
Copyright  2000 by the Genetics Society of America

The Effects of Rate Variation on Ancestral Inference in the Coalescent

Lada Markovtsova,* Paul Marjoram† and Simon Tavaré*,†,‡
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ABSTRACT
We describe a Markov chain Monte Carlo approach for assessing the role of site-to-site rate variation

in the analysis of within-population samples of DNA sequences using the coalescent. Our framework is a
Bayesian one. We discuss methods for assessing the goodness-of-fit of these models, as well as problems
concerning the separate estimation of effective population size and mutation rate. Using a mitochondrial
data set for illustration, we show that ancestral inference concerning coalescence times can be dramatically
affected if rate variation is ignored.

IT is widely recognized in the phylogenetic community sequence data observed in the sample. MCMC methods
for maximum-likelihood estimation in the coalescentthat variation in mutation rates across sites can have
were introduced by Kuhner et al. (1995, 1998), andsignificant impact on phylogenetic analyses based on
further developed by Wilson and Balding (1998) insequence data. The review article of Yang (1996a) pro-
the Bayesian setting. Bayesian MCMC approaches arevides an historical overview with particular reference to
now available in the phylogenetic setting as well (cf.gamma models for rate variation. A number of authors
Yang and Rannala 1997; Larget and Simon 1999;have studied the effects of rate variation for within-
Mau et al. 1999). The Bayesian approach provides aspecies samples of sequences (Aris-Brosou and Excof-
useful computational device for maximum-likelihoodfier 1996; Deng and Fu 1996; Tajima 1996; Yang
estimation, as we illustrate in results. We also suggest1996b; Misawa and Tajima 1997). This work has con-
a method for assessing the adequacy of the fit of suchcentrated largely on the number of segregating sites
models to the data.observed in the sample. The focus on this simple sum-

We assume we have a random sample of n chromo-mary statistic was predicated in part on the lack of
somes, for each of which we have the DNA sequencetheoretical and computational approaches for studying
of a region of interest. We denote the collection ofcomplete sequence data. Studies of rate variation in
sequence data by D. We illustrate our approach with ahypervariable region I of human mtDNA (cf. Lund-
sample of mitochondrial sequences from the Nuu Chahstrom et al. 1992b; Wakeley 1993; Excoffier and Yang
Nulth obtained by Ward et al. (1991). The data D are1999; Meyer et al. 1999) have emphasized the likely
360-bp sequences from region I of the control regiondrawbacks of using simple mutation processes such as
obtained from a sample of n 5 63 individuals. Thethe infinitely many sites model to analyze data where
observed base frequencies are (pA, pG, pC, pT) 5 (0.3297,site-to-site variation is known to occur. Other studies,
0.1120, 0.3371, 0.2212). The data have 26 segregatingsuch as Sigurdardóttir et al. (2000), have attempted
sites, a mean heterozygosity of 0.0145 per site and 28to take advantage of large, detailed pedigree informa-
distinct haplotypes with a haplotype homozygosity oftion to infer mutation rates from observed mutation
0.0562. We show that allowance for rate variation pro-events.
vides a better fit to these data. Furthermore, rate varia-In this article we develop a Markov chain Monte Carlo
tion is seen to give much smaller values for the condi-(MCMC) approach for studying rate variation for
tional coalescence times than are predicted using anwithin-population samples of DNA sequences evolving
infinitely many sites model. This is true in general, sinceaccording to a coalescent model (Kingman 1982). Our
the infinitely many sites model fails to allow for recur-method generates observations from the posterior distri-
rent mutations and thus tends to underestimate thebution of the coalescent tree topology, the coalescence
mutation rate, with a consequent overestimation of co-times, and the mutation parameters, conditional on the
alescence times. For the data here, the expected time
to the most recent common ancestor of the sample is
reduced by a factor of about two. These results suggest
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ting, there are L 1 1 rates, resulting in a highly overparameter-by discussing whether it is reasonable to use such meth-
ized model. We therefore examine a number of special casesods to make inferences about population size and muta-
of this general model, as described below.

tion rate separately, rather than, as is more common,
estimating a compound parameter that is proportional Model 1: All sites mutate at the same rate, so that gi ; g for

all sites i. Here M 5 (g, k).to their product.
Model 2: The special case of model 1 in which k is assumedThe coalescent: The simplest version of the coalescent

known, so that M 5 (g). This model serves as a simpleassumes that the population is random mating and of description of mutation in hypervariable region I of
a large, constant, effective size N. The coalescent de- mtDNA. It was used by Kuhner et al. (1995) in their analysis
scribes the ancestry of a random sample of n chromo- of the same data set.
somes taken from the present-day population. For con-

In the remaining models, we assume k is known. There are
venience we refer to the time at which the sample was L rate parameters, and M 5 (g1, . . . , g L). To reduce the
taken as time 0 and let time increase as we look back number of rate parameters we assign each site to one of a

number of rate classes. If there are c classes, then the modelinto the past. For a wide range of models, the probability
has c rates and M 5 (h1, . . . , hc), where hl now refers to thethat two individuals share a common ancestor in the
common rate for the lth class. We treat two subcases of thisprevious generation is s2/(N 2 1), where s2 is the vari-
model, one based on a statistical description of rate variation,

ance of the distribution of the number of offspring the second on a biological one.
produced by a parent in a single generation (Cannings

Model 3: Meyer et al. (1999) developed a method for studying1974). For convenience we scale time in units of N/s2

rate variation in the hypervariable region I of mtDNA usinggenerations so that in a large population a given pair the Tamura-Nei mutation model (Tamura and Nei 1993)
of individuals coalesces at rate 1. As is common, we shall with gamma rate variation. They used a worldwide sample
assume s2 5 1 so that a coalescent time of 1 corresponds of sequences to estimate the relative rate at each site in

the region. We used their results to classify the sites into N generations. Note that this assumption affects the
hypervariable region I into five different rate classes, as-interpretation of estimates of ages and mutation rates
signing all sites that they classified as unvarying to the classon the basis of the data. If the true s2 is .1 then esti- with the lowest rate. This classification resulted in 194 sites

mates for times to the MRCA and ages of mutations will in the class with the smallest rate, 103 in the next class, 23
most likely be overestimates, with a consequent underes- in the third and fourth classes, and 17 sites in the most

rapidly evolving class. The classification of each site may betimation of mutation rates. Let Tj denote the time period
obtained from http://hto-e.usc.edu/datasets/mtrates.txt.during which the sample has j distinct ancestors. The
The mutation rate for each of the five classes is allowed toTj have independent exponential distributions with pa- vary. Thus gi 5 hl if site i is assigned to class l. The mutation

rameter j( j 2 1)/2. When a coalescence event occurs, parameters are M 5 (h1, h2, h3, h4, h5).
two lines of ancestry are picked, uniformly at random, Model 4: Here we use just two rate classes, one for purines and

one for pyrimidines (cf. Lundstrom et al. 1992b). In thisand are coalesced to form one resulting line. The pro-
case M 5 (h1, h2). It is reasonable to do this since we observecess of coalescences terminates when a single line of
no transversions in the data.ancestry remains. The genealogy can be viewed as con-

sisting of two components: the topology of the tree Computational approach: Here we describe our approach
for generating observations from the posterior distribution ofstructure and the times between coalescent events. We
the mutation parameters M and features of the tree topologyuse L to denote the topology of the tree and T 5 {Tn,
L and times T, given the observed sequence data. We define

Tn21, . . . , T2} to denote the set of coalescence times in the the effective mutation parameter u/2 to be the expected num-
sample. Accessible reviews of the coalescent are given by ber of substitutions per site per unit time that result in a

change of base. Details of the derivation of u are given inHudson (1991) and Donnelly and Tavaré (1995), for
Equations 4 and 6 in the appendix. Among the issues weexample.
address are the sensitivity of the effective mutation parameter
u to different mutation models, the effect these differences
might have on ancestral inference concerning (for example)

MATERIALS AND METHODS the time to the MRCA of the sample, and the adequacy of
the fit of the models to the data.Mutation model for sequences: We use a variety of finite-

We assume a prior distribution for M and develop an MCMCsites models, in which mutations are assumed to occur ac-
method for generating observations from the conditional den-cording to a model of Felsenstein, described in detail in
sity f(G|D) of G 5 (L, T, M) given D. Since the topology ofThorne et al. (1992). Each model has a transition-transversion
the coalescent is independent of the times of coalescentparameter k, assumed to be the same at each site, and a rate
events, and both are independent of the mutation process,parameter gi at the ith of the L sites in the sequence. Among
we can writethe parameters of interest is the effective per-site average sub-

stitution rate u defined in Equation 4; it may be calculated from f(G|D) 5 P(D|G)p1(L)p2(T)p3(M)/f(D). (1)
the values of gi, k, and the base frequencies in the sequences.
Further details of the mutation model are deferred to the The first term on the right can be computed using a peeling

algorithm (cf. Felsenstein 1981) and the mutation model weappendix.
The parameters in the model are denoted by the vector M. have described. The term p1(L) on the right of (1) is the

coalescent tree topology distribution, p2(T) is the density ofIn all cases, we treat the unknown rate parameters M as having
a prior distribution, and we simulate observations from the the coalescence times T, and p3(M) is the prior distribution

for the mutation rates M. The normalizing constant f(D) isposterior distribution of M given D. In the most general set-
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unknown and hard to compute. We therefore use a version bid to be very conservative, and since the algorithms
of the Metropolis-Hastings method (Metropolis et al. 1953; run rapidly, we generally discarded the first 2500 sam-
Hastings 1970) to simulate from the required conditional

ples and based our analysis on the next 5000 samples.distribution.
The acceptance rate was typically z80%. For runs inMarkov chain Monte Carlo method: The algorithm pro-

duces correlated samples from a distribution p of interest, in which we needed to tune a variance parameter the burn-
our case p(G) ; f(G|D). It starts with an arbitrary choice of in length varied, but the estimated parameter values
L, T, and M. New realizations of G are then proposed and were unchanged for the different variances we tried.
accepted or rejected, according to the basic Metropolis-Has-

One should begin to sample from the process X(·)tings method:
once it has “reached stationarity.” There are many heu-

1. Denote the current state by G 5 (L, T, M). ristic tests for this, none of which is infallible. For a
2. Output the current value of G. critique see Gilks et al. (1996). Some simple diagnostics3. Propose G9 5 (L9, T 9, M9) according to a kernel Q(G →

are functions of the statistics of interest such as autocor-G9).
relations and moving averages. It is also valuable to run4. Compute the acceptance probability
the chain from several different, widely spaced, starting
points and compare the long-term behavior. We alsoh 5 min




1,

p(G9)Q(G9 → G)
p(G)Q(G → G9)




. (2)

used the tests contained in the software package CODA
(Best et al. 1995). All tests were passed with the excep-5. Accept the new state G9 with probability h, otherwise stay

at G. tion of the test that indicates the presence of correlation
6. Return to step 1. in the log-likelihood series; this could be removed if

necessary by sampling less frequently.Let X(t) denote the state of this chain after t iterations.
Once X(t) has reached stationarity its values represent samples Some time might be saved by starting the process
from the distribution p(G) 5 p(L, T, M). In many cases it is from a genealogy (L, T) for which P(L, T |D) is rela-
desirable to simulate approximately independent samples tively high. The rationale for this is that it is sensible to
from the posterior distribution of interest, in which case we

start from a region of the state-space that is well sup-use output from every mth iteration for a suitable choice of m.
ported by the data. As an example of this one mightThere are many possible choices for the updating mecha-

nism Q(·, ·). The particular Q(·, ·) we use will impact the use the UPGMA tree for the data set, as described in
efficiency of the scheme, both in terms of speed of computa- Kuhner et al. (1995). However, we usually started from
tion and rate of approach to stationarity. Furthermore the random tree topologies since convergence from differ-
chain X(t) must be irreducible and positive recurrent to ensure

ent starting points is potentially a useful diagnostic forthat the limiting distribution is indeed p(L, T, M). Informally,
stationarity.the chain X(t) must be able to reach any feasible state, from

any feasible starting point, in a finite period of time. Any of The transition-transversion parameter k: The analysis
the other updating schemes referenced in the Introduction of model 1 produced a median value of k of 65.1, with
might be adapted to the problems explored here, but we have lower and upper quartiles of 32.7 and 162.7, respec-
chosen to use a version of the scheme given in Markovtsova

tively. Note that since the data are consistent with noet al. (2000). For full details we refer the reader to that article,
transversions having occurred during the evolution ofbut we now give a brief informal description. The algorithm

makes local changes to the tree by picking a random coales- the sample, the posterior distribution for k has a very
cence event and considering this event and the next coales- long right tail and statistics for the mean, which are
cence event. So if the first event involves the transition from strongly influenced by outliers, are potentially mis-
k ancestors to k 2 1, then we also consider the coalescence

leading and are therefore not presented. The medianinvolving the transition from k 2 1 to k 2 2 ancestors. We
value of g was 6.87 3 1024 and the median value for wthen make a local rearrangement of the lines involved in these

two coalescences. We simultaneously propose new times for was 4.47 3 1022. These results show that the data are
the periods during which there are k and k 2 1 ancestors to consistent with a value of k 5 100, as has previously
the sample. These new times may be generated according to been used by Kuhner et al. (1995) in their analysis of
the predata coalescent distribution, or according to Normal

the same data. For the analysis of subsequent modelsdistributions with mean given by the current values of the
we treated k 5 100 as fixed.times. We update the mutation parameters M every 10 itera-

tions in the analyses presented in the next section. New values The mutation parameter u: Posterior statistics for the
are proposed according to a Normal distribution centered per-site average mutation rate u for each of the models
around the currently accepted value. are presented in Table 1, and Figure 1 shows the esti-

mated posterior density for each model. We note that
the posterior distribution supports higher values for u

RESULTS
in model 3. This is largely due to the high mutation
rate that is assigned to class 5, which contains 17 sitesWe ran the updating scheme described in the previ-

ous section on the Nuu Chah Nulth data using mutation believed to mutate at the highest rate. The posterior
distributions of the per-site mutation rate for each ofmodels 1–4. The output typically appeared to be nonsta-

tionary for up to 200,000 iterations of the algorithm. the five rate classes in model 3 are shown in Figure 2.
Figure 3 shows the posterior distribution of u for theWe sampled every 10,000th iteration to approximate a

random sample from the stationary distribution. In a purine and pyrimidine sites in model 4, under which
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TABLE 1 for u. Since the posterior density of u is proportional
to the likelihood in this case, we may use an estimateSummary statistics for u
of the posterior density to find the maximum-likelihood
estimate of u. From the density shown in Figure 1, weu Model 1 Model 2 Model 3 Model 4
obtained an MLE of û 5 0.038. Kuhner et al. (1995)

Mean 0.041 0.039 0.055 0.041 obtained the value û 5 0.040 for these data, using theMedian 0.040 0.038 0.054 0.040
same value of k. The difference in estimates arises from25th percentile 0.035 0.033 0.046 0.035
a combination of the parameters chosen for the density75th percentile 0.047 0.045 0.062 0.047
estimation, the different approaches to the optimiza-
tion, and noise. From an estimate of the curvature of
the log density we get an estimate of the standard errorboth mutation rates had uniform prior distributions.
of û of 0.010, resulting in an z95% confidence intervalThe mean rate for purine sites is 0.015 compared to a
of (0.018, 0.058). The Watterson (1975) estimator ofmean rate of 0.062 for pyrimidine sites. We note the
u, based on 26 segregating sites in the data, is 0.015considerable range of plausible values for the pyrimi-
with an estimated standard error of 0.005; the 95%dine rate. We may use the Bayesian approach to estimate
confidence interval for u is then (0.005, 0.025). Thethe maximum-likelihood estimate (MLE) of the two
lower value obtained using the Watterson estimator isrates. We obtained estimates of 0.012 for purines and
expected, because multiple mutations at the same site0.059 for pyrimidines (data not shown). These estimates
are ignored.can be compared to those of Lundstrom et al. (1992a)

Goodness-of-fit: The adequacy of the fit of these mod-and Kuhner et al. (1995), who analyze purine and py-
els can be assessed using a variant of the parametricrimidine sites separately. The first authors obtained
bootstrap. We simulated observations from the posteriorrates of 0.008 for purines and 0.024 for pyrimidines;
distribution of (L, T, M), and for each of the treesthe second, 0.005 and 0.052, respectively. The joint anal-
(L, T) we then simulated the mutation process withysis of the two types of site tells a somewhat different
parameters specified by M. The distribution of certainstory; the purine rate is much higher than the separate
summary statistics observed in the simulated data isanalyses might have predicted. Presumably this arises
found, and the values of the statistics actually observedbecause, for this particular data set, including informa-
in the data are compared to these distributions. Wetion about pyrimidines when analyzing purines happens
chose to use the number of haplotypes, the maximalto encourage trees to be shorter than they would be if
haplotype frequency, the haplotype homozygosity, thepurines were analyzed alone.
number of segregating sites, and a measure of nucleo-We conclude by returning to the results from the
tide diversity. In practice, we use the output from thesimplest mutation mechanism, given by model 2. We

have taken k 5 100 and a uniform prior on (0, 100) MCMC runs to generate the observations on (L, T, M).

Figure 1.—Posterior den-
sity of per site mutation rate u
for each model.
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Figure 2.—Posterior den-
sity of per site u’s for mo-
del 3.

In Table 2 we give the results of this comparison for that the constant rate model fits less well than the vari-
able rate case, particularly regarding the haplotype dis-models 2 and 3 using 4000 values from each posterior

distribution. In principle, for a perfect fit, we might tribution. The number of segregating sites seen in each
of the classes in model 3 also seems to fit reasonablyexpect to see z50% of the simulations with values less

than or equal to the observed value in the data. The well. The total number of segregating sites observed in
the bootstrap samples gives some evidence of lack-of-criteria for accepting our model would be that the ob-

served values fall with the central 95% of the distribution fit; both models predict more segregating sites than are
seen in the data. One explanation for this apparentgenerated by the simulations. There is some evidence

Figure 3.—Posterior density
of per site u for purines and
pyrimidines under model 4.
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TABLE 2 smaller value of u chosen. The joint posterior density
of T and u for model 3 is given in Figure 5.Assessing goodness-of-fit of the models

Simultaneous estimation of N and u: Several authors
(e.g., Tavaré et al. 1997; Wilson and Balding 1998)Fraction of

simulations # have developed Bayesian methods that make inferences
observed value about the mutation rate u and the population size NObserved

separately. In the absence of other information, theStatistic value Model 3 Model 2
statistical features of the sequence data are a conse-

No. haplotypes 28 0.56 0.83 quence of the value of the compound mutation parame-
Max. haplotype ter n 5 2Nu. Here we examine the influence of the

frequency 9 0.54 0.36
assumed prior on the joint posterior distribution of NHomozygosity 0.0562 0.32 0.12
and u.Heterozygosity per site 0.0145 0.19 0.36

We illustrate this by considering the Nuu Chah NulthNo. segregating sites 26 0.02 0.05
No. segregating in data set once more. For simplicity we consider a case

Class 1 0 0.51 for which the prior distribution for N is uniform over the
Class 2 9 0.12 positive real line; this can be thought of as illustrating a
Class 3 3 0.24 case in which we wish to estimate an unknown effective
Class 4 6 0.35

population size. Using this framework the mode of theClass 5 8 0.20
posterior distribution of N is the maximum-likelihood
estimate of the population size. We use several different
Normal prior distributions for u to indicate the influ-

discrepancy might be that the models are not allowing ence the choice of prior distribution plays on the results.
for a high enough level of rate heterogeneity and there- The mean of the Normal prior distribution for u, 7.6 3
fore do not typically produce enough recurrent muta- 1025, was chosen to be consistent with the results for u
tions. The mutations that do occur will then tend to be given in this article. We vary s, the standard deviation
spread over a greater number of sites. A model that of the Normal prior, to reflect differing levels of uncer-
allows for more than five different mutation rate classes tainty about u. We show results for three cases: case 1
may well produce a better fit. is for s 5 1026, case 2 is for s 5 2 3 1025, and case 3

The distribution of time to the most recent common is for s 5 1024. In all three cases the posterior distribu-
ancestor: Posterior statistics for the time to the most tions for the compound parameter n 5 2Nu are practi-
recent common ancestor (TMRCA) are given in Table cally identical, regardless of the choice of prior for u (see
3, and the corresponding posterior densities appear in Figure 6, in which the posterior densities of the per-site
Figure 4. The prior distribution of the time to MRCA effective mutation rate u are plotted).
of a sample of n 5 63 has a mean of 2(1 2 1/63) 5 However, the similarity of the posterior distributions
1.97. With an effective size of N 5 600, a 20-year genera- for u conceals a more complicated story. In Figure 6 we
tion time, and a value of s2 5 1 for the variance of show the posterior distributions of N and u for each of
the offspring distribution, this is z23,600 years. The cases 1, 2, and 3. In each case, the central plot is a
posterior distribution for each of the models presented scatter plot showing sampled values of N and u. Along
here suggests that times considerably less than this are the edges of each scatter plot are the corresponding
most likely. Note that the mean TMRCA for model 3 is marginal distributions of N and u.
slightly lower than that for the other models. This is a As we can see, N is highly correlated with u. While
reflection of the higher estimate for u under this model. the marginal distributions look well behaved, they hide
Griffiths and Tavaré (1994) used the infinitely many the nonidentifiability that is revealed in the scatter plot.
sites model to obtain a mean posterior TMRCA of 14,400 The correlation is not apparent in case 1, because the
years on the basis of an estimated per site u of 0.014. choice of prior for u has restricted the parameters to a
This is substantially larger than the posterior mean of small region. The data, in isolation, can be used only
7100 obtained from model 3, reflecting in part the for inference about n (or u, a multiple of n). The data

support a particular posterior distribution for n, the
single evolutionary parameter. The choice of priors forTABLE 3
N and u dictates the way in which the posterior distribu-Summary statistics for time to MRCA
tion for n is decomposed into separate distributions.
For example, if one uses a tight prior for u, i.e., a priorTime to MRCA Model 1 Model 2 Model 3 Model 4
with low variance as in case 1, one attains a relatively low

Mean 7800 8100 7100 7900 variance for the posterior distribution of N. However, if
Median 7400 7700 6800 7500 one assigns a prior with high variance to u, as in case
25th percentile 6200 6500 5700 6300

3, the posterior for N changes dramatically. In the limit,75th percentile 9000 9300 8300 9100
when we fix u, for example, the posterior distribution
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Figure 4.—Posterior density
of time to MRCA for each
model.

for N has a small variance. However, in this situation, This approach also provides an alternative method for
finding more traditional maximum-likelihood estimatesthe posterior for N is a rescaling of the posterior for n.

In a Bayesian framework it is natural for the choice of of mutation rates by using noninformative priors.
We noted that the adequacy of the model may beprior to influence the shape of the posterior distribu-

tion, but it is important to be aware of the extent of assessed using a parametric bootstrap based on simulat-
ing the mutation process using trees and mutation pa-this influence when interpreting the results. Conse-

quently, we feel there is merit to such an analysis only rameters simulated from the posterior distribution. We
saw that the distribution of quantities such as theif one has strong beliefs about one of the two parame-

ters. The same observations apply to analyses using re- TMRCA of the sample is highly dependent on the muta-
tion model used. For the variable rate model with fivelated approaches, as in Tavaré et al. (1997), and Wilson

and Balding (1998). rate classes, which provides an adequate fit to the data,
the estimated mean TMRCA is about one-half that esti-We have deliberately chosen widely differing priors

for u to illustrate the points made here. However, the mated using an infinitely many sites model. This exam-
ple emphasizes the need for caution in practical applica-priors are not unreasonable and the results presented

stress the vital role played by the choice of prior distribu- tions of theoretical approaches to ancestral inference.
It is straightforward to adapt the algorithm given intions. In the absence of any prior information the pa-

rameters u and N are confounded in the following sense: this article to allow for other demographic scenarios
any combination of u, N and u9, N 9 such that uN 5
u9N 9 will have the same posterior likelihood, hence the
behavior seen in Figure 6. The presence of a prior distri-
bution for N and/or u lessens the degree of confound-
ing, although, as can be seen, priors offering reasonable
support to a wide range of parameter values will still
leave a large degree of nonidentifiability.

DISCUSSION

We have described an MCMC approach that allows
for the estimation of mutation parameters and statistics,
such as the time to the MRCA, in a Bayesian setting.
Such a setting allows reasonable prior information to
be included in the analysis, possibly avoiding some of Figure 5.—Joint posterior density of TMRCA and u under

model 3.the confounding issues that might otherwise be present.
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Figure 6.—Posterior distri-
butions for N and u. Top left,
case 1. Top right, case 2. Bot-
tom left, case 3. Bottom right,
posterior density of u.
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a unique event polymorphism. Genetics 156: 401–409. alone. We assume that P has stationary distribution p 5

Mau, R., M. A. Newton and B. Larget, 1999 Bayesian phylogenetic (pA, pG, pC, pT), so that at stationarity a randomly chosen
inference via Markov chain Monte Carlo methods. Biometrics

sequence looks as though its bases are independent55: 1–12.
Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. copies of p. In common with most studies of molecular

Teller and E. Teller, 1953 Equations of state calculations by variation we assume that p is known, usually from esti-
fast computing machine. J. Chem. Phys. 21: 1087–1091.

mates of the proportion of each base in the set of se-Meyer, S., G. Weiss and A. von Haeseler, 1999 Pattern of nucleo-
tide substitution and rate heterogeneity in the hypervariable re- quences being analyzed.
gions I and II of human mtDNA. Genetics 152: 1103–1110. In the coalescent setting, we define

Misawa, K., and F. Tajima, 1997 Estimation of the amount of DNA
polymorphism when the neutral mutation rate varies among sites.

n 5 2Nu,Genetics 147: 1959–1964.
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APPENDIX proportional to pC and pT, respectively, and a purine is
replaced by A or G with probability proportional to pAMutation model: We model only the effects of base
and pG, respectively. The conditional probability of asubstitutions, which we assume to occur according to a
general mutation is defined to be 1/(1 1 k), while thefinitely many sites model as follows. In copying a se-
conditional probability of a within-group mutation isquence of L sites from one generation to the next, a
defined to be k/(1 1 k), where k $ 0 is the transition-potential substitution occurs with probability u. This
transversion parameter. If we writepotential substitution occurs at site i with probability pi,

where pi $ 0 and p1 1 · · · 1 pL 5 1. Values of pi 5 0
gi 5

ni

2(1 1 k)
, wi 5 kgi, (5)correspond to invariable sites, and differences in the pi

reflect heterogeneities in the substitution rates at each
site. A potential substitution at site i changes a base then k is the ratio of the within-class to general substitu-
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tion rates. From (3), the effective mutation rate at site P(D|G9)
P(D|G)

p1(L9)
p1(L)

p2(T 9)
p2(T)

p3(M9)
p3(M)

Q1(L9 → L)
Q1(L → L9)i is given by

ui

2
5 gi 11 2 o

4

j51

p2
j 2 1 2wi1 pApG

pA 1 pG

1
pCpT

pC 1 pT
2 . Q2(T 9 → T |L9 → L)

Q2(T → T 9|L → L9)
Q3(M9 → M)
Q3(M → M9)

, (8)

(6) the unknown term f(D) canceling. We can further sim-
plify (8) by noting that, since pairs of lines are chosenWe denote by rjk(t; g, w) the probability that a base
uniformly to coalesce, all topologies are, a priori, equallyof type j has changed to a base of type k a time t later,
likely. Hence p1(L9) 5 p1(L). Furthermore, our transi-when the rate parameters in (5) are given by g and w,
tion kernel changes only two of the times on the tree,respectively. Thorne et al. (1992) show that
Tl and Tl21, say. Finally, it is easy to show that Q1(L →
L9) 5 Q1(L9 → L), reducing (8) to

P(D|G9)
P(D|G)

p2(T 9)p3(M9)
p2(T)p3(M)

fl(tl)fl21(tl21)
fl(t9l )fl21(t9l21)

Q3(M9 → M)
Q3(M → M9)

,

rjk(t; g, w) 5











e2(g1w)t 1 e2gt(1 2 e2wt)
pk

pH(k)

1 (1 2 e2gt)pk,

j 5 k

e2gt(1 2 e2wt)
pk

pH(k)

1 (1 2 e2gt)pk,

j ? k, H( j) 5 H(k)

(1 2 e2gt)pk,

H( j) ? H(k),

(9)

where fl(·) and fl21(·) are the densities of the time updat-
ing mechanism at levels l and l 2 1. If one uses a transi-

(7) tion kernel that proposes new times that are exponential
with parameter l(l 2 1)/2 at level l (i.e., the uncondi-where pR 5 pA 1 pG, pY 5 pC 1 pT, and H(i) denotes
tional coalescent distribution for times), then furtherwhether base i is a purine or a pyrimidine, so that
cross-cancellation reduces (9) toH(A) 5 H(G) 5 R and H(C) 5 H(T) 5 Y.

The Hastings ratio: Writing G 5 (L, T, M), the kernel P(D|G9)
P(D|G)

p3(M9)
p3(M)

Q3(M9 → M)
Q3(M → M9)

. (10)Q can be expressed as the product of three terms:

Q(G → G9) 5 Q1(L → L9)Q2(T → T 9|L → L9)Q3(M → M9).
A similar simplification also follows if one proposes new
mutation rates independently of the currently acceptedConsequently the Hastings ratio appearing in (2) can

be written in the form rate.


