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ABSTRACT A coalescent model is used to estimate the rate
at which neutral substitutions occur in a DNA sequence,
without the necessity for an independent estimate of divergence
times. Given a random sample of molecular sequences from a
finite population, the distribution of the time to a common
ancestor can be obtained from the coalescent model. With this
principle, summary statistics are developed that use the dis-
tribution of molecular diversity within the sample to estimate
the relative magnitude of nucleotide substitution rates. If, in
addition, the effective population size is known, absolute
substitution rates can also be estimated. These techniques are
illustrated by estimating the transition rates that underlie the
evolution of the first 360 nucleotides of the mitochondrial
control region in an Amerindian tribal population.

The ability to obtain valid estimates ofnucleotide substitution
rates is a fundamental problem for evolutionary biology. At
the level of population genetics, estimates of substitution
rates are essential for evaluating the effects of random drift
in a population or for calculating the probability of fixation of
a mutant allele. At the level of "macro evolution", substi-
tution rates are required to estimate the evolutionary time
span since taxa diverged. In addition, the distribution of rates
among different evolutionary lineages or among different
genomic regions is fundamental to understanding how the
tempo of evolution varies. The rate of substitution that
characterizes a particular genomic region also defines its
relevance for phylogenetic analysis. However, in spite of the
central role that substitution rates play in the neutral theory
of evolution, numerical estimates are often compromised by
a lack of appropriate statistical methods or by a lack of
sufficient data.

In the area of molecular evolution, estimates of substitu-
tion rates are traditionally obtained by comparing a single
DNA sequence from each of several species whose times of
divergence are presumed known. Divergence is calculated
from the number of nucleotide differences between species
using one of several methods that correct for multiple sub-
stitutions at a site, and rate estimates are obtained by dividing
the sequence divergence by the divergence time (1-3). This
strategy suffers from several shortcomings. The divergence
time between taxa is frequently unknown or subject to
significant error. Using interspecific differences may cause
error when the substitution rate varies significantly between
species. Also, the method applies only to a single (consensus)
sequence from each species and does not readily extend to
samples of several sequences from each species.
Although these problems may introduce only a slight bias

when estimating global substitution rates for distantly related
taxa, the situation is quite different when estimating the rate
of neutral substitutions in the context of population genetics.

When dealing with intraspecific molecular data, estimates of
the divergence time between individuals within a population
are not generally available. In those cases when individuals
are connected by a pedigree, the individuals are too closely
related for significant evolutionary changes to have occurred.
Even when divergence times can be estimated, as for geo-
graphic isolates, the relative error is substantial. Lacking
information about divergence between individuals, popula-
tion geneticists have estimated rates using the sampling
structure of a finite population (4, 5).
The relationship between divergence times and population

structure is explicitly given by the coalescent model (6, 7),
which gives the statistical distribution of the time to a
common ancestor of a random sample. This distribution,
which replaces the estimates of divergence time in the
interspecies analysis, can be used in conjunction with a
mutation model, assuming either infinite sites or finite sites
(8, 9). The infinite-sites model requires that no site experi-
ence more than one substitution and that all types of substi-
tutions occur at the same rate at every site-conditions
violated by most molecular data sets. Hence, it is more
appropriate to use the finite-sites model in conjunction with
the coalescent to account for the fact that multiple substitu-
tions can occur, sites experience different substitution rates,
and transitions occur more frequently than tranversions.
With the advent of molecular techniques, such as the PCR,

it is now possible to obtain a comprehensive set of molecular
sequences from population-based samples (10-12). The large
sample sizes provided by such surveys increase the resolving
power of the data, allowing the substitution process to be
studied in more detail. As a consequence, individual rates for
each type of nucleotide substitution can be estimated, as well
as a single "overall" substitution rate. We describe methods
that use the finite-sites model to estimate substitution rates
based on sequence data from a random sample and compare
their performance against an extension of the traditional
pairwise difference (PD) estimator. These techniques are
illustrated by estimating the substitution rates in the 5' end of
the mitochondrial control region by using a sample of 63
sequences from a single North American Indian tribe (12).

Materials and Methods

The ancestry of a random sample of n DNA sequences from
a finite population of effective size N can be modeled by the
coalescent (6), which has two components. The first com-
ponent generates the genealogy of the n sequences by giving
the distribution of time between nodes in the ancestral tree.
Under the coalescent model, the amount of time that the
sample has j distinct ancestors is an exponential random

Jvariable with parameter (2) = J(J - 1)/, where time is

Abbreviations: LS, least-squares; IS, independent sites; MSE, mean
square error; PD, pairwise difference.
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measured in units of N generations. The second component
of the coalescent superimposes nucleotide substitutions on
the branches of a given ancestral tree. Substitutions occur at
rate 0/2 along each branch, where 0 is the scaled substitution
parameter. For haploids, 0 = 2Nu, where u is the probability
of a neutral substitution per site per generation. We restrict
attention to selectively neutral single nucleotide substitutions
and do not consider insertion or deletion events.
When a nucleotide substitution occurs at a site that pres-

ently contains nucleotide i, it is changed to nucleotidej with
probability py. The product OpV = qu (i #1j) gives the rate at
which sites currently containing nucleotide i mutate to nu-
cleotidej. The rate matrix Q = 0(P - I) uniquely defines the
substitution process. ForDNA sequences, Q is a 4 x 4 matrix
representing substitutions among the four nucleotides. In our
model, Q can be any irreducible matrix with nonnegative
off-diagonal entries and zero row sums, which encompasses
the one- and six-parameter models given in refs. 1 and 3. The
goal of this paper is to estimate the substitution rates qu. If uji
are the substitution rates expressed as the probability of
mutating from nucleotide i to nucleotide j in a single gener-
ation at a given site, then u- qU/2N for i # j. Hence absolute
rates can be obtained from relative rates when the effective
population size N is known. Associated with the matrix Q is
the stationary distribution iT, which satisfies iiQ = 0. The ith
component of ir gives the frequency of the ith nucleotide in
the ancestral sequence at the top of the tree, so that the
expected number of changes from nucleotide i to nucleotide
j along a single branch of length t is qU,-rt/2.

Estimating Rates from the Coalescent

The estimation methods described below assume that a
random sample is available from a finite population. A
sequence of sites, each site having identical substitution
matrix, is taken from each individual in the sample. The
proportion of sites with a given distribution of nucleotides
can be used as a statistic to summarize the sequence data. Let
X = (X1, X2, X3, X4) be a vector with Yxj = n and let V,,,x be the
fraction of the s sites in the sample, where xj individuals have
nucleotidej at that site. Parameter estimation is based on the
set of statistics {V,,x}. The expected value E[VM,X] is equal to
the probability P,,,x that a single site has configuration x.
Parameter estimates are obtained by minimizing the squared
error function

Ex (Vn,x- Px)2, I1]

which can be classified as a method-of-moments procedure
because it involves equating the fraction of sites with a given
configuration to its expected value and solving [in the least-
squares (LS) sense] for the parameters of interest. Hence, we
call the estimators obtained by this procedure LS estimators.
Although the LS method does not assume sites are indepen-
dent, it also does not explicitly use any information about
dependencies between sites.
The second method explicitly assumes that sites are inde-

pendent and maximizes the resulting log-likelihood, which is
proportional to

Ex Vnxlog(Px). [2]

Eq. 2 would be the likelihood for the data if sites were
phylogenetically independent-that is, if each site had its
own ancestral tree and each tree were statistically indepen-
dent of all other trees. However, because all sites share a
common (random) ancestry generated by the coalescent,
they are not independent. Because the estimators obtained by
this method are not true likelihood estimators, we use the
name independent-sites (IS) estimators. Since these estima-

tors need not have the desirable properties usually associated
with maximum likelihood-such as consistency, asymptotic
normality, or asymptotic minimum variance-we rely on
simulation techniques to assess the behavior of both proce-
dures.
For either method, the probabilities Pn,, need to be calcu-

lated in terms of the parameters. For a general rate matrix Q,
an explicit expression for PnX is not known. However, the
probabilities P,,,, can be computed recursively (13, 14). Let
Pnf.Xjk be the probability that a site has one more individual
with nucleotide j and one less individual with nucleotide k
than a site in configuration x, and let Pf-l,Xk be the probability
that a site in a sample of size n - 1 has one less individual with
nucleotide k. The probabilities Pn,, can be computed by
solving the linear recursion

09 Xj + 1 -8jk P

0+l-1 j,k n

n- 1 Xk-
+ n- X Pn,1,xk,k n-i [3]

where 8k is the Kronecker 8 function, and the recursion starts
with initial conditions Pjj = iri. It is convenient to allow
negative entries in x, with the convention that in this case,
P,,1 is zero.
When analyzing data in which transversions are absent,

purine and pyrimidine transitions can be considered sepa-
rately, and each nucleotide site can be considered as binary.
Two rate matrices, each of dimension 2, are used for purine
and pyrimidine transitions. Each has the form

(- ql- ql1'
= j - qjo)' [4]

where "O" and "1" represent the bases adenine and guanine
in the case of purines and represent the bases cytosine and
thymine in the case of pyrimidines. In this special case, the
probabilities P,,,1 are given by ref. 15:

Pn,(imn-0 =

[5]

Although Eq. 5 is sufficient to analyze data sets that lack
transversions, it is not sufficient in general.

Lastly, for the special case of binary sites we developed a
method based on d, the mean number of PDs in the sample.
Although d estimates the single parameter 0 in the infinite-
sites model, in the finite-sites model d has expected value (13)

s(qol + q10) (1- _ -f_2
(qOl + qlO) + 1

so

(qol + qlo) + 1' 6

where 0 = iroqo1 + irlqlo is the overall or average rate and s
is the length of the sequence. When rates are small, the factor
(qoI + q1o) + 1 is nearly unity, and d/s should estimate 6. To
estimate qo1 and q1o from d, let fo and fi be the fraction of
zeros and ones in the n sequences collectively, with expected
values iro and ir. Equatingfo and d to their expected values
and solving gives

dfo
q --s(l - f02 - fl) - d3

df7
= s(1-f0 -fj) - d

Eq. 7 gives PD estimators for the parameters, which are
analogous to the estimators given in refs. 16 and 17. In the
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simulations below, we compare the PD estimates for 6, qoi,

and q10 with those obtained from the IS and LS methods.

Results and Discussion

Although statistical properties of each estimation procedure
are difficult to obtain analytically, samples from the coales-
cent model are readily simulated (18). Our simulation method
recursively generates a sample ofm sequences from a sample
of size m - 1, as follows. The process starts with two
identical sequences of length s, generated by selecting a

nucleotide at each site at random according to the stationary
vector 1r. In the recursive step, one of the m sequences is
chosen at random and either (i) with probability (m - 1)/(sO
+ m - 1), that sequence is duplicated to get m + 1 sequences
or (ii) with probability sO/(sO + m - 1), it experiences a

mutation at a randomly chosen site. The process continues
until n + 1 sequences are obtained, at which time the last
sequence is discarded. The resulting n sequences are a

random sample from the coalescent (13, 19).
By generating a series of simulated samples of binary sites,

we empirically calculated means, variances, and percentiles
for all three estimators over a range of parameter values
chosen to reflect the Amerindian data used as an example.
Accordingly, we chose to simulate 63 sequences of 201 sites,
selecting 15 values of substitution rates ranging from 0.005 to
0.1 to bracket the estimated values by approximately one

order of magnitude. Substitution matrices were constructed
by combining the 15 values into pairs, omitting pairs in which
the two rates differed by more than an order of magnitude.
For each matrix, at least 500 samples were generated, with up
to 3000 samples simulated for selected matrices.

Performance of Estimators

Estimators for the binary model were evaluated by comput-
ing the observed bias, SD, and mean square error (MSE) from
the simulated sets of data. Table 1 gives a representative set
of the results when q0o = q1o (first six rows) as well as when
q01 is held constant and q10 increases (second six rows).

Overall, the performance of the LS and IS estimation
methods was essentially identical, except that when substi-
tution rates exceeded 0.01, the LS method tended to exhibit
a 5-10%o lower SD than the IS method. For all three methods,
the largest observed relative error was 0.004/0.06 = 6.8%,
which occurred when q01 = 0.06. Overall, the relative error

averaged 2.1%, 2.2%, and 3.4% for the IS, LS, and PD
methods, respectively. This level of bias is negligible when
compared with the stochastic variation or the uncertainty in
effective population sizes.

The middle section of Table 1 shows that the SDs for the
IS and LS methods are generally =40% of the value being
estimated and =70% for the PD method. We noted that for a
specific value of q01, the SD of the estimate decreased when
the q10 increased. For example, the estimate for 0.005 had SD
0.0027 when paired with 0.008, and the SD decreased to
0.0023 when paired with the value 0.05.
The square root of MSE gives the average error in esti-

mation. Overall, for the IS and LS methods the average error

in estimation was 62% of the error for the PD method. As
indicated by Table 2, the estimates 0 show similar properties.
Table 2 also indicates that-, as expected, the mean PD
underestimates the average rate in the finite-sites model. In
addition, the PD method cannot yield rate estimates for a

single site, whereas the LS and IS methods could be applied
to sites individually. Overall, these comparisons indicate that
the LS and IS methods are more efficient and versatile than
methods based on the mean PD.

Application to the Nuu-Chah-Nulth Data

These estimation techniques are suitable for mitochondrial
DNA because it is effectively haploid and lacks recombina-
tion. Ward et al. (12) sequenced the first 360 base pairs of the
mitochondrial control region for a sample of 63 Nuu-Chah-
Nulth (Nootka). The sample comprised individuals who were

maternally unrelated for four generations, chosen from 13 of
the 14 tribal bands and, thus, deviates from a truly random
sample. For mitochondrial DNA, the effective population
size is approximated by the number of reproducing females.
Because there were =600 females of childbearing age in the
population, this value was used as an estimate of the long-
term effective population size (12).
Among the 63 sequences, there were 26 variable sites that

defined 28 distinct alleles, hereafter called lineages. There
were no apparent tranversions in the data (12). Of the 360
sites sequenced, 201 were pyrimidines and 159 were purines.
The LS and IS methods were applied to the pyrimidine and
purine sites separately to estimate the transition rates for
each class of nucleotides.
Twenty-one of the 201 pyrimidine sites are variable. For

this data set, the squared-error function defined by Eq. 1 has
a unique global minimum when q01 = 0.02 (cytosine ->

thymine rate) and q10 = 0.03 (thymine cytosine rate). The

IS procedure gave identical results. Assuming these to be the
true values, simulations with n = 63 and s = 201 give the SD
of these estimates as 0.007 and 0.01. The expected number of
substitutions per unit time is q017ro + qlolrl, which is esti-
mated as 0.024. Scaling these quantities by twice the effective
population size gives the probabilities of a cytosine -*

Table 1. Empirical properties of estimation methods based on simulations of 201 sites and 63 individuals

Bias of q0o estimate* SD of q0o estimate* MSE of q0o estimatet

qol, qlo* LS iS PD LS IS PD LS IS PD

5, 5 -0.28 -0.27 -0.22 2.51 2.54 3.69 6.40 6.53 13.68
8, 8 0.30 0.30 0.35 3.58 3.64 5.48 12.88 13.32 30.15

10, 10 0.10 0.11 0.24 4.41 4.46 6.55 19.47 19.88 43.01
20, 20 0.27 0.31 0.27 7.85 8.14 12.03 61.62 66.40 144.86
50, 50 0.97 0.95 0.23 15.09 15.95 26.71 228.50 255.18 713.62
60, 60 1.42 1.79 2.86 18.41 19.86 33.77 341.07 397.46 1148.40
5, 8 0.00 0.00 -0.00 2.65 2.69 3.99 7.03 7.24 15.89
5, 20 0.05 0.06 0.02 2.55 2.59 3.69 6.51 6.69 13.62
5, 50 0.06 0.05 -0.01 2.28 2.29 3.16 5.22 5.25 9.97

60, 8 4.11 3.92 4.04 28.94 29.42 43.85 854.55 881.06 1938.93
60, 20 0.10 0.24 0.86 21.66 22.56 34.62 469.34 509.13 1199.01
60, 50 1.73 1.83 1.82 17.77 18.56 29.52 318.79 348.00 874.96

*arameters, bias, and SD x 103.
tMSE x 106.
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Table 2. Properties of 6 estimators based on simulations of 201
sites and 63 individuals

Bias of* SD of * MSE of it
qol, qjo* i* LS PD LS PD LS PD

5, 5 5 -0.30 -0.32 2.47 3.55 6.20 12.7
5, 20 8 0.06 -0.28 4.01 5.43 16.1 29.5
5, 50 9 0.08 -0.68 4.09 4.97 16.8 25.1

20, 50 29 0.55 -2.6 9.60 12.7 92.4 167
50, 50 50 0.76 -5.5 14.7 20.5 216 452

*Parameters, bias, and SD x 103.
tMSE x 106.

thymine transition in a single generation as 17 x 10-6 per site
and a thymine -+ cytosine transition as 25 x 10-6 (Table 3).
The overall probability ofa pyrimidine transition is 20 x 10-6.
We calculated a 90% confidence region for the pair (qO1,

q10) using the simulated empirical distributions, as follows.
To determine whether a point (rol, r1o) is in the confidence
region, 500 samples were generated using the values (rol, r1o),
and the resulting empirical distribution was used to construct
a 90% probability region in the plane. If this region contains
the original estimate (0.02, 0.03), then (rol, r1o) is contained
in the 90% confidence region for (qO1, q1O). The one-dimen-
sional projections of this confidence region give confidence
intervals of (0.01, 0.04) and (0.02, 0.06) for q01 and q1o,
respectively. Scaling by twice the effective population size
gives the lower and upper bounds for the mutation probabil-
ities (Table 3).
The parameter estimates for purines are less precise than

those for pyrimidines because there were only 5 variable sites
among the 159 purine sites. As before, the LS and IS
procedures give identical results. The estimate for q01 is 0.005
(adenine guanine rate), and the estimate for q1o is 0.014
(guanine adenine rate), with 90% confidence intervals of
(0.002, 0.015) and (0.004, 0.05), respectively. The expected
number of purine substitutions per unit time is 0.007. Scaling
these estimates by twice the effective population size gives
the probabilities ofan adenine -- guanine transition in a single
generation as 4 x 10-6 per site and the probability of a
guanine -* adenine transition as 12 x 10-6 (Table 3). The
overall probability of a purine substitution is 6.0 x 10-6.
These results suggest that in this region of the molecule,
pyrimidine transitions occur about three times faster than
purine transitions.

In the absence of transversions, the transition/transver-
sion ratio cannot be estimated directly. However, parsimony
analysis of the molecular phylogeny for these sequences
indicates a minimum of 41 transitions are necessary to
explain these data. With 41 transitions and no tranversions,
the hypothesis that the transition/transversion ratio is < k is
rejected with 75% confidence when k < 30. A reasonable
lower bound for the transition/transversion ratio of this

Table 3. Estimates of substitution rates and probabilities in the
mitochondrial control region based on the distribution of
variable sites in 63 Amerindians
Type of qU P of Lower Upper
transition estimate transition* bound* bound*
C- T 0.02 17 8 33
T -C 0.03 25 17 50
A-* G 0.005 2 2 13
G- A 0.014 12 3 42
Pyrimidine 20 11 40
Purine 6 2 18
Total 14 7 30

*Probabilities, upper bounds, and lower bounds x 106.

region is, therefore, 30:1, which is consistent with results
obtained by direct inspection of similar population data (11).
By using the fact that this region has 45% purines and 55%

pyrimidines, the overall probability of a transition per gen-
eration per site in this region was computed to be 14 x 10-6,
considerably higher than published estimates for the entire
mitochondrial molecule (20). In evolutionary terms, the es-
timates in Table 3 represent 46% divergence per million yr for
purines, 16% divergence per 100,000 yr for pyrimidines, and
11% total divergence per 100,000 yr. These rates also imply
that '14 children per million differ from their mother at a
particular base pair.
Although there are no benchmarks to validate these esti-

mates against, rates can be obtained by comparing human
and chimpanzee data. Assuming a transition/transversion
ratio of 30:1, Ward et al. (12) estimated the divergence of
human and chimpanzee sequences for this portion of the
control region to be 33% per million yr, or 4.1 x 10-6 for the
probability of a substitution per generation per site, com-
pared with the statistical lower bound of 7 x 10-6 for the total
sequence rate (Table 3).
Because the validity of these estimates depends on the

appropriateness of the model for the data set being analyzed,
we investigated the fit of the model to the data. Simulations
using the finite-sites model in conjunction with the coalescent
mirrored some, but not all, aspects of the Amerindian data.
Nucleotide frequencies in the simulated data sets agreed with
actual frequencies, and the predicted number of variable sites
(4.97 purine and 21.21 pyrimidine) agreed with the observed
data (5 purine and 21 pyrimidine). Also, the total number of
mutations in the simulated data set (35-56 per sample)
bracketed the minimum of number of mutations in the
observed data (41) as inferred by parsimony. However, the
distribution of PDs in the observed data had a deficiency of
identical or closely related sequences, compared with the
model expectations, and a detailed analysis of the pyrimidine
sites indicated a greater number of observed lineages (24),
compared with the simulated data (9 to 17 lineages per
sample).
Three different factors might contribute to these differ-

ences between the simulated and observed data and, thus,
influence our estimates of mutation rates. (i) Site-specific
variability in mutation rates, which could lead to an increased
number of lineages, was investigated in two ways. First,
inference using a more general model that postulates the
existence of fast and slow sites estimated that 1-20% of the
sites had mutation rates 7-100 times faster than the remaining
80-99% of the sites (21), and simulations using this model
exhibited a better fit to the data in terms of the number of
lineages and the distribution of PDs. Second, by removing the
seven most variable sites, the model became more consistent
with the observed data. The net result of incorporating
site-specific heterogeneity of mutation rates is to raise the
average estimate of mutation rate for the entire region by at
least 50%o due to a small number of fast sites, the rates of
which may differ by more than an order of magnitude. (ii)
Admixture between genetically distinct tribes or a polyphyl-
etic origin of the initial founding population, which might
account for the excess number of lineages in the observed
data, was also investigated. Because the Nuu-Chah-Nulth
have four clades that may predate the colonization of the
Americas (12), we repeated the pyrimidine analysis on the
largest clade and on the two largest clades to examine the
possible effect of multiple founders. We also analyzed an
extended data set including 81 individuals from the linguis-
tically distinct Haida and Bella Coola tribes (22) to examine
the possible influence of admixture. After accounting for the
changes in effective population size, the resulting estimates
ranged from 35% lower to 25% higher, indicating that even
appreciable amounts of admixture have only a minimal
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influence on the estimates. (iii) Lastly, our presumption that
600 represents the long-term effective population size may be
unrealistic because of demographic fluctuations that have
undoubtedly occurred in the past. However, consideration of
the archeological record (23) and early historical accounts
(24) suggests that the effective population size for this group
was unlikely to have been <300 or >900. Adjusting for these
extreme values would lower our estimates by 33% or raise
them by 100%o.

Overall, these comparisons suggest that, although biolog-
ical populations differ in a number of ways from the model
assumptions, each factor considered alone exerts only a
relatively minor effect, compared with the difference be-
tween our estimates and previous estimates. However, be-
cause a more profound effect may occur when these factors
act in concert, the values in Table 3 should be regarded as
provisional estimates only.

Conclusions

Assuming a finite-sites model of mutation, we have presented
three methods to estimate the rate at which nucleotide
substitutions occur in a DNA sequence. Two of these meth-
ods, one based on a LS approach and one based on a
likelihood approach assuming independent sites, gave com-
parable results, with acceptable MSE. Because confidence
intervals for these two estimators are readily obtained by
simulation, either provides a reasonable approach to obtain
estimates of the average mutation rate for a given segment of
DNA, assuming neutral substitution. Because the underlying
model provides estimates of the product of the effective
population size and the substitution rate, these methods
could also be used to estimate effective population size in the
event the substitution rates are known. The LS and IS
methods have the additional advantage that they can be
extended to DNA sequences in which transversions are
common, to protein sequences, as well as to other kinds of
data, such as repetitive elements, where mutation from one
neutral allele to another is common (13).
Because the method based on the mean PD had substan-

tially higher MSEs, it is less reliable. In addition, because
PDs are computed from the entire sequence for two individ-
uals at a time, the method never considers the phylogenetic
information in the entire sample simultaneously. By contrast,
the statistics {V,,,x} consider all individuals at the same time,
albeit at a single site, and can, therefore, take advantage of
the phylogenetic information available for individual sites. In
fact, the probabilities P,,,, can be calculated by listing all
possible phylogenies and summing the conditional probabil-
ity of a single site given the phylogeny times the prior
probability of that phylogeny, as defined by the coalescent
(13). However, our method can only use phylogenetic infor-
mation of sites individually, one at a time, rather than the
phylogeny of all sites collectively. Were the true phylogeny
known, more powerful methods may exist that could take
advantage of this additional information. However, if the
phylogeny of the data set must be inferred, the reliability of
the rate estimates will depend on the reliability of the
estimated phylogeny. Because phylogeny estimation for
large numbers of taxa is a computationally intensive problem,
it is a strength of these methods that there is no need to
explicitly estimate the sample phylogeny. Hence, despite the
loss of information that would be available by considering all
sites jointly, our methods provide a practicable alternative to
the theoretically more precise, but largely unattainable, strat-
egy of incorporating a true phylogeny into the estimation
procedure.

Lastly, inspection of the Amerindian mitochondrial data
(12) analyzed by these methods indicates the importance of
using the computationally more complex finite-sites model,

rather than the simpler infinite-sites model. When these binary
sites are considered in pairs, the occurrence of pairs where all
four possible combinations of nucleotides occur indicates that
at least one site in the pair must have experienced multiple
substitutions (25). In fact, parsimony analysis shows at least 41
transitions are distributed among 26 variable sites. Hence, the
infinite-site model cannot be used to explain the evolution of
these Amerindian mitochondrial sequences. Our simulations
of the 201 pyrimidine sites using the estimated rates q01 = 0.02
and q10 = 0.03 confirm that, even with these seemingly low
rates, a large number of sites experienced multiple mutations.
On average, 25% of the mutations occurred at sites that had
already experienced a mutation, and the total number of
mutations exceeded the number ofobserved variable positions
by an average of seven. As indicated above, it is highly
probable that some sites in this region of the mitochondrial
molecule have a higher rate of mutation than others, which
would increase the probability of multiple substitutions even
further. Hence, future extensions of these methods will need
to take account of site-specific rate heterogeneity, as well as
the influence of changing population size.
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