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1 Introduction
The oligonucleotide probes on microarrays for gene expression are carefully designed so that
their thermodynamic properties are consistent, in order that any bias due to differential efficien-
cies of hybridization might be minimized. However there are numerous other constraints such
as the need to match (and be specific to) a gene, as well as possibly having a fixed probe length.
Thus a perfect thermodynamic balance cannot be achieved. Also, since the labelling dyes can
hinder hybridization, any thermodynamic balance achieved would not be robust to a change of
the choice of dye, or method of adhering the dye to the RNA sample.

Aside from Affymetrix platforms (Zhang et al. 2003, Abdueva et al. 2006), such effects are
not usually accounted for when analysing the results of microarray experiments. In particular
with two-channel platforms, one might anticipate that any effects would cancel out across the
two channels. Here we focus on the Agilent Human 1A Oligo Microarray (V2), a popular two-
channel array. We comment on the design of its probes, and illustrate the ways in which those
designs can bias downstream analyses before discussing possible remedies.

2 Our Data and the Human 1A Oligo Microarray (V2)
This Agilent microarray consists of 22, 575 locations arranged in a 105 x 215 grid. 422 spots
are not reported, and 1, 080 contain control probes, leaving 21, 073 unique probes (all 60mers)
that comprise the ‘business part’ of the array. Of these, the annotation we use suggests that
17, 579 map to areas of the genome that are transcribed, and of these 16, 823 to the autosomal
chromosomes. It is on these that we focus, making particular use of the 2, 686 probes that have
a non-unique target gene. In total, 1, 305 genes are targeted by more than one probe.

Whereas several manufacturers seek to have a tight distribution of GC content, as part of the
thermodynamic control, Agilent have a very distinctive pattern for GC content (Figure 1, top
left), with modes at 21, 27, 33 and 36 bases out of the 60. The distribution of GC content varies
considerably between those probes ending in a G or C and those ending in an A or T, far beyond
the natural constraints that this imposes (Figure 1, top centre). While there is a trend along
positions 1 to 59 of the probes for increased discordance of GC content distributions depending
on the GC status of that base, it is clear that the major effect is at position 60 (Figure 1, top
right). The distribution of As, Cs, Gs and Ts is very much constant along the probes, save for
the beginning and end positions (Figure 1, bottom).

The end base is known to be important in several models of the thermodynamics, and it is
no surprise to see a) the change in base frequency at that point and b) the associated change in
distribution of GC content. Less explicable are the change in base frequency at the first position
and the increasing association with the GC content from positions 1 to 59.
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Figure 1: The structure of probes in the Agilent Human 1A Oligo Microarray.

Our data consist of 85 arrays on which either a renal cancer sample (75) or a normal control
(10) has been compared to a common reference sample, the reference sample always being in
the red channel. We also have access to a set of similar arrays where the red channel has been
degraded by ozone contamination. Additionally we use two datasets from public repositories:
21 arrays from patients with type 2 diabetes described in Hayashi et al. (2006), and 29 microar-
rays from an experiment to detect the off-target gene-silencing effects of siRNAs as described
in Birmingham et al. (2006).

3 Evidence and Modelling of bias
That a bias exists is quickly apparent. We see that the log-intensities in an array can vary with
simple probe structure; in this case (Figure 2, left) higher for probes with more C bases. We
see that the effects are not cancelled out within arrays; the log-ratios of intensities here (Figure
2, centre) decreasing with the number of A bases in the associated probe. We should note
though that while the phenomenon of the log-intensities is seen in nearly all examples, that
for the log-ratios can be far more variable. This variability though must contribute to the bias
persisting between array comparisons, with the t-statistic for a comparison between cancerous
and normal samples showing (Figure 2, right) a clear relationship with the number of G bases
in the associated probes.

Also apparent is a certain heteroscedasticity, perhaps clearest in the central panel in Figure
2. Here variances are smaller for ‘middling’ numbers of A bases, and higher at the extremes.
However other patterns are observed in other arrays.

It is possible, indeed almost certain, that the correct model will not be in terms of a single
base count. Nevertheless while we may better model the bias with an alternative model, it can
not be simply an artefact of our inadequate model. The heteroscedasticity on the other hand
might well be. This is important as the consequences of the heteroscedasticity may be the
greater (in terms of effects on gene lists), and yet the harder to remove.

In attempting to account for the bias, we consider models for the log-intensity in terms of
the following quantities: 1) counts for the individual bases (A, C, G and T) which we denote
BC , 2) separate base effects at the 60 probe positions, denoted BL, 3) counts for the 16 pos-
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Figure 2: The persistent nature of bias due to probe design.

sible neighbouring pairs of bases, denoted PC and 4) separate effects for the 16 pairs in the
59 possible locations, denoted PL. The models we consider are log(I) ∼ BC , log(I) ∼ BL,
log(I) ∼ PC , log(I) ∼ BL + PC and log(I) ∼ PL (where log(I) denotes log-intensity or
log-ratio of intensities). Even this last model has a maximum of 886 parameters to estimate (in
practice fewer), which is feasible given the number of observations on an array. The identity of
the end base was also considered in models, but contributed nothing.

Assessment of model fits via the usual statistics is complicated since we are modelling the
noise, and ignoring the effect (i.e. the varying intensities of genes), so we know that our models
will not fit the data well in the usual sense. So as well as variance explained and AIC, we will
use the 2, 686 probes with non-unique target gene as a validation set, fitting the model to the
remaining 14, 137 probes and using the resulting model to correct the 2, 686; measuring whether
probes hitting the same gene ‘tighten up’. There are a number of other reasons why intensities,
nominally from the same gene, might not agree (e.g. alternative splicing) so we neither expect
nor desire to explain all the variance in this manner.

4 Results
As can be seen in Figure 3, the main point of interest is that while the models featuring only
single-base information perform poorly in the single channels, they do a lot better in the log-
ratios while the most complicated model shows abysmal performance in the log-ratios. Location
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Figure 3: The performance of the models in explaining variance amongst the 2, 686 probes.
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information looks to be of greater importance in the red channel and is of even greater impor-
tance in the arrays known to be ozone affected (not shown). In general modelling the log-ratios
in terms of counts of neighbouring pairs of bases would appear to perform best.

5 Discussion
We surmise that the effect seen in the log-intensities is due to effects of the dye hindering the
hybridisation of RNA to the probes. It is obvious then that the pattern in the log-ratios is driven
by the discrepancy between the effects seen in the red and green log-intensities. That there
should be such an effect in the results of a linear model applied across so many arrays we
attribute to a combination of the heterogeneity of effects between arrays, the heteroscedasticity
of results between probes, and the imbalance in the design of the experiment for comparing
normals to cancers.

The effect is of obvious importance, both for the interpretation of published literature and
conduct of future experiments. It has potential value as a method for quality control: Within
log-ratios the magnitude of the effect varies between arrays and can be monitored and perhaps
controlled. It has value in the critical appraisal of experiments: We can identify probes that
were a priori more likely to be flagged as significant and perhaps a subset of trustworthy probes
for a separate, robust, analysis. Finally we have characterized the effect in terms of the probe
make-up in a manner that allows for a first attempt at correcting for the bias.

While the base-pair count model seems to offer the most value for correcting the effect,
we stress that these are not simply the standard nearest-neighbour melting temperature values.
Finally we note that the increased importance of base-location within models applied to the
ozone affected data, is informative both regarding the ozone degradation process and potential
diagnostics for it.
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