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Table 1. Numbers Observed by Wong et al. and the
Abilities of a Binomial and Generalized Binomial Model
to Account for Them

Called in
No. of
Experiments Observed

95% Credible Intervals

Binomial
Generalized
Binomial

0 23,911 23,850–23,970 23,850–23,970
1 340 293–396 290–392
2 50 22–53 37–79
3 46 33–65 20–47
4 15 25–53 13–35
5 15 8–27 9–28
6 15 0–7 5–23

Numbers of Copy-Number Variations
and False-Negative Rates Will Be
Underestimated If We Do Not Account
for the Dependence between Repeated
Experiments

To the Editor: We read with interest the recent publication
of Wong et al.1 that uses six repeat experiments to provide
estimates of copy-number variation (CNV) numbers and

false-positive and false-negative rates in the absence of a
“gold-standard” set of data. With acceptance of the obvi-
ous limitation that such an approach is not making in-
ference about the true CNV population but only that sub-
set that might be detected via this technology, this appears
to be an ingenious idea (with echoes of capture-recapture
schemes) and is itself worthy of replication.

From the observed values that they report (and repro-
duced in table 1), Wong et al.1 estimate that there are 141
true CNVs (i.e., those 141 that were called in more than
one experiment). This is based on the observation that, if
these data were arising from independent Bernoulli/bino-
mial processes, the probability of calling the same clone
twice by chance would be very small. The authors ac-
knowledge that they are underestimating the total num-
ber of CNVs, since some of the 340 clones called in only
one of the six repeat experiments are likely to be true calls,
but they accept 141 as a conservative (for their purpose)
estimate of the true number of CNVs.

If one formally fits a statistical model to the vector of
observed data, treating it as a mixture of observations from
two binomial distributions (one arising from those clones
that are truly CNVs and one from those that are not), then
one has three parameters to estimate. We need to estimate
the proportion of clones that represent true CNVs, from
which we can later estimate n, the number of CNVs. We
denote the probability of correctly calling a CNV within
any single experiment as p (one minus the false-negative
rate of Wong et al.1) and that of correctly ignoring a clone
that is not a true CNV within any single experiment as q
(one minus the false-positive rate).

The models were fitted using the WinBUGS2 software
package. One would anticipate that both proportions p
and q would be near 1, and so beta prior distributions
were assigned that reflected this. We presume that the
proportion of clones that “are” CNVs is small (probably
of the magnitude of 10�2), and we assign a triangular dis-
tribution over the region 0–0.4. Convergence was quick,
and comparison of prior and posterior distributions gave
no cause for concern. Full details of the model and model
fit are available as detailed at the authors’ Web site.

The values we obtained from this model (given as me-
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dian, with 95% credible interval in parentheses) suggest
that Wong et al.’s estimates1 were very good. Their esti-
mate for p was 0.547, whereas we found it to be 0.514
(0.472–0.554). Their estimate for q was 0.998, and we
found it to be 0.9977 (0.9974–0.9980); their estimate of
n was 141, whereas ours was 154 (120–192). When the
fact that they had deliberately slightly underestimated n
is considered, it seems that their simplified calculation
scheme came at little or no cost.

However, one of the advantages of our fitting the full
model is that we can estimate the number of calls that
should be seen within each of the categories (those called
for all six experiments, those called for five of the six
experiments, etc.). Credible intervals from the binomial
model (table 1) reveal that there are discrepancies between
the expected and observed numbers in the tail of the dis-
tribution. One explanation for this is that the calls be-
tween experiments are not independent; they are, after
all, replicates. Thus, a greater proportion of clones called
by a few experiments will be called by all experiments
than can be accounted for under a binomial model.

One’s first instinct when accounting for this depen-
dency might be to place beta distributions on the param-
eters p and q. We do not take this approach, for three
reasons. First, there are computational issues with fitting
a model of such complexity to seven observed numbers.
Second, such a model suggests a specific form of depen-
dency, and we do not wish to make that restriction. The
dependency would be interpreted as being driven by vary-
ing effect sizes; a CNV representing several gains would
be more likely to be called by each of the experiments
than would one representing little gain. However, even if
there were both uniform effect sizes for each CNV and
uniform levels of evidence, one might wish to account for
a dependence arising from the replicate nature of the ex-
periments. Finally, and more trivially, we recognize that
it is difficult to marry the concept of a false-negative rate
with that of modeling CNVs as coming from some con-
tinuum rather than simply being or not being.

Therefore, we chose to use a mixture of generalized
binomial models—in particular, the multiplicative gen-
eralization presented by Altham3 that includes one extra
parameter v that both models and provides a diagnostic
for the dependence of the experiments. If , a positivev ! 1
dependence between experiments is indicated; if ,v p 1
then the experiments are modeled as being independent;
and if , then we are in the unlikely situation in whichv 1 1
the responses of different experiments are negatively
associated.

The advantages of this model are that it is suitable for
use when only the summary data are available (such as
in this case). Moreover, it is particularly easy to deal with
situations such as this, where every clone features in the
same number of experiments. Finally, it reduces to the
binomial model when only one experiment is performed,
meaning that and still represent the false-pos-1 � q 1 � p

itive and false-negative rates, respectively, for a single ex-
periment and are related to those rates as the number of
experiments increases. Also, as noted, it reduces to the
binomial model when , providing a simple test forv p 1
the hypothesis of independence.

We have chosen to fit a mixture of two generalized bi-
nomial models with a common v parameter, but argu-
ments could also be made for separate v parameters or
indeed for a mixture of a generalized binomial model for
the CNV clones and a standard binomial model for the
non-CNV clones. These alternatives lead to no essential dif-
ferences in the results, except that the estimate of q tends
to be a little greater. The prior distribution given to v was
log-normal and reasonably symmetric about 1, so that we
might interpret departure from the value of 1 as a test of
the independence of the experiments. Fitting our mixture
of two generalized binomial distributions, we find that the
95% credible interval for v is 0.61–0.78, thus showing
strong evidence of dependence between responses to the
repeated experiments and further suggesting that the bi-
nomial model is not adequate.

By accounting for the dependence between experiments,
the model provides a better fit to the observations, in
terms of the values in each contingency cell (table 1), with
regard to both the credible intervals and the x2 statistic
for the goodness of fit (8.9 as opposed to 64.7). The De-
viance Information Criterion, which compensates for the
extra complexity of the generalized model, is reduced to
47 from a value of 87 for the binomial model.

However, our estimate of p for a single experiment,
which takes into account the dependence, is now merely
0.394 (0.340–0.449). This is to be expected if we believe
the responses to be dependent. The estimate for q is less
dramatically altered. One consequence of having a lower
value of p than previously thought (or, in the language of
Wong et al.,1 a higher false-negative rate) is that we are
likely to be missing more CNVs, so our estimate of the
number of CNVs increases to 399 (212–1,139). This is
2.5 times the estimate that arises from the model that
assumed independence.

CNVs are, of course, heterogeneous, and, as we have
stressed, there undoubtedly exist classes of CNVs that we
could not detect with this technology. Therefore, we must
assume that the true number of CNVs (for as much as the
concept is sensible) is greater still. It is also the case that
any sizable heterogeneity between the repeated experi-
ments (in terms of levels of noise, etc.) would impinge on
the interpretation of our results; however, we doubt that
heterogeneity great enough to change our overall conclu-
sions would have been tolerated in any laboratory.

In conclusion, whereas experimental validation of course
remains the ideal when practicable, we applaud the con-
cept of replicated experiments in attempting to estimate
such values. However, we caution that failing to take the
dependence into account can lead to underestimation of
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the false-positive and false-negative rates and, perhaps more
crucially, the of true number of CNVs to be identified.
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