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ABSTRACT 

Mitochondrial DNA data have been used extensively to study evolution and early 
human origins. These applications require estimates of the rate at which nucleotide 
substitutions occur in the DNA sequence. We consider the problem of estimating 
substitution rates in the presence of site-to-site rate variation. A coalescent model is 
presented that allows for different substitution rates for purines and pyrimidines, as 
well as more detailed models that allow fast and slow rates within each of the purine 
and pyrimidine classes. A method for estimating such rates is presented. Even for 
these simple models of site heterogeneity, there are, typically, insufficient data to 
obtain reliable estimates of site-specific substitution rates. However, estimates of the 
average rate across all sites appear to be relatively stable even in the presence of site 
heterogeneity. Simulations of models with site-to-site variation in mutation rate show 
that hypervariable sites can produce peaks in the painvise difference curves that 
have previously been attributed to population dynamics. 

1. INTRODUCTION 
The human mitochondrial genome, a circular molecule consisting of 

approximately 16,500 nucleotides, is one of the best understood molecu- 
lar systems at the population level. The complete nucleotide sequence 
of human mitochondrial DNA (mtDNA) has been determined [l], and 
the most variable portions of the molecule have been sequenced in 
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several population studies [6,12,27,281. In addition, the variability of the 
entire molecule has been assayed in populations worldwide, via restric- 
tion fragment length polymorphisms. This intense interest is due to the 
fact that mtDNA is ideally suited for the study of early human origins 
and microevolution. As mitochondria are maternally inherited, their 
transmission is consistent with haploid genetics, and hence the geneal- 
ogy of mtDNA lineages is much simpler than that of nuclear DNA. 
Also, maternal inheritance implies that mtDNA is immune to sexual 
recombination, and changes that occur in mtDNA sequences must be 
due to mutation rather than a shuffling of the nucleotides during 
meiosis. 

Another useful property of mtDNA for evolutionary studies is its 
increased rate of nucleotide substitution due to the lack of a mismatch 
repair apparatus in the replication mechanism. The mutation rate for 
mtDNA has been estimated to be five to ten times faster than the rate 
for nuclear genes [l l l ,  which means that mutations occur frequently 
enough for polymorphism to exist in modem populations. In general, 
mutations that have been used for evolutionary studies also appear to 
be selectively neutral; so far there is no conclusive evidence that these 
mtDNA mutations cannot be considered as neutral markers in the 
lineages in which they occur [2]. The rapid rate of evolution of mtDNA 
has been exploited to answer many questions about human evolution. 
Assuming a constant evolutionary rate, the number of mutations be- 
tween diverse human groups has been used to obtain estimates of the 
time when the most recent common ancestor of all human mitochondria 
lived [41. Other studies have used mtDNA to study the origin of ethnic 
groups, such as the timing and number of colonizations of the New 
World by Native Americans [23, 281. 

Each of these applications requires a knowledge of the rate at which 
mutations occur in an mtDNA sequence. Estimates of this rate have 
been obtained by comparing a single DNA sequence from each of 
several species whose times of divergence are presumed known. Diver- 
gence is calculated from the number of nucleotide differences between 
species using one of several methods that correct for multiple mutations 
at a site, and rate estimates are obtained by dividing the sequence 
divergence by the divergence time [13,14]. This strategy suffers from 
several shortcomings. The divergence time between taxa is frequently 
unknown or is subject to significant error. Using interspecies differences 
may cause error if the substitution rate varies significantly between 
species. Also, regions of the mitochondrial genome appear to mutate 
often enough that multiple mutations at some sites make it impossible 
to estimate the actual number of substitutions that have occurred since 
the species diverged. 
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A more fundamental problem is posed by the possibility that differ- 
ent portions of the mitochondrial genome may evolve at different rates, 
and, in fact, each nucleotide site may have a distinct mutation rate. One 
solution would be to estimate the nucleotide substitution rate for each 
site individually. However, since information about mutation rates is 
obtained by replication over groups of similar sites, site-specific esti- 
mates are unreliable. An alternative approach postulates the existence 
of discrete classes of sites, each with a characteristic mutation rate. This 
reduces the number of parameters to be estimated, after which a 
statistical method to estimate these parameters from existing data sets 
can be developed. We have proposed a general method of rate estima- 
tion when sites are homogeneous [19]. In the present paper we show 
how this method can be extended to assess site heterogeneity. Section 2 
introduces the coalescent model with mutation, and Section 3 gives a 
method of inference for this model. In Section 4, we illustrate the 
methods by analyzing a sample of 63 sequences from an Amerindian 
population. 

2. THE COALESCENT PROCESS WITH MUTATION 
When a sample of n individuals is taken from a population, the 

ancestry of each individual can be traced backwards in time. The n 
ancestral lineages in the sample will first coalesce to n - 1 lineages and 
will continue coalescing until all n lineages join together at a common 
ancestor. This ancestry can be represented by an inverted binary tree 
whose nodes represent the times at which the various lineages coalesce. 
Under the coalescent model [16], the amount of time that the sample 
has exactly j ancestral lineages has an exponential distribution with 
parameter (: ), and each of the possible pairs of lineages is equally 
likely to coalesce. Time is measured in units of N generations, where N 
is the effective population size. For mitochondrial DNA the effective 
population size is equivalent to the number of females that contribute 
to the next generation, normally assumed constant over generations. 
This defines the distribution of a random ancestral tree that results 
from the sampling process. 

Conditional on the ancestral tree determined by the sample, the 
distribution of a DNA sequence with s sites is defined for each 
individual as follows. First, the ancestor at the top of the tree is assigned 
a sequence according to an initial distribution n. Mutations occur at 
the ith site along each branch in the ancestral tree at the points of a 
Poisson process with rate Oi /2, the processes for distinct branches and 
distinct sites being independent. 

Nucleotide changes at a given site occur according to a Markov 

(: 1 
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chain. At the ith site, the matrix P(i)={p$)} gives the probability of 
changing to nucleotide k when the site presently contains nucleotide j. 
Because the molecular character of each nucleotide differs, the proba- 
bility of mutation at a particular site depends on the nucleotide occupy- 
ing that site. Therefore the matrix P(,) need not have pjj) = 0 for all j. 
We will assume that the process is stationary, as would be the case if 
each P(i) were irreducible with stationary distribution d), and ?I = dl) 
X d2) X - - -  X &), corresponding to independent alllocation of nu- 
cleotides to the ancestral sequence. Mutations that occur in the tree 
generate a DNA sequence for each individual in the sample. 

Since the distribution of the ancestral tree has no parameters, the 
process is completely determined by the mutation parameters e,, &), 

and PCi), i = 1,. . . , s. These parameters cannot all be estimated because 
of confounding between them. A unique set of parameters is obtained 
by using the rate matrices Q(i) determined by 

if j #  k, 

- 1) if j = k. 
= 

In matrix notation this becomes 

The quantity @/2 is interpreted as the rate at which nucleotide k is 
substituted for nucleotide j, j # k, at site i. 

The rate matrices Q(i)  are uniquely determined by the process and 
hence can be estimated. However, there are many values of 0, and P(i) 
corresponding to a given matrix Q(i). For example, if *(‘)=[1/(1+ 
y)KyI+ PCi)) and @) = (1 + y)8(’) for some y > 0, then Q(,) = 6(i)(@(i) 
-I) = Q(i), and therefore @) and *(i) define the same process (in 
distribution) as 0, and P@). When values of 0, and P(i) are needed, we 
define 

and 

PCi) = 1 + Q(”/ ei. (2) 

The choice in (1) and (2) is particularly appropriate in the numerical 
analysis routines we need later. 
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In this model, Q(') can be any matrix with nonnegative off-diagonal 
entries and zero row sums, provided there is a unique stationary vector 
satisfying T ~ ( ~ ) Q ( ~ )  = 0. If I.@ are the substitution rates expressed as the 
probability of mutating from nucleotide j to nucleotide k in a single 
generation at the ith site, then u$ = q$)/2N for j # k. Hence absolute 
rates can be obtained from relative rates if the effective population size 
N is known, and vice versa. 
As formulated, the model has too many parameters to be reasonably 

estimated even if many individuals are sampled. It is therefore neces- 
sary to consider special cases that reduce the number of parameters. 
The simplest model assumes that all sites have identical mutation rates, 
that is, Q(i) = Q. In this case, Q can be specified by from one to 12 
parameters as in [13], [14], or [25]. Related models in the population 
genetics setting may be found in [8]-[101 and [20]. 

Since transversions are rarely observed in samples of mitochondrial 
DNA from local populations, an alternative model can be defined that 
assumes Q(i)  = Q ( R )  for purine sites and Q( i )  = Q(') for pyrimidine sites, 
where 

with 

In this case, s1 of the sites contain purines and s2 contain pyrimidines. 
s1 and s2 are known, as they are the observed numbers of purine and 
pyrimidine sites, respectively. This leaves the four parameters a,, q, 
pl, and P2 to estimate. 

Because sites may not be homogeneous, a more detailed model 
postulates the existence of fast and slow sites within each of the purine 
and pyrimidine classes. For the pyrimidine class, let Q(F)  denote the 
2 X 2 matrix for the fast sites and Q(s) be the 2 x 2 matrix for slow sites. 
Suppose that a site is fast with probability f and slow with probability 
1-f ,  and, once classified, sites remain fast or slow thereafter. This is 
accomplished by taking 
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In this case, Q(i)  is not irreducible, but the extra parameter f uniquely 
specifies the stationary distribution as 

A similar model can be used for the purine sites. 

3. PARAMETER ESTIMATION 

In this section we describe a general method for estimating substitu- 
tion rates from sequence data and discuss how it might be applied to 
the models described earlier. 

3.1. GENERAL PRINCIPLES 

Ideally, we would base our inferential procedure on the probability 
P,,, that the random sample of size n has xi individuals of allele j, for 
j = 1,2,. . . r, where r is the number of possible alleles in the model. For 
example, if there are s sites in the sequence, each of which can be 
classified as a fast or slow nucleotide, then r = 8’. While there is, in 
principle, a way to compute P,,, [see Eq. (12), below], there is at present 
no computationally feasible method to calculate maximum likelihood 
estimates of the parameters using this likelihood. We explore the use of 
some alternative statistics that are computationally tractable and also 
provide a good summary of the information about substitution rates 
available in the data. 

To this end, let x = (xl, x2,. . .) xI) E Z: be a vector with Exj = n, 
and let K,, be the fraction of the s sites in the sample where xi 
individuals have the jth of the r possible “alleles” at that site. For 
example, the alleles might correspond to the r = 4 possible nucleotides 
at a site or the r = 8 possible fast or slow nucleotides at a site. In any 
event, we use the set of statistics {K,,} to estimate the parameters of 
the model. 

When summarizing the sequence data to obtain {K,,), the labels of 
each individual at each site are not recorded, preserving the informa- 
tion in individual sites but destroying joint information between sites. 
Sites collectively contain synergistic information about the phylogeny, so 
there is some loss of information associated with the {K,,} that is 
counterbalanced by their mathematical and computational tractability. 

Parameter estimates can then be obtained by minimizing the squared 
error function 
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In the models described here, sites are classified into classes within 
which different sites behave in identical probabilistic fashion. It follows 
from the form of (7) that inferences about rates within different classes 
may be made separately. 
As an alternative to least squares estimation, we might assume that 

sites are independent, in which case rates may once more be estimated 
separately within the classes. The likelihood for a given class is of the 
form 

The independent-sites model is likely to be a good approximation when 
the mutation rates are large, for then the role of phylogeny is washed 
out. 

In either case, the expected value E[K,,] needs to be computed. Let 
P,,, be the probability that a typical site has configuration x, so that 
within each class, 

In order to compute P,,, we use the coalescent structure to derive a 
system of equations satisfied by the P,,,. Related methods are described 
in [151, [171, [191, and [221. 

We look back at the ancestry of the sample to derive a recursion for 
the probabilities P,,, that is determined by whether the most recent 
event in the sample’s history is a mutation or a coalescence. Let 8 be 
the mutation parameter at a single site, and let P be the mutation 

j and one fewer gene with allele k at that locus than the sample with 
state (n ,x) .  If the last event before sampling was a mutation, the process 
could have been in state ( n , ~ ~ , ~ )  and could have experienced a mutation 
that changed some gene from j to k. This happens with probabilities 

I matrix. Define ( n , x h k )  to be a sample having one more gene with allele 
I 

I 

I 
! 

I 

It is convenient to allow negative entries in x, with the convention that 
P,,, is zero in this case. Define (n - 1 , ~ ~ )  to be the state having one 

I 
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fewer genes with allele k. If the last event before sampling was a 
coalescence, the process could have been in state ( n  - 1 , q )  and a gene 
with allele k was chosen to split. This happens with probability 

Summing over all the possible states of the process at the last event 
before sampling gives 

The allele frequencies P,,, are calculated from Eq. (12) together with 
the initial conditions P l , e .  = rj for ej = ( 6 ,  j , .  . . , SKj), using an algorithm 
given in the Appendix. d e  emphasize that the recursion in (12) may be 
used to study general mutation structure for any number of alleles at a 
given locus. In this paper, however, we are primarily concerned with the 
case in which a locus is a particular site in the DNA sequence. 

3.2. APPLICATION TO FAST - SLO W MODELS 

We study first the purine-pyrimidine model of the previous section. 
Since the purine and pyrimidine sites can be analyzed separately, we 
illustrate the methods using the pyrimidine sites. Entirely analogous 
arguments apply to the purine sites. Now K,(x,,x,) is the fraction of the 
pyrimidine sites that have x ,  C nucleotides and x2 = n - x ,  T nu- 
cleotides. Further, 

where Pn(:?,,x,) is computed from Eq. (12) using the pyrimidine parame- 

Next we consider the model that allows fast and slow sites within the 
pyrimidine class. There are four types of pyrimidines: fast C, fast T, slow 
C, and slow T. Label these types 1 ,  2, 3, and 4, and let Pn,(xl ,X2rX3,X4) be 
the probability that xi individuals have type j, 1 Q j Q 4, at a particular 
site. Because a site cannot contain both fast and slow types, P,,, = 0 
unless x ,  = x2 = 0 or x 3  = x4 = 0. Let Pn(,:?,,x,) be the probabilities 
computed from Eq. (12) using the fast parameters Q ( F ) ,  and let P,(:?3,x4) 
be the probabilities computed from Eq. (12) using the slow parameters 

ters Q ( ~ ) . '  
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Q(s). Direct substitution into Eq. (12) shows that 

327 

and 

pn,(o,o,x3,x4) = (1-  f > P i f ) x 3 , x 4 )  

satisfy the recursion when Q and ?r are given by Eqs. (5 )  and (6). Since 
the locations of fast and slow sites are unknown, the observed pyrimi- 
dine sites are a mixture of fast and slow. Hence, 

To simplify the analysis, we will assume here that Q(') = hQcF), that 
is, that the rate matrices for the fast and slow sites differ only by the 
scalar h. In particular, this implies that ds) = dF). With this assump- 
tion, the model has four parameters: f, h, and two parameters that 
specify Q(F). When h = 0, the slow sites have Q ( s )  = 0, with the interpre- 
tation that some fraction 1 - f of the sites is fixed due to molecular 
constraints [5,7]. We have continued to take P(') = dF) in this bound- 
ary case too, realizing that this assumption may be rather poor. Further 
investigation of this assumption seems worthwhile. 

4. APPLICATIONS TO DATA 
We illustrate our methods by analyzing a representative set of 63 

mtDNA sequences from the Nuu-Chah-Nulth of Vancouver Island, 
British Columbia [28]. The sequence data, which are detailed in Figure 
1 of [28], represent the first 360 nucleotides of the mitochondrial 
control region. In total there are 28 unique lineages defined by the 
occurrence of 26 variable sites. Of the 201 pyrimidine sites, 21 were 
variable, whereas only 5 of the 159 purine sites were variable. The 
contemporary traditional Nuu-Chah-Nulth population numbers some 
2400 individuals, of whom 600 are females of child-bearing age. Apart 
from a decline in population that occurred immediately following Euro- 
pean contact in the late 18th century, the archeological and ethno- 
graphic data suggest that the ancestral population leading to the con- 
temporary Nuu-Chah-Nulth was relatively stable during most of the 
past 8000 years. Hence, despite the short-term demographic fluctua- 
tions that undoubtedly occurred, we have taken the long-term effective 
population size of this tribe to be 600 females, with upper and lower 
bounds of 900 and 300, respectively [19]. Also, like many tribal groups, 
the Nuu-Chah-Nulth are subdivided into distinct bands, ranging in size 
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FIG. 1. Distribution of pairwise differences in actual and simulated data. 

from 40 to 600 individuals. However, as expected for haploid molecules, 
the aggregation of the Nuu-Chah-Nulth into local bands exerts little 
influence on the distribution of mitochondrial lineages because the 
distribution of pairwise differences was random with respect to band 
affiliation [26]. In order to analyze sequences that would represent the 
full spectrum of diversity within this tribe, the 63 individuals in the 
sample were chosen from 13 of the 14 extant bands in such a way that 
they were maternally unrelated for four generations. Hence, the 63 
sequences can be considered to be a random sample of the Nuu-Chah- 
Nulth population as it existed in the mid-19th century [28]. 
As a baseline for comparison, we used the purine-pyrimidine model 

with identical sites within each class and obtained estimates of the four 
parameters [19]. These estimates are given in Table 1. Confidence 
intervals were obtained empirically from simulations. For the identical- 
sites model, the squared error and likelihood functions given by Eqs. (7) 
and (8) have unique global minima and maxima, respectively. 

Using the estimates given by the identical-sites models, samples were 
simulated via the coalescent model, and their properties were compared 
with those of the actual data. These values predict 4.97 variable purine 
sites and 21.21 variable pyrimidine sites, in agreement with both the 
data and the simulations. The total number of mutations observed in 
the simulated data set had a 5th percentile of 19 and a 95th percentile 
of 62, while the number of state charges had a 5th percentile of 13 and 
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TABLE 1 

Estimates of Substitution Rates in the Mitochondrial Control Region 
Assuming Identical Sites Within Purines and Pyrimidines" 

Rate Rate Lower Upper 
parameter estimate bound bound 

"1 (C + T) 0.02 0.01 0.04 
a2 (T -+ C) 0.03 0.02 0.06 

& (G -+ A) 0.014 0.004 0.05 
(A+G) 0.005 0.002 0.015 

"See Lundstrom et al. [19]. 

a 95th percentile of 46. Note that the latter pair bracket the minimum 
number of 41 mutations in the observed data as inferred by parsimony. 
However, the simulated data deviate from the actual data in two 
important respects. First, the distribution of pairwise differences in the 
actual data had a deficiency of identical or closely related sequences 
compared to the simulations. This creates a peak in the distribution of 
pairwise differences as shown in Figure 1, rather than the decaying 
distribution predicted by the identical-site model [24]. Second, the 
actual data had an excess of distinct sequences compared to the 
simulated data. This was most evident in the pyrimidines, where the 
data defined 24 distinct sequences and the simulations defined only 
9-17. 

In an attempt to rectify this lack of fit, we used the fast-slow model. 
For the purine sites, the estimates are the same as in the identical-site 
model. That is, the model estimates that all sites are fast and the fast 
rates are (0.005,0.014), as in [19]. Since there were only five variable 
purine sites, we lack sufficient data for reliable parameter estimation. 

The situation is quite different for the pyrimidine data. In the 
fast-slow model, the objective function (7) has many local minima and a 
relatively flat contour, making it numerically difficult to calculate the 
parameter estimates. Plotting a1 (the C to T rate) against a2 (the T to 
C rate) reveals that the local minima all lie near the line a2 = 1.5a1, the 
condition that gives the correct nucleotide frequencies. Table 2 gives 
the value of the objective function along the line a2 = 1.5a1. The 
smallest estimates appear when all sites are classified as fast with rates 
(a1, a2)  = (0.02,0.03), the estimates given by the identical-sites model. 
As the estimates of the fast rate increase by a factor of 7 to (0.14,0.22), 
the percentage of slow sites increases to 80%, and the slow sites are 
invariant. As the fast rates increase above this point, the slow sites have 
rates 0.04 to 0.01 times that of the fast sites. The overall best fit occurs 

. 
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TABLE 2 

Estimates of Substitution Rates in Pyrimidine Sites using 
the Fast-Slow Model 

Fast sites Slow sites 
No. of No.of Mean Squared No of 

a, a2 sites a1 a2 sites rate error Alleles var post 

0.02 0.03 197 0.00 0.00 4 0.0238 4.98Oe-04 13.3 21.4 
0.04 0.06 106 0.00 0.00 95 0.0255 4.900e-04 13.7 21.5 
0.06 0.08 80 0.00 0.00 121 0.0269 4.851e-04 14.0 20.9 
0.08 0.12 60 0.00 0.00 141 0.0291 4.801e-04 14.6 21.0 
0.10 0.15 52 0.00 0.00 149 0.0309 4.779e-04 15.3 21.0 
0.12 0.18 46 0.00 0.00 155 0.0327 4.772e-04 15.6 21.5 
0.14 0.21 42 0.00 0.00 159 0.0344 4.776e-04 16.2 21.4 
0.18 0.27 25 0.01 0.01 176 0.0337 4.819e-04 15.9 21.1 
0.24 0.37 15 0.01 0.02 186 0.0333 4.859e-04 16.1 21.4 
0.34 0.52 7 0.01 0.02 194 0.0311 4.929e-04 15.1 20.8 
0.41 0.62 5 0.02 0.02 196 0.0306 4.943e-04 15.1 21.2 
0.62 0.94 2 0.02 0.03 199 0.0284 4.971e-04 14.4 21.1 
0.70 1.05 1 0.02 0.03 200 0.0276 4.976e-04 13.9 20.9 
2.00 3.04 6 0.02 0.03 195 0.0890 5.765e-04 25.3 23.1 

*var pos, variable positions 

when 77% of the sites are invariant and the fast rates are (0.12,0.18). In 
spite of many local minima, the average rate across all sites given in 
column 7 varies from only 0.023 to 0.034. 

To determine how well the values in Table 2 modeled the data, we 
simulated lo00 samples using each set of parameters and compared the 
simulations with the data. The mean number of distinct sequences and 
variable sites in the simulations appear in columns 9 and 10 of Table 2. 
The fast-slow model increased the number of distinct sequences from 
14 to 16, still short of the 24 observed in the data. Also, the pairwise 
difference curve still shows the exponential shape that is characteristic 
of the identical-sites model, rather than the peaked distribution of the 
data. 

More extreme estimates in the fast-slow model do have the ability to 
explain both the enhanced number of distinct sequences and the peaked 
pairwise difference curve. The last row in Table 2 shows the effect of six 
hypervariable sites with rate 100 times that of the remaining slow sites. 
In this case, the value of the least squares objective function is some- 
what higher, but the simulations show the correct number of alleles and 
the pairwise difference distributions show a peak. This is shown in 
Figure 1. 
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The poor fit of the curve with six hypervariable sites to actual data is 
not surprising, as our methods attempt to fit the distribution of the 
statistics {Vn,x} rather than the pairwise difference curve. A peak in the 
pairwise difference distribution has been explained by population dy- 
namics not included in the model, such as migration or a population 
expansion [21,24]. However, this analysis shows that a peak can also 
result from the effects of site heterogeneity. 

To investigate the possibility of hypervariable sites in the data, we 
omitted the seven most variable pyrimidine sites in the data, which 
reduced the number of alleles to 14, the number predicted by the model 
simulations, but only slightly changed the pairwise difference distribu- 
tion. As changes in population size and hypervariable sites are both 
plausible, the observed data are very likely to have resulted from a 
combination of both effects. 

The estimate of the mean rate across all sites given in column 7 of 
Table 2 is fairly stable and is equal to the mean rate estimated by the 
identical-sites model. Even with hypervariable sites, where the mean 
rate increases dramatically, the increase is due to the extremely large 
value attributed to the six hypervariable sites, while the majority of sites 
have rate comparable to the mean rate for the other parameter values. 
Hence the simplest identical-site model can reasonably estimate the 
mean rate across all sites in spite of site-to-site variability. 

, 

5. CONCLUSIONS 
We have introduced a model for analyzing DNA sequence data from 

a population. This model allows for site heterogeneity; that is, it allows 
sites in the sequence to have distinct substitution rates. We have also 
proposed a method of rate estimation for this model based on the 
statistics {K,x}, which record the distribution of base frequencies at 
each site. Although these are not sufficient statistics, they provide an 
adequate summary of the information about substitution rates available 
in the data. The distribution of the statistics {K,J lends itself well to 
numerical calculation and therefore provides a means for estimation of 
substitution rates. Ideally, we would like to use maximum likelihood 
estimation based on the distribution of the counts {Vn,x}. Although this 
is theoretically possible, it is not yet computationally feasible. 

Allowing distinct rates for each site creates too many parameters to 
be estimated unless sites are grouped into classes. We have grouped 
sites into purines and pyrimidines and have further allowed fast and 
slow sites within each of these groups. Even for this simple model, very 
large sample sizes are needed for accurate estimation of rates. Although 
larger sample sizes may increase the precision of the estimates, longer 
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regions of DNA are also needed to provide larger groups of similar 
sites. However, when longer sequences are available, there is no guaran- 
tee that the additional sites will not introduce additional site hetero- 
geneity. The 360 base pairs of the control region in the Amerindian 
data are flanked by less variable regions, so that extending the sequence 
will not necessarily provide more information. Therefore, there may 
never be sufficient data to estimate site-specific substitution rates in 
this portion of the molecule without a more detailed understanding of 
the molecular function of individual sites. 

In spite of the difficulties in estimating site-specific substitution 
rates, the simplest model, which assumes that all sites are identical, can 
reasonably be used to estimate the average rate across all sites. In the 
applications of the fast-slow model, the estimates of average rate 
remained relatively constant even when estimates of the fast and slow 
rates were variable. Hence the estimates obtained from the identical- 
sites model are useful for modeling most aspects of the data, though 
they may not adequately describe subtleties such as the number of 
distinct sequences. 

It is important to emphasize that the effects of site heterogeneity 
were found, on the basis of simulations, to be qualitatively similar to 
effects that have been attributed to population dynamics. Peaks in the 
pairwise difference curve can be generated by an expanding population 
or by hypervariable sites. In the latter case, the hypervariable sites must 
have rates greater than 1 and work in concert with a group of sites with 
rates less than 1. Under these conditions, the number of distinct 
sequences in the sample is greatly enhanced. Even a small number of 
hypervariable sites could move the peak in the pairwise difference curve 
and cause significant error in estimates of population dynamics based 
on pairwise differences. Similarly, we have found that population fluctu- 
ations in conjunction with the finite-sites model can have a marked 
influence on the position of the peak in the pairwise difference curve; 
see [ 181. A model that simultaneously accounts for variable population 
size and site-specific rate variability will be necessary to discern the 
effects of each. 

APPENDIX 

characterizes the probabilities P,,,. Let 
We will show that Eq. (12) has a unique solution and therefore 

be the number of ordered r-tuples of nonnegative integers that add to 
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n. Also, let y, be an 1,-vector that contains the probabilities P,,, for a 
fixed value of n and the I ,  possibilities of x. Since Eq. (12) is linear in 
P,,,, it can be written as 

where A ,  is a matrix of size 1, X I ,  and B,-l has size I,, X Z , - . l .  
Moreover, a column sum of the matrix A,, is given by 

which means that A', is a stochastic matrix. Hence [I-[e/(e + n - 
1)1A,] is diagonally dominant and nonsingular. This proves the unique- 
ness of the solution to (12). 

Equation (Al) also suggests a numerical method for computing y,. 
Since A ,  and B, - are sparse matrices, an iterative method can be used 
to solve (Al) for y,. If L, D, and U are the lower triangular, diagonal, 
and upper triangular pieces of A,,, one form of the Gauss-Seidel 
iterates for solving (Al) is given by 

(U+D)zi  +B,-,y,-, e 
Zi+l = (I- 

The iteration matrix 

has spectral radius less than O / ( e  + n - 1); hence the Gauss-Seidel 
iterates zi converge with geometric rate e / ( e  + n - 1)  to the solution of 
(Al) [3]. Note that our choice of 8 and P in (1)  and (2)  optimizes the 
convergence rate. Computer storage is not needed for the matrices A ,  
or B, - because the necessary non-zero entries are easily calculated 
when needed. Two arrays of length I, are necessary to store the 
solution and the right-hand side of (Al). 
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