane-bound organelles and metabolism; and gene
expression and RNAmetabolism/processing (S3D Fig).

The Rcade-derived genes include both previously known as well as many unknown/
uncharacterized genes as direct targets of p53. For example, ANKRA2 and HSPA4L, which are
poorly characterized, were identified as putative direct p53-inducible targets in both RIS and
pApo conditions. Significant down-regulation of ANKRA2 and HSPA4L upon p53 knockdown
was confirmed by qPCR in at least two different conditions in IMR90 cells (S3E Fig). Similar
results were obtained using the second sh-p53 (S3E Fig). Interestingly, tumor-specific, disrup-
tive mutations of ANKRA2 were previously identified in oral squamous cell carcinoma [25],
and mutations in ANKRA2 are also reported in the Catalogue Of Somatic Mutations In Cancer
(COSMIC, http://www.sanger.ac.uk/genetics/CGP/cosmic/). In addition, methylation of the
CGI promoter ofHSPA4L as well as the methylation-associated down-regulation of HSPA4L
in acute lymphocytic leukemia (ALL) have been reported previously [26], thus underlining the
usefulness of our Rcade datasets. Using a PiggyBac transposon system [27], we established a tet-
racycline-inducible p53 system in H1299 cells (a p53-null lung cancer cell line) and confirmed
that ectopic wild type p53 could induce expression of ANKRA2 and HSPA4L (S3F Fig).

To gain a comprehensive understanding of the p53 regulome, we first generated integrative
networks of the Rcade-derived p53-targets, taking advantage of numerous external high-
throughput datasets. Since co-regulated genes are likely to be ‘connected’, we measured con-
nectivity within the Rcade-derived p53-targets, taking into account topological measures of
local (‘Degree’) and global (‘Between-ness centrality’) connectivity (see materials and meth-
ods). This largely unbiased network approach revealed that the (putative) p53-targets were
highly inter-connected, providing evidence for the validity of our Rcade gene lists (Fig. 3, com-
pare to the random gene set). p53 was identified as the most globally (pApo) and locally (both
conditions) connected gene in the networks, indicating the importance of p53 to the integrity
of entire networks.

To gain insight into the functional relationship between putative p53 targets, we next con-
structed phenotype-specific, ‘knowledge-based’ pathway models of the p53 regulome (see ma-
terials and methods) (S4 and S5 Figs, high resolution figures are available at http://australian-
systemsbiology.org/tp53). These revealed a highly complex network in the pro-apoptotic con-
dition and provided the first detailed p53 regulome of senescence. p53 appeared to regulate
multiple components within the same pathways or biochemical complexes, but often with dis-
tinct aspects depending on the cellular context. Thus many p53-related phenomena frag-
mented throughout the literature could be seen in a single biological context, and yet each
context may involve distinct p53 functions. For example, Rcade genes associated with mito-
chondria in the pApo condition were largely distinct from those in the RIS condition and in-
cluded, in addition to apoptotic genes, genes involved in mitochondrial metabolism and
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Fig 3. High connectivity within the (putative) p53 direct target genes. Integrative networks of Rcade-derived p53 targets were generated utilizing>300
external high-throughput genomic and proteomic datasets. Nodes are colored by the Rcade B-value, which represents the probability of genes being direct
p53-targets. Nodes are spatially organized by ‘Degree’ (local connectivity) and the size of the nodes represents their ‘Betweeness centrality’ (global
connectivity). Edge colors indicate the data types used. p53 represents the central node (the highest Degree) in both conditions. A random list of genes
(including p53) was chosen to generate a control network using the samemethods (inset). For each condition, a graph plotting the two network topology
measures (global and local) was generated, representing overall connectivity. For simplicity only Rcade genes positively regulated by p53 are shown.

doi:10.1371/journal.pgen.1005053.g003
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homeostasis (oxidative phosphorylation, fatty acid and lipid metabolism, mitochondrial bio-
genesis). Consistent with a recent study, which showed an extensive transcriptional regulation
of autophagy by p53 in response to acute DNA damage in mouse embryonic fibroblasts [13],
we also found that the autophagy program was regulated by p53 in the chronic conditions
(pApo in particular) but through largely distinct genes compared to the previous report [13]
(S4 Fig), extending the role for p53 in autophagy regulation.

One striking notion from our pathway modeling is that a subset of the p53 regulome formed
a ‘p53 hub’: p53 has been reported to interact with, or be modified by, the components of this
hub in diverse experimental conditions, thus suggesting that many of the direct targets of p53
in turn regulate p53 in the chronic conditions (Figs. 4A, S4, and S5, and S6 Table). This is in ac-
cordance with the high local connectivity of p53 in the networks. Information specifically
about protein-protein interactions between the p53 hub components highlighted that many of
them can interact with each other (Fig. 4B). The components within the self-regulatory net-
work of p53 are best exemplified by MDM2, the E3 ubiquitin ligase, which negatively regulates
p53 stability, thereby conferring a strong negative feedback loop [7]. However, an MDM2-in-
dependent negative feedback loop has been shown in a senescence context [28]. Moreover, ad-
ditional mechanisms for modulating the MDM2-p53 loop are suspected to exist in the cancer
context [29,30]. Of note, consistent with the high connectivity of MDM2 in our p53 networks
(Fig. 3), MDM2 itself formed a prominent ‘sub-hub’ within the p53 hub (Fig. 4A), reinforcing
the existence of multiple levels of mechanisms for regulating p53 and the p53-MDM2 loop in
the chronic conditions. Together, our data suggest that intensive and multi-level fine-tuning of
p53 function may be an important mode of phenotype regulation.

p53 represses the lipogenic enzyme SCD in RIS, pApo, and cancer
Finally, to test the clinical relevance of our datasets for chronic p53 targets, we performed re-
cursive partitioning analysis (RPA) of each Rcade component for survival in four publicly
available cancer datasets (Fig. 5A) [31–33]. For example, the RPA identified an association be-
tween high levels ofMDM2, a bona fide oncogene, and poor prognosis in two datasets
(Fig. 5A). On the other hand, we observed a mixed association between prognosis and p21
(CDKN1A) levels, whose clinical relevance in human tumors is controversial, supporting the
validity of this method [34] (Figs. 5A and S6). Interestingly, several autophagy genes were iden-
tified in the pApo condition, where high levels of these genes were mostly associated with better
prognosis in multiple clinical datasets (S6 Fig, left). Implications of autophagy in cancer are
complex and thus careful interpretation is necessary, but these data support the recent study
that showed the contribution of autophagy to p53-dependent tumor suppression [13]. Using
this method we went on to validate clinically relevant p53 putative targets. We prioritized p53-
repressive targets, since p53 mutations are common in cancers where p53-repressed genes are
likely to be up-regulated, and if those gene products contribute to tumorigenesis, they may pro-
vide good candidates for therapeutic targets in p53-deficient cancers. Of the p53-repressive tar-
gets whose expression levels were significantly correlated with prognosis in at least two
different datasets, we chose the lipogenic enzyme stearoyl-CoA desaturase (SCD) for further
validation, for the following reasons (Fig. 5A): ‘lipid metabolism’ was featured in our pathway
modeling in both chronic conditions (S4 and S5 Figs.); the ‘lipogenic phenotype’ is a hallmark
of cancer [35]; high SCD expression has been correlated with a transformation phenotype,
tumor cell survival, and poor outcome in many cancers, and SCD has been implicated as po-
tential targets for cancer therapy [36]. Although several lipogenic TFs, such as SREBFs and
PPARs, have been implicated in the regulation of SCD expression, it is not clear how SCD is
regulated under stress as well as in cancer [37].

Genome-Wide Analyses of Chronic p53

PLOS Genetics | DOI:10.1371/journal.pgen.1005053 March 19, 2015 10 / 28



SCD catalyzes the rate-limiting reaction in the biosynthesis of the major monounsaturated
fatty acids (oleate and palmitoleate), which are components of essential building blocks of rapidly
proliferating cells [37]. Consistently, SCD was initially up-regulated in response to hyperactive
RAS, and then it reduced to an almost undetectable level after the full establishment of senes-
cence, where p16, a marker of senescence, is highly up-regulated (Fig. 6A). In E1A/RAS

Fig 4. The p53 regulome reveals an extensive self-regulatory hub. (A) Hubs were generated by integrating (putative) p53 targets from Rcade analysis
with pathway information, protein-protein interactions and literature mining. (B) Circos plots showing physical interactions between all hub genes. Red, p53-
interactions; blue, MDM2-interactions; gray, other component-interactions.

doi:10.1371/journal.pgen.1005053.g004
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Fig 5. Prognostic role of Rcade-derived p53-targets in cancer. (A) Heatmap summarizing RPA for Rcade-derived p53 targets in the RIS condition for four
cancer datasets indicated: Lung [31], Breast_ER+ and ER- [32], Prostate [33]. Blue and red denote worse and better survival, when expression of genes is
high. The fifth column depicts the ratios of gene expression in p53 mutant (mt) vs. wild-type (wt) tumors in separate breast cancer datasets [38]. CDKN1A
(p21),MDM2, and SCD are highlighted. SCDwas also p53-repressive in the pApo condition. (B) Kaplan–Meier plots in the indicated cohorts for patients with
high and low SCD levels.

doi:10.1371/journal.pgen.1005053.g005
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expressing transformed pApo cells, SCD levels were relatively high, supporting the role of SCD in
rapidly proliferating transformed cells (Fig. 6B). In both cases, however, when we introduced sh-
p53 to RIS or pApo cells, SCD levels were up-regulated, suggesting that SCD is regulated by multi-
ple mechanisms, whereby p53 counteracts the positive control of SCD by pro-tumorigenic signals.

To lend further support to the finding that SCD is repressed by p53 in cancer, we analyzed a
publicly available breast cancer dataset that contains gene expression and p53 sequencing data
[38]. In contrast to p21 andMDM2, SCD levels were significantly higher in tumors with p53
mutations than with wild-type p53 (Fig. 6C). We also examined the relationship between p53
and Scd1 (a mouse homologue of SCD) in Kras-driven mouse pancreatic ductal adenocarcino-
ma (mPDA) cell lines established from KrasLSL-G12D; Pdx1-cre, or KrasLSL-G12D; P48-cre mice
(KC cell lines) and KrasLSL-G12D; p53lox/+; Pdx1-cre compound mutant mice (KPΔC cell lines)
[39]. In KC cell lines (p53-wild type), p53 was readily up-regulated by DNA damage treatment,
whereas p53 was undetectable in KPΔC cell lines (p53-null) (Fig. 6D). Scd1 was down-regulated
in the KC, but not in the KPΔC, cell lines (Fig. 6D). Furthermore, repression of SCD by p53
was confirmed in a tetracycline-inducible p53 system in H1299 cells. Upon doxycycline addi-
tion, the endogenous SCD level was repressed in a dose- and time-dependent manner (Figs. 6E
and S7A). In the SCD locus, chronic p53 accumulation was observed mainly on the CGI
(Fig. 6F). Although an early study showed that overexpressed wild type p53 can bind the up-
stream canonical p53RE in the SCD promoter (Fig. 6F) [40], our data indicate that endogenous
p53 preferentially accumulates on a distinct region in the CGI promoter when it is chronically
activated. This p53-bound region, containing several p53 motifs (Figs. 6 and S7B), was suffi-
cient for p53 to repress downstream luciferase expression (Fig. 6G). Taken together, our data
suggest that SCD expression, which is associated with poor prognosis in some cancers, is direct-
ly repressed by chronic p53 through the CGI promoter, providing direct mechanistic insight
into the anti-lipogenic role of p53.

Discussion
Here we present an extensive study of p53 regulation in different phenotypes using normal
human cells. We compared p53 binding profiles in three settings; acDDR, RIS, and E1A and
RAS-expressing pApo conditions. In the acDDR condition, which has been the commonly
used model for genome-wide mapping of p53 binding sites, p53 peaks were primarily of a
sharp non-CGI type, exhibiting a wide distribution in the genome. Interestingly, increasing evi-
dence for distant gene regulation by p53 has been shown using systems where p53 is acutely ac-
tivated [14,41]. This may explain, in part, the diverse locations of non-CGI p53 peaks in the
acDDR condition. In contrast, both RIS and pApo conditions were associated with sustained
accumulation of p53 on chromatin, where p53 preferentially associated with CGI promoters.
In one of the previous p53 ChIP-seq studies, Botcheva et al. identified a substantial number of
CGI-type p53 peaks in an acute condition (Fig. 2D) [21]. We reanalyzed these external data
and found 1811 p53 CGI-peaks, 50% and 52% of which were included in our HC p53 CGI-
peaks in the RIS (6148 CGI-peaks) and pApo (6566 CGI-peaks) conditions, respectively. Al-
though the relatively high frequency of CGI-peaks in this external dataset (compared to 846
HC p53 CGI-peaks in our acDDR condition) may be an overestimate due to their lack of bio-
logical replicates, it reinforces the significance of the connection between p53 and CGI promot-
ers. It is not clear why their study identified many CGI peaks in their acDDR condition. Both
studies used HDFs (IMR90 cells), which are highly sensitive to senescence induction by oxida-
tive stress. Notably, we maintained our cells in a physiological (5%) O2 condition to minimize
the amount of oxidative stress derived from routine cell culture. Thus the basal levels of p53
and the background senescence phenotype might be different between the studies.
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Fig 6. The lipogenic enzyme SCD is a direct p53-repressed target. (A) Immunoblot analysis showing
dynamic regulation of the SCD level during RIS in IMR90 cells. SCD was initially up-regulated at as early as
day 3 post selection for oncogenic RAS expression but eventually down-regulated when senescence was
fully established (see p16 levels). (B) Immunoblot analysis for indicated proteins in indicated conditions. SCD
was up-regulated upon p53 knockdown (sh-p53#1) in both RIS and pApo conditions. The assay was
performed at d10 post-puromycin selection for RAS. (C)Quantitative representation of the correlation
between expression of the indicated genes and p53 status in the dataset [38] used in (A). *p< 0.05, **p<
0.01, ***p< 0.001. (D) Immunoblot analysis for indicated proteins in Kras-driven mPDA cell lines. Four cell
lines (KC1–4) are p53 wild-type and two cell lines (KPΔC1–2) are p53-null background (see Materials and
Methods). Cells were treated with 0.5 μg/ml Adriamycin (Adr) for 12h. (E) Immunoblot analysis for the
proteins indicated, in p53-inducible H1299 cells at the indicated time points after doxycycline addition. Pa,
parent H1299 cells. (F)Genome browser snapshot of p53 ChIP-seq at the SCD locus. A part of the SCD
RefSeq transcript with the arrow indicating the direction of transcription. Red bar, CGI. It was previously
shown that the upstream canonical p53RE at-200bp from the TSS can be bound by overexpressed p53 by
ChIP-qPCR [40], but we found no substantial association of endogenous p53 with this p53RE (mismatches in
the decamers and the spacer between two decamers are shown in lowercase). The vertical scaling is
identical between conditions. (G) Relative luciferase activity in p53-inducible H1299 cells co-transfected with
a luciferase reporter containing the SCD promoter mapped by our p53 ChIP-seq (the region between the
dotted vertical lines in (F)) or a synthetic p53RE with the constitutive Renilla luciferase-expressing plasmid.

doi:10.1371/journal.pgen.1005053.g006
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The molecular mechanism for the unique profile of chronic p53 seen in our study is unclear.
The levels of global chromatin bound p53 were comparable between the acute and chronic (at
least RIS) conditions (Fig. 1E). Furthermore, p53 binding profiles at promoter regions were al-
most identical between the RIS and pApo conditions, but the Rcade gene sets were distinct
(compare S3A and S3C Figs). Thus, quantitative differences in the global levels of p53 or its ge-
nomic distribution alone cannot explain the differential p53 activities.

Generally, CGIs are ‘open’, enriched for the binding sites of many TFs, including Sp1, which
can recruit the TATA-binding general TF complex to TATA-less CGI promoters [22]. Thus in
CGI regions, it is conceivable that complex interactions between transcription (co)factors can
occur depending on cellular contexts. The consensus p53 binding site consists of two decameric
half-sites separated by 0–13 nucleotides, but the ‘non-canonical’ half-sites can also function as a
p53RE [42,43]. Our analysis of two CGI promoters, which are p53-activated (p21) and p53-
repressive (SCD), suggests that both CGI-promoters contain multiple ‘weak’ p53REs (including
many half-sites), which somehow favor persistent accumulation of p53 (S2A and S7B Figs).
These weak p53 associations might well be reinforced by other factors. It is also possible that
p53 might associate with DNA through its binding partners. Indeed, our motif enrichment
analyses identified known p53-cofactors, including Sp1 (S7 Table) within p53 CGI-peaks.
Therefore, it is possible that persistent cellular stress creates distinct contexts, where the quality
of p53 (e.g. its post-translational modifications, PTMs) and the sets of p53 binding proteins are
different from acute conditions, thereby facilitating the p53-CGI association. Indeed, p53 can
be modified by a multitude of diverse PTMs, including phosphorylation, acetylation, methyla-
tion, ubiquitilation, neddylation, sumolyation, and poly-ribosylation [44]. Although the func-
tional roles of these PTMs are not fully understood, some PTMs such as phosphorylation and
acetylation typically contribute to stabilization and activation of p53 [44]. Interestingly, as
shown in Fig. 4A, many factors involved in PTMs of p53 were included in the p53 self-
regulatory hubs derived from the Rcade gene sets (Fig. 4A). This might provide a mechanism
for context-dependent fine-tuning of PTMs of p53 at least at a global level. It will be important
to determine phenotype-specific genome-wide profiling of individual PTMs of p53. In addition,
a recent study has shown that a genome-wide redistribution of DNAmethylation occurs during
replicative senescence, where persistent p53 plays a key role [45]. Thus it would also be interest-
ing to examine the structural alterations in CGI regions during RIS and pApo conditions.

Notably, these two chronic phenotypes are highly distinct; RIS cells are stably arrested and
resistant to apoptosis, whereas pApo cells are rapidly proliferating and sensitive to apoptosis,
yet both are largely dependent on p53 [16,17]. Such distinct p53-associated phenotypes were
not achieved through differential p53 binding alone, since both conditions exhibited highly
similar p53-binding profiles, where CGI-type genes are over-represented (S3A and S3C Fig).
The unique feature of CGIs, such as their relatively open configuration and their enriched TF
binding motifs, might also provide environments that allow for diverse downstream regulation
upon p53 binding in conjunction with other (co)factors [46]. In addition, our integrated net-
work analyses in chronic conditions identified the extensive capability of p53 for physical inter-
action with its own targets, further reinforcing the diverse results of p53 binding to the same
target promoters. Although the dynamic regulation of p53 through the MDM2-p53 negative
feedback loop was readily detected in the DDR condition (Fig. 1C), its relevance in the chronic
conditions was not so obvious. In pApo transformed cells, MDM2 was highly up-regulated
compared to other conditions, whereas the chromatin bound p53 levels were comparable, or
even slightly higher in the pApo condition (Fig. 1D). Although this may be in part due to E1A-
induced p14ARF, which inhibits the E3 ligase activity of MDM2 [47], this is also reminiscent
of the tumor specific escape of mutant p53 fromMdm2 degradation in mice harboring germ
line p53 mutations, an observation that suggests the existence of additional mechanisms for
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modulating the p53-MDM2 loop during tumorigenesis [29,30]. It has also been shown that the
p53-repressive target, malic enzyme 2, reciprocally suppresses p53 in an MDM2-independent
manner during senescence [28]. Together, the dysregulation of p53-hubs particularly in chron-
ic conditions might be a critical step for tumorigenesis.

The complex and multi-level gene regulation by chronic p53 appears to apply to its regula-
tion of genes involved in fatty acid synthesis. SCD was previously shown to positively regulate
p53 transcription [48], thus SCD may be a part of the self-regulatory p53 hub. In addition to
SCD, Rcade genes included many other genes involved in lipid metabolism in at least in one
condition, indicating that p53 regulates fatty acid metabolism at multiple steps (Fig. 7). Consis-
tently, recent metabolomics studies showed that senescence can be associated with reduced
lipid synthesis and increased fatty acid oxidation [49,50]. The Rcade genes associated with lipid
metabolism include FASN and SREBF1 (also known as SREBP1), which were repressed by p53.
FASN, which encodes another key lipogenic enzyme, is typically co-regulated with SCD by the
lipogenic TF, SREBF1, and FASN was previously shown to be a target of the p53 family mem-
bers, p63 and p73 [51]. It was also shown that ectopic p53 can repress the promoter activity of
SREBF1 [52]. We confirmed their repression by ectopically expressing p53 in H1299 cells, sug-
gesting that, together with our Rcade analyses, FASN and SREBF1 are also direct p53-repressive
targets (S7C Fig). Importantly, the levels of SREBF1 were not reduced but rather slightly up-
regulated in the chronic conditions (S7D Fig), thus it is likely that repression of SCD expression
by p53 in these settings is direct (Fig. 6B). Given the dynamic regulation of SCD during RIS

Fig 7. Simplified schematic of de novo fatty acid synthesis.Gene products of Rcade-derived p53-targets
are colored. Red and blue represent genes positively and negatively regulated by p53, respectively.
Oncogenic signals activate fatty acid (FA) biogenesis in part through the activation of SREBF1. Typically
oncogenic signals also stimulate the p53 pathway. In addition to SCD, we found several Rcade genes (at
least in one condition) involved in this process, suggesting that p53 regulates de novo FA synthesis at
multiple levels. FA-CoA, fatty acyl-CoA; MUFAs, monounsaturated fatty acids.

doi:10.1371/journal.pgen.1005053.g007
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and pApo, sustained p53 might compete with SREBF1 (or other lipogenic factors) at CGI re-
gions. Interestingly, a recent study showed that mutant p53 positively regulates lipogenic
genes, including SCD and FASN, in an SREBF1-dependent manner [53]. This study reinforces
not only the anti-lipogenic role of p53 but also the functional link between p53 and SREBF1 in
lipogenic gene regulation. In addition, it has been shown that p53 is up-regulated in the adipo-
cytes of obese mice, where p53 negatively regulates SREBF1 [52]. It is possible that chronically
activated p53 acts as a counter measure against excessive and tumorigenic fatty acid synthesis
through various mechanisms. Altogether these results provide additional mechanistic insight
into p53 tumor suppression, suggesting that our data represent unique tools for finding cancer
therapeutic targets in a p53-mutant context.

Materials and Methods

Cell culture and vectors
IMR90 cells (normal human diploid fibroblasts) (ATTC) were cultured as previously described
under the 5% O2 condition [54]. H1299 cells (p53-null lung cancer cells) (ATCC) and mouse
pancreatic ductal adenocarcinoma (PDA) cell lines were cultured in DMEM with 10% fetal bo-
vine serum (FBS) under ambient oxygen levels. The PDA cell lines KC1 (T4878), KC2
(TB1572) and KC3 (T9394) were established from KrasLSL-G12D; Pdx1-cre (T4878 and T9394),
and KrasLSL-G12D; P48-cre (TB1572) mice as described previously [39]; KPΔC was established
from KrasLSL-G12D; p53lox/+; Pdx1-cre compound mutant mice, generated after breeding with
KrasLSL-G12D [55], Pdx1-cre [56] and p53lox [57] strains.

The following retroviral vectors were used in this study: pBabe-Puro (HRASG12V), pWZL-
Hygro (E1A, HRASG12V), and pLNCX2-Neo (ER:HRASG12V, encoding a fusion protein of the
estrogen receptor ligand-binding domain and H-RASV12) [54]. The lentiviral RNAi, using a
miR30 design, has been described previously [18]. Target sequences of sh-p53: GAGGATTT-
CATCTCTTGTA (sh-p53#1) [18] and CACTACAACTACATGTGTA (sh-p53#2). To exam-
ine p53-dependent gene expression in each condition, sh-p53 was introduced after the
establishment of the phenotype and samples were collected after 5 days, except for the acDDR
condition, where sh-p53 was introduced first for at least 5 days before the administration of
etoposide (100 μM for 24h).

The tetracycline inducible system (pCLIIP-i) for p53 was built into a PiggyBac transposon
system [27] in two stages. The first stage plasmid comprised the minimal transposon pCyl50
(provided by the Wellcome Trust Sanger Institute, Hinxton, United Kingdom) [58] with a link-
er, HS4 transcriptional insulators and a PGK-puro expression cassette. The tet-inducible com-
ponents were added, with a third generation tet-responsive element [59] and a constitutively
expressed rtTA3 tet-transactivator (derived from pTRIPZ; Open Biosystems). Wild-type
human p53 cDNA was cloned downstream of the tet-responsive element (pCLIIP-i-p53).

Establishment of p53-inducible H1299 cells
p53-null H1299 human lung cancer were co-transfected with pCLIIP-i-p53 with the mouse
codon-biased PiggyBac transposon (mPB) gene. H1299 cells stably expressing pCLIIP-i-p53
were established in puromycin (1.5 μg/ml) containing media for 7 days, and then maintained
in the puromycin-free medium.

Luciferase assay
Luciferase activity was assayed using Dual-Luciferase Reporter Assay System (Promega) ac-
cording to the manufacturer’s instructions. Reporter plasmids were transfected to p53-inducible
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H1299 cells. After 48h of transfection, doxycycline was added to induce p53 expression. Cells
were lysed in passive lysis buffer after 24 hours of doxycycline treatment and luciferase activities
were measured using a PHERAstar FS microplate reader (BMG LABTECH). The p53-enriched
region in the SCD locus in the RIS condition (Figs. 6F and S7B) was synthesized (GeneArt), and
cloned into the pGL4.15 luciferase reporter plasmid (Promega) between KpnI and XhoI sites.
pGL4.38 (Promega), which contains 2x tandem synthetic p53RE, was used as a positive control.
The thymidine kinase promoter-Renilla luciferase reporter plasmid (pRL-TK) was used as a
normalization control.

Chromatin isolation
Chromatin isolation was performed as described before [18].

Immunoblotting
The following antibodies were used for immunoblotting: anti-HRAS (Santa Cruz, sc-29), anti-
human p21 (Santa Cruz, sc-397), anti-E1A (Santa Cruz, sc-430); anti-ß-actin (Sigma A5441),
anti-Cyclin A2 (Sigma C4710), anti-human p53 (DO-1, Sigma P6874), anti-MDM2 (clones
2A10 and 4B11) [18], anti-Histone H3 (Abcam ab1791), anti-HMGA2 (Santa Cruz, sc-30223),
anti-SCD/Scd1 (Cell Signaling, #2438), anti-mouse p53 (Biovision #3036) and anti-mouse p21
(Santa Cruz #sc-6246), anti-α-Tubulin (Abcam #Ab18251), anti-SREBP1 (Santa Cruz, sc-
13551). Immunoblotting analysis was carried out as described [18].

Cell proliferation, SA-ß-Galactosidase (SA-ß-Gal) and cell viability
assays
Replicating DNA was labeled using BrdU, and SA-ß-Gal activity was assessed as described
[18]. Cell viability was determined using a trypan blue exclusion assay.

Quantitative RT-PCR
RT-qPCR was performed as described before [18]. CDKN1A (p21) variant specific primer se-
quences can be found in S2B Fig.

Other qPCR primer sequences:
p21 Forward primer: AGCAGAGGAAGACCATGTGGA
p21 Reverse primer: GCGAGGCACAAGGGTACAA
SESN1 Forward: TACCTCAATGCTTAGACGGGCA
SESN1 Reverse: TCAGGAGTGCAAACAACAGTTT
BTG2 Forward primer: CTCCAGGAGGCACTCACAG
BTG2 Reverse primer: ATGATGGGGTCCATCTTGTG
ADCK3 Forward: TGATGCCTTTATCAACCCCCA
ADCK3 Reverse: CGAAGTATTCCAACTTGTCCCG
ANKRA2 Forward: TCACCCATAAAACAGTCAACCA
ANKRA2 Reverse: GCCAACTGGTGAACAGACAA
HSPA4L Forward: TTCTGCTTAGCGACTTGGGG
HSPA4L Reverse: GCTGCTGGTACTGAACCCTT
FASN Forward: GCTCCAGCCTCGCTCTC
FASN Reverse: TCTCCGACTCTGGCAGCTT
SCD Forward: TTCCTACCTGCAAGTTCTACACC
SCD Reverse: CCGAGCTTTGTAAGAGCGGT
SREBF1 Forward: GCCCCTGTAACGACCACTG
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SREBF1 Reverse: CAGCGAGTCTGCCTTGATG
βActin forward primer: TTCAACACCCCAGCCATGT
βActin Reverse primer: GCCAGTGGTACGGCCAGA

Microarray, ChIP and ChIP-seq
Gene expression microarray experiments were carried out on Illumina HumanWG-6 version
2 arrays as described previously, using three biological replicates per condition [54]. ChIP and
library preparation were performed as described previously [54]. In short, the immunoprecipi-
tated DNA was end-repaired, A-tailed, ligated to the sequencing adapters, amplified by 18 cy-
cles of PCR and size selected (200–300 bp) followed by single end sequencing on an Illumina
Genome Analyzer IIx (GAIIx) according to the manufacturer’s recommendation. Antibodies
used were: p53 (DO-1 Sigma); H3K4me3 (CMA304), H3K36me3 (CMA333) [54]. Expression
microarray and ChIP-seq data are available at the National Center for Biotechnology Informa-
tion Gene Expression Omnibus under accession numbers GSE53491 and GSE53379.

Microarray analysis
All data analyses were carried out on R using Bioconductor packages [60]. Raw intensity data
from the array scanner were processed using the BASH and HULK algorithms as implemented
in the beadarray package [61,62]. Log2 transformation and quantile normalization of the data
were performed across all sample groups. Differential expression analysis was carried out using
the limma package [63]. Differentially expressed genes were determined by computing the log2
contrast between sh-p53#1 and vector control for each condition. Genes were selected using a
p-value cut-off of<0.01 after application of FDR correction for multiple testing (Benjamini-
Hochberg) applied globally to correct for multiple contrasts. Data were analysed through the
use of IPA (Ingenuity1 Systems, www.ingenuity.com/), and pathway enrichment was deter-
mined for genes with log2 ratio>0.58 or<-0.58 and an FDR corrected p-value< 0.01. Illu-
mina HG6 v2 platform probe list was used as the background set. Pathway heatmaps were
generated by plotting negative log of the Fisher’s exact test enrichment p-value against all path-
ways. The conditions were clustered by hierarchical clustering using R (R-project).

ChIP-seq analyses
Single-end 36 bp reads generated by the Illumina GAIIx or High Seq were aligned against the
Human Reference Genome (assembly hg18, NCBI Build 36) using BWA version 0.5.5. Reads
were filtered by removing those with a BWA alignment quality score less than 15. A further fil-
tration was carried out by removing reads falling into the ‘blacklist’ regions identified by EN-
CODE [64]. Principle Component Analysis (PCA) was used to assess the prevalence and
quality of read data in TSS regions. Counts were normalized between samples by dividing by
effective library size (bin count sums). The MACS algorithm version 1.4.1 was used together
with hg18 aligned, sequence read BAM files for identifying peak regions representing p53 bind-
ing sites [65]. Peaks were inspected using the IGV Genome Browser (v 2.3) [66]. UCSC defined
CpG islands (CGIs) were used to identify CGI overlapping peaks. Any peak that overlapped
with a CGI was included in the CpG peakset and the remainder included in the non-CGI set.
Peaks were mapped to genes using the ChIPpeakAnno BioConductor package and the EBI
Peak Annotator. Ensembl 54 (hg18) gtf file downloaded from http://www.ensembl.org/info/
data/ftp/index.html was used to annotate genes. The following region definitions were used
when calculating genomic distribution of peaks: Core promoter regions (-3000 to +2000
around TSS), distal (-3000 to-50000), intergenic (> -50000) and downstream extremities
(-2000 to +3000) around transcription end site.

Genome-Wide Analyses of Chronic p53

PLOS Genetics | DOI:10.1371/journal.pgen.1005053 March 19, 2015 19 / 28

http://www.ingenuity.com/
http://www.ensembl.org/info/data/ftp/index.html
http://www.ensembl.org/info/data/ftp/index.html


pApo, acDDR and RIS samples had three biological replicates each, while the growing con-
dition had two replicates. We identified a high confidence (HC) peak set consisting of replicat-
ed peaks. Peaks that were present in two or more replicates in each condition were included in
the HC peak set. Non-replicated singleton peaks in each condition was then compared to peaks
in other conditions. Peaks in one condition overlapping with at least two other conditions or
peaks in one condition overlapping with peaks in at least two replicates from another condition
were also included in the HC peak set. Finally all overlapping peaks were merged to get the
final high confidence peak set for each condition.

We downloaded the FastQ files for the public data sets and aligned them to hg18 reference
genome using BWA and removed contaminants using FastQC [67]. BAM files were generated
and peak calling was performed using MACS v1.4.1. All other analysis was performed
as described.

The analysis of gene annotation enrichment was performed using GREAT (http://great.
stanford.edu/) using the ‘basal plus extension’ association rules with proximal 10kb upstream
and 5kb downstream regulatory domain settings, and the whole human genome (hg18) as
background [68].

Rcade
Peak distributions were plotted and bins 50 bp upstream and 1500 bp downstream of TSS were
defined based on p53 signal enrichment. baySeq was used to determine enrichment over input
[69]. Counts were normalized using the Quantile method (baySeq package). ChIP-seq and ex-
pression data were combined using a Bayesian approach, ranking genes in order of probability
of being a p53 target. For each probe, we calculate the posterior probability of a p53 effect on
transcription, Pr (DE and C | data), as proportional to Pr(DE | data) Pr(C | data)—here,
Pr(DE | data) is the limma-derived posterior probability of differential expression under p53
knockdown, Pr(C | data) is the baySeq-derived posterior probability of enrichment for ChIP.
Each probe’s posterior probability was logit transformed into a B value, through applying the
logit transformation. Probes with B value greater than the threshold-1.5 were taken forward in
the analysis. IPA upstream regulator analysis method was used as a sequence independent
method to confirm the transcriptional regulators of the Rcade gene lists. The DAVID bioinfor-
matics resource (v6.7) was used for ontology enrichment analysis of Rcade genes. Illumina
HG6 v2 platform probe list was used as the background probe set [70].

Phenotype specific knowledge based Pathway modeling
Biochemical models of the p53 regulome (the set of p53 regulated genes) for each phenotype
under consideration was constructed utilizing the following integrative and iterative analytical
approach. Putative p53 targets were identified by integrating ChIP-seq and expression datasets
using the Rcade method (Bioconductor). Rcade genes with a B value>-1.5 were selected as pu-
tative p53 targets for further analysis. Reviews, primary scientific publications and phenotype
associated biochemical pathways and signaling, regulatory, metabolic and physical interactions
involved in each of the conditions were used to build a phenotype specific global network
framework. The selected Rcade genes were then used to extract pathway information from
multiple public (KEGG, Reactome, Wikipathways, Pathway Commons, Panther etc.) and com-
mercial pathway (Ingenuity Pathway Analysis) databases [71–75]. Pathways involved were in-
tegrated into the model in combination with information integrated from interaction databases
and ontology analysis followed by extensive semi-automated literature mining. Sub-cellular lo-
calization information and p53 related protein-protein or genetic interactions were integrated
by mining relevent biological databases (InAct, Biogrid, String, IPA, MitoCarta) [76–79].
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Regulation of p53 or by p53 and interaction with p53 or evidence of contribution to or involve-
ment in phenotype for each interaction was documented. Expert manual curation was used to
build and iteratively refine these detailed biochemical models of p53 targets. Nodes are repre-
sented by p53 induced, repressed genes and those not regulated by p53 providing pathway con-
text. Edges are represented by color-coded arrows denoting catalytic, protein-protein,
inhibitory, direct functional, translocation or undefined interactions. A large number of p53
regulated genes identified as p53 interacting or p53 stability modifying proteins documented in
S4 and S5 Fig. are shown in detail as regulatory p53 hubs in Fig. 4A. A list of p53 hub genes
and evidence for p53 association are provided in S6 Table.

Functional association networks
The Multiple Association Network Integration Algorithm was used to identify functional asso-
ciation networks. The method uses a large dataset of over 300 functional association networks
that are grouped into five categories: co-localization, genetic interaction, physical interaction,
predicted interactions and shared protein domains. Networks are weighted according to
source-dependent criteria, stored as sparse weighted adjacency matrices, where weight corre-
sponds to gene interaction strength. The algorithm uses the Rcade list to integrate association
networks from multiple sources into a composite network using a conjugate gradient optimiza-
tion method. The computation consists of two parts; an algorithm, based on linear regression,
for calculating a single composite functional association network from multiple networks de-
rived from different genomic and proteomic datasets; and a Gaussian label propagation algo-
rithm for predicting gene function given this composite network. Strength of the functional
relatedness is represented by the edge density. Network topology and connectivity analysis and
biological enrichment analysis of the inferred network was carried out. To determine the speci-
ficity of the method we used a similar sized set of random genes (derived from the universe of
human protein coding genes) and the above network inference methods were applied. This re-
sulted in an extremely sparse network, in which the majority of nodes remained unconnected.
The exclusion or inclusion of p53 within the random list had no effect on its connectivity. Net-
works analysis and visualization was performed with Cytoscape (ver 2.8.3) software [80].

p53 interactome analysis
Biogrid database (ver 3.2) was programmatically accessed by perl scripts using the RESTful API.
The database was queried with a list of (pro-apoptosis or senescence) putative p53 target genes
(Rcade genes with a B value> -1.5). Protein-protein interactions were filtered by Rcade lists and
then by those consisting of either of the interacting partners being on the previously identified p53
hub gene lists. Interactions between hub genes were clustered into those between p53, MDM2 and
other hub genes and visualized as a circos plot using the Circos program (ver 0.64) [81].

Motif analyses
CDKN1A and SCD sequences in fasta format were used for transcription factor binding site
analysis. The TransfacPro (v 2013.2) MATCH algorithm, together with transcription factor po-
sition weight matrices and specificity profiles was used to identify TP53 and other transcription
factor binding sites [82]. We used the minSUM_good profile to restrict analysis to only high
quality matrices and to minimize the sum of both false positive and negative error rates. De
novomotif enrichment analysis was performed using MemeChIP package [83] and Position
Weight Matrix (PWM) scanning based motif enrichment analysis was performed using Pscan-
Chip with TransfacPro PWMs and open chromatin background downloaded from UCSC ge-
nome browser [84–86]. Distribution of p53 motifs were defined by CentDist [87].
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Recursive partitioning analysis
Recursive partitioning (RP) was carried out using the R party package on normalized gene ex-
pression data from the four datasets, all derived from Affymetrix array platforms [31–33].
Genes were selected as having expression profiles that could stratify patients into subgroups
with significantly different survival outcomes, by selecting those genes for which the most sig-
nificant stratification had a p-value (adjusted for multiple correction) of<0.05. p53 expression
and mutation status was derived from CEL files for the Miller et al. [38] dataset were down-
loaded from GEO (Accession number: GSE3494). All data analyses were carried out on R using
Bioconductor packages. The data were normalized using the RMA algorithm. Differential ex-
pression analysis was carried out using the limma package.

TFBS enrichment analysis of putative p53 targets
p53 bound, transcriptionally active, putative p53-target genes were derived from Rcade analysis
of pro-apoptotic and oncogene RAS-induced senescence conditions. Genes with an Rcade
B-value> -1.5 was used for further analysis. Core promoter sequences (-3kb and +2kb around
the TSS) were extracted and transcription factor binding site (TFBS) enrichment analysis was
performed using the Pscan program together with vertebrate TFBS position weight matrices
from the Transfac professional database (v2013.4) [85,88]. Promoter sequences of equal length
to the test set from all protein coding genes were used as a background set.

Supporting Information
S1 Fig. Phenotype associated p53 activation. (A) E1A/RAS expressing (pro-apoptotic, pApo)
cells are sensitive to DNA damage-induced cell death, compared to growing (Grow) and RAS-
induced senescent (RIS) cells. Cells were treated with 0.5 μg/ml Doxorubicin (DOXO) or
DMSO (No) for 24 hours, and cell viability was assessed by trypan blue exclusion (mean ±
SEM; n� 3). ���p< 0.001. Representative phase contrast images of pApo cells are also shown.
(B) qPCR analysis of known p53-targets in each condition (mean ± SEM; n = 3) with or with-
out sh-p53#1. (C) qPCR analysis of known p53-targets as well as p53 in each condition (mean
± SEM; n = 3) with or without sh-p53#2. (D) Pathway heatmaps for genes down-regulated
(positively regulated by p53) and up-regulated (negatively regulated by p53) upon p53 deple-
tion (sh-p53#1). Grow, growing IMR90 cells; acDDR, cells treated with 100 μM etoposide for
24h; RIS, RAS-induced senescent cells; pApo, E1A/RAS expressing pro-apoptotic cells.
(TIF)

S2 Fig. p53 CGI peak in CDKN1A (p21) locus and its transcripts. (A) Sequence of the proxi-
mal CGI in the p21 locus and potential p53 binding motifs (highlighted) defined using Trans-
facPro Match algorithm and associated matrices with 0.8 cut-offs for both core and matrix
scores. (B) Two representative p21 Refseq transcripts, variant 1 (the classic transcript) and vari-
ant 2. RT-qPCR primer sets were designed to amplify each variant separately or both variants
simultaneously. (C) RT-qPCR analyses of the p21 transcripts in cells in the indicated condi-
tions (mean ± SEM; n = 3). Both variants were up-regulated in all conditions.
(TIF)

S3 Fig. Integration of p53-dependent expression and p53 ChIP-seq data. (A)Venn diagrams
showing the numbers of HC p53-ChIP-seq peaks in the indicated conditions genome-wide or
within the promoter regions. (B)Dot plots showing p53 binding intensity against differential
expression (DE). Each point represents a gene, with its associated DE log-ratio plotted on the x-
axis and the bin-derived ChIP log-ratio on the y-axis. The color of each point represents the
log-odds that Rcade has assigned to that gene: that is, how likely that gene is to be a direct p53
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target. We can see the genes that are likely to be p53 targets at the top-left and top-right of the
graphs. (C) Venn diagram showing the numbers of Rcade-derived p53-targets in both chronic
conditions. Overlap is smaller compared to the HC peak sets—see the right Venn diagram in
(A). (D)DAVID analysis for Rcade-derived genes in each condition. Red script represents pro-
cesses associated with typical p53-related functions such as cell cycle, DNA damage response,
and apoptosis; blue script represents processes associated with RNAmetabolism and regulation;
green script represents processes associated with membrane-bound organelles. DAVID ontolo-
gies were manually trimmed by removing apparent redundancy. (E) qPCR showing fold change
of indicated mRNAs after p53 knockdown in the indicated conditions (mean ± SEM; n = 3).
(F) qPCR showing fold change of indicated mRNAs after p53 induction in tetracycline-induc-
ible p53 expressing H1299 cells (mean ± SEM; n = 3). Inset is immunoblot analysis of p53 in the
presence or absence of 100μM doxycycline (Dox) for 24h. �p< 0.05, ��p< 0.01, ���p< 0.001.
(TIF)

S4 Fig. Phenotype specific knowledge based pathway models of putative p53 targets in pro-
apoptotic condition.Maroon ovals indicate positive and blue ovals indicate negative regula-
tion by p53 (red oval). White ovals are not regulated by p53 but are involved in the pathways.
The blue T-lines show inhibition, green lines ending in a circle are enzymatic reactions, orange
arrows are protein-protein interactions, pink dotted lines are either translocation or degrada-
tion, black lines are undefined interactions and black dotted lines are indirect interactions.
Numbers associated with genes or connections represent are linked to pubmed IDs providing
the evidence for the interaction. A high-resolution version of the figure is available at http://
australian-systemsbiology.org/tp53.
(TIF)

S5 Fig. Phenotype specific knowledge based pathway models of putative p53 targets in RIS
condition.Maroon ovals indicate positive and blue ovals indicate negative regulation by p53
(red oval). White ovals are not regulated by p53 but are involved in the pathways. The blue
T-lines show inhibition, green lines ending in a circle are enzymatic reactions, orange arrows
are protein-protein interactions, pink dotted lines are either translocation or degradation,
black lines are undefined interactions and black dotted lines are indirect interactions. Numbers
associated with genes or connections represent are linked to pubmed IDs providing the evi-
dence for the interaction. A high-resolution version of the figure is available at http://
australian-systemsbiology.org/tp53.
(TIF)

S6 Fig. Heatmap summarizing recursive partitioning analysis for Rcade-derived p53 tar-
gets in the pApo condition for four cancer data sets as in Fig. 5A.MDM2, CDKN1A (green)
and SCD (red) are highlighted. Consistent with the recent study by Kenzelmann Broz et al.
[13], higher levels of genes involved in autophagy (brown) were often associated with
better prognosis.
(TIF)

S7 Fig. SCD is a p53-repressive target. (A) Immunoblot analysis in p53-inducible H1299 cells
at d3 after different doses of doxycycline addition. 293T cells express a high level of ‘inactive’
p53 due to the expression of SV40 Large T antigen. (B) The sequence of the p53-bound region
in the SCD promoter as shown in Fig. 6F. Potential p53 motifs are highlighted as in S2A Fig
This region was used for the reporter assay in Fig. 6G. (C) qPCR showing fold change of indi-
cated mRNAs in each condition (mean ± SEM; n = 3) with or without sh-p53#2. (D) qPCR
showing fold change of indicated mRNAs after p53 induction in tetracycline-inducible p53 ex-
pressing H1299 cells as in S3F Fig (mean ± SEM; n = 3). Dox+, 100 μM doxycycline treatment
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for 24h. ��p< 0.01, ���p< 0.001. (E) Immunoblot analysis showing that SREBF1 is not down-
regulated during RIS in IMR90 cells. The assay was performed at d10 post selection for RAS as
in Fig. 6B.
(TIF)

S1 Table. Microarray: Differentially expressed (DE) genes upon p53 knockdown (sh-
p53#1). Core genes (intersection of DE genes from RIS, pApo, and acDDR conditions in
Fig. 1F) are shown.
(XLSX)

S2 Table. ChIP-Seq replicate information (number of replicates, reads etc.)
(XLSX)

S3 Table. Genomic distribution of subsets of high confidence p53 ChIP-seq peaks in each
condition. Genomic features were determined as in Fig. 2B. Same numbers of p53 high confi-
dence peaks were selected based on MACS score from each condition.
(XLS)

S4 Table. GO analysis for genes associated with CGI- and non-CGI-p53 peaks in each con-
dition. Blue script represents processes associated with RNA metabolism and regulation,
whereas red script represents processes associated with typical p53 related functions such as
cell cycle, DNA damage response, and apoptosis.
(XLSX)

S5 Table. Rcade-derived genes in RIS and pApo conditions. Genes with Rcade B-value great-
er than the threshold-1.5 are included.
(XLSX)

S6 Table. p53 Hub genes shown in Fig. 4 in RIS and pApo conditions. Evidence for interac-
tions are provided as Pubmed IDs (PMID).
(XLSX)

S7 Table. Enrichment of known transcription factor binding sites (TFBS) in the Rcade
gene set. Only transcription factors from a non-redundant vertebrate PWM set with enrich-
ment p-value> 0.01 are shown.
(XLSX)
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