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ABSTRACT
We develop a Markov chain Monte Carlo approach for estimating the distribution of the age of a

mutation that is assumed to have arisen just once in the history of the population of interest. We assume
that in addition to the presence or absence of this mutation in a sample of chromosomes, we have DNA
sequence data from a region completely linked to the mutant site. We apply our method to a mitochondrial
data set in which the DNA sequence data come from hypervariable region I and the mutation of interest
is the 9-bp region V deletion.

ESTIMATION and inference for population quanti- mutation arises, the age of the UEP, and the mutation
rates, given D.ties such as mutation rates and demographic his-

We illustrate our method by finding the conditionaltory are often based on molecular data sampled from
distribution of the age of the 9-bp deletion in mitochon-populations. Underlying any such data is a genealogy
drial region V in a sample of Native Americans fromthat describes the way in which the sampled chromo-
the Yakima tribe (Shields et al. 1993). This deletion,somes are related. The behavior of such a genealogy is
arising in the intergenic region between the cytochromeoften approximated by a stochastic process called the
oxidase II gene and the lysine tRNA gene, has been usedcoalescent, introduced by Kingman (1982). There are
to trace the history of human migrations (cf. Shields etnow several approaches to estimation and inference for
al. 1993, Figure 7; Lorenz and Smith 1994; Redd et al.coalescent-based models, among them the Markov
1995; Soodyall et al. 1996; and Watkins et al. 1999).chain approach of Griffiths and Tavaré (1994a,b),
The age of the deletion may provide information aboutand the Markov chain Monte Carlo (MCMC) approach
the timing of such migrations. In a sample of n 5 42initiated by Kuhner et al. (1995, 1998). Bayesian ap-
individuals, D comprises the sequence of 360 bp fromproaches to inference in the coalescent are described by
region I of the control region, and b 5 26 of the individu-Tavaré et al. (1997) and Wilson and Balding (1998).
als carried the deletion. Under reasonable demographicOur data come from a random sample of n chromo-
assumptions, we find a mean conditional age for thesomes, from each of which we have the DNA sequence
deletion of z4100 years. The 2.5th percentile of theof a region of interest. We denote the collection of
distribution is 1700 years, and the 97.5th percentile issequences by D. In addition to the sequence data, we
8200 years; thus the data support values as small as 1700have information on the presence or absence of a
years and as large as 8200 years.unique event polymorphism (UEP) mutation, a neutral

The coalescent: The simplest version of the coalescentmutation that is assumed to have arisen just once in the
assumes the population is random mating and of a largepopulation of interest. In this article, we develop an
constant size N, from which we sample n sequences fromMCMC approach for studying the age of a UEP mutation
the present-day population. In the coalescent, time runsthat is segregating in the sample, under the assumption
backward and is recorded in units of N/s2 generations,of no recombination in D or between the mutant site
where N is the (effective) population size and s2 is theand D. Our MCMC approach generates observations
variance of the distribution for the number of offspringfrom the joint conditional distribution of a number of
produced by a parent in a single generation. In commonquantities of interest, including the time to the most
with most authors, we assume s2 5 1. Thus a coalescencerecent common ancestor (MRCA) of the sample, the
time of 1 translates into N generations ago, and so on.time to the MRCA of the chromosomes carrying the UEP
The time Tj during which the sample has j distinct an-mutation, the length of the branch on which the UEP
cestors has an exponential distribution with parameter
j( j 2 1)/2, and coalescent events occur at random
among the ancestors of the sample. The process of co-
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narios, are given in Griffiths and Tavaré (1998, Equa-
tions 5.3 and 6.3). The case m . 0 can be treated directly
by the approach of Griffiths and Tavaré (1994b);
some related results appear in Stephens (2000).

Wiuf and Donnelly (1999) derived a number of re-
sults about the topology of a conditional coalescent tree
having the property

E ; {A particular set of b sequences coalesces before
any of the remaining n 2 b sequences share
a common ancestor with any of the b}. (1)

They show that until the sequences carrying the muta-
tion have found a common ancestor, the transition
probabilities are as follows: If there are currently j $ 2
lines of ancestry carrying the mutation and l lines not
doing so, the probability that the next coalescent event
involves two lines carrying the mutation is

( j 1 1)/(l 1 j), (2)

while the probability that it involves two lines not car-
rying the mutation is given by (l 2 1)/(l 1 j). Once an

Figure 1.—Coalescent tree with UEP. MRCA has been attained for the sequences carrying
the mutation, coalescence occurs as normal, randomly
between any two existing lines of ancestry. Since the

components: the topology of the tree structure and the
conditioning involves just the topology of the tree, the

times between coalescent events. We use L to denote
event times in the conditional coalescent have the samethe topology of the tree, and T 5 {Tn, Tn 2 1, . . . , T2} distribution as in the unconditional case.to denote the set of coalescence times in the sample.

Slatkin and Rannala (1997) use a different ap-An example of a genealogy for seven sequences is given
proach to estimate the age of an allele when D consistsin Figure 1. Accessible reviews of the coalescent are
of (an estimate of) the number of mutations that havegiven by Hudson (1991) and Donnelly and Tavaré
arisen in a region close to that allele in just those chromo-(1995), for example.
somes carrying the given allele. In their approach and thatTheory for the age of a UEP: Because the UEP has
of Thompson and Neel (1997), the age of an allele isarisen by mutation just once in the ancestry of the sam-
treated as a parameter to be estimated from the data,pled population, the individuals in the sample can be
together with an appropriate confidence interval. Individed into two groups, those that carry the mutation
our approach, the age of a UEP is an unobservablecorresponding to the UEP and those that do not. Fur-
random variable, and what is reported is then the condi-ther, it must be the case that the sequences carrying
tional distribution of the age of the UEP given D. Forthe mutation have coalesced with each other before
more on the Slatkin and Rannala model in the coales-sharing a common ancestor with any sequence not car-
cent setting, contact R. C. Griffiths and S. Tavarérying the mutation. Figure 1 shows an example with n 5
(unpublished results).7 sequences, of which b 5 3 carry the UEP mutation C

Mutation model for sequences: The variation ob-and four carry the ancestral allele c.
served in the DNA sequences D is a consequence ofWe suppose that the scaled mutation parameter of
mutations occurring in the coalescent tree of the sam-the UEP mutation is m; that is, m 5 2Nv, where v is
ple. We model the evolution of D using a finite-sitesthe probability of the mutation occurring in a given
model due to Felsenstein, described in detail in Thornesequence per generation. Potential mutation events oc-
et al. (1992). In this model there are two parameters:cur on the branches of the coalescent tree according
g, the general substitution rate, and w, the within-groupto independent Poisson processes of rate m/2. Several
substitution rate. We parameterize the model by settingtheoretical results are known about the age of a UEP.
w 5 kg, where k is the transition/transversion parame-In the limiting case m → 0, Griffiths and Marjoram
ter. In our implementation of this model, we assume(1996) derive a formula for the mean of the age jnb of
that the base frequencies are known (and given by theira mutation observed b times in a sample of size n, for
observed frequencies in the sample). The unknown pa-0 , b , n, and the mean time to the MRCA. The
rameters in this part of the model are then k and g. Itprobability density of jnb and the time to the MRCA,

under both constant and variable population size sce- is conventional to report the parameter u, where u/2 is
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It starts with an arbitrary choice of T and M, and a L consistentthe mean number of mutations per unit time that change
with the conditioning event E. New realizations of G are thena base along a given branch. We have
proposed and accepted, or rejected, according to the following
scheme:

u 5 2g


11 2 o

4

i51

p2
i 2 1 2k1 pApG

pA 1 pG

1
pCpT

pC 1 pT
2. (3)

Basic Metropolis-Hastings Algorithm:

Note that u can be calculated from k, g, and the base 1. Denote the current state by G 5 (L, T, M).
2. Output the current value of G.frequencies.
3. Propose G9 5 (L9, T9, M9) according to a proposal kernel

Q(G → G9).
4. Compute the Hastings ratioMATERIALS AND METHODS

h 5 min



1,

p(G9)Q(G9 → G)
p(G)Q(G → G9)




. (7)Let U denote the single event that causes the UEP mutation.

This corresponds to a single (rate m/2) mutation arising on
the branch indicated in Figure 1 and no other mutations on

5. Accept the new state G9 with probability h, otherwise staythe rest of the coalescent tree. Let A denote the age of the
at G.UEP, and denote the mutation parameters by M 5 (g, k, m).

6. Return to step 1.In what follows, we assume a prior distribution for M, and
develop an MCMC method for generating observations from Let X(t) denote the state of this chain after t iterations. Oncethe conditional density f(A, G | D, E, U) of A and G 5 (L, T, X(·) has reached stationarity, its values represent samples fromM) given D, E, and U, where E is the event defined in (1). To the distribution p(G). Note that consecutive outputs are oftendo this, we express the required conditional density as a prod- highly correlated. If we wish to simulate approximately inde-uct of simpler terms and describe how each can be calculated. pendent samples from the posterior distribution, we com-First we note that monly use output from every mth iteration for a suitable choice

of m.f(A, G | D, E, U) 5 f(A | G, D, E, U)f(G | D, E, U). (4)
We have some freedom in choosing the updating kernel

The first term on the right of (4) can be evaluated by consider- Q(·, ·). Ideally Q(·, ·) should be relatively easy to calculate,
ing Figure 1 once more. Given that a single mutation occurs since the scheme above may need to be iterated many times
on the indicated branch, the Poisson nature of the mutation to converge to stationarity. Furthermore, the chain X(·) must
process for the UEP means that the location of the mutation is be irreducible (so that all states can be reached from any
uniformly distributed over that branch. Thus we can simulate other) and positive recurrent to ensure that the limiting distri-
observations from the conditional distribution of A by simulat- bution is indeed the required p(G).
ing from the second term on the right of (4), reading off the An updating mechanism: The updating kernel Q defines a
length of the branch on which the UEP mutation occurs, and Markov process on the state space of trees, times, and mutation
adding a uniformly distributed fraction of that length to the rates, G 5 (L, T, M). Some samplers that might be adapted
height of the subtree containing all the chromosomes carrying to our problem are given in Kuhner et al. (1995), Wilson
the UEP. Our task is therefore reduced to simulating from and Balding (1998), Larget and Simon (1999) and Mau et
the second term on the right of (4). al. (1999). We have chosen to make local changes to the

Let p1(L | E) denote the conditional distribution of the genealogy in a somewhat different way.
coalescent tree L given E, p2(T) the density of the coalescence We define level l of the genealogy to be the first point at
times T, and p3(M) the prior for the mutation rates M 5 (g, which there are l distinct ancestors of the sample. The bottom
k, m). We can then write of a genealogy of n individuals is referred to as level n. The

topmost level is referred to as level 1 (this is the most recent
f(G | D, E, U) 5 P(D, U | G, E)p1(L | E)p2(T)p3(M)/P(D, E, U). common ancestor of the sample) and Tl is the time between

(5) levels l and l 2 1. The sampler proposes a new graph (L9,
T 9) to which we might move. We consider this in two parts:The term P(D, U | G, E) is the product of two terms,
proposing a new tree topology L9, and proposing new times

P(D, U | G, E) 5 P(D | G, E)P(U | G, E). for the coalescence events therein, T 9. We describe updates
to M later. We begin by specifying the scheme for proposing

The first of these, the likelihood of D, can be computed using a new tree topology L9, ignoring the effects of conditioning
a peeling algorithm (cf. Felsenstein 1981) and the mutation on E. Our approach changes the structure of two adjacent
model described above, while the second is levels of the genealogy. For a genealogy with n individuals,

we begin by picking a level l (l 5 n, n 2 1, . . . , 3) accordingmS
2

e2mS/2 3 e2m(L2S)/2 5
mS
2

e2mL/2, (6) to an arbitrary distribution F; in practice, we generally used
a uniform distribution. Once we have chosen l, we observe
the pattern of coalescence at levels l and l 2 1. This patternwhere S is the length of the branch on which the single UEP
falls into two cases, according to whether the coalescence atmutation must occur, and L 5 Rn

i52 iTi is the total length of
level l 2 1 involves the line that results from the coalescencethe tree. The normalizing constant P(D, E, U) is unknown,
at level l. These two cases are illustrated in Figure 2. In caseand hard to compute. As a consequence, we use a version of
A, our kernel randomly generates a new topology involvingthe Metropolis-Hastings algorithm, due originally to Metrop-
the same three lines of ancestry; this new topology is also caseolis et al. (1953) and Hastings (1970), to simulate from the
A. These are illustrated in Figure 3. In case B, we change therequired conditional distribution.
order of the two coalescence events, resulting in another caseMarkov chain Monte Carlo method: The algorithm pro-
B topology. For the example illustrated above, we move toduces correlated samples from a distribution p of interest, in
the state shown in Figure 4.our case

We make a minor modification to this algorithm to ensure
that new trees are also consistent with the event E. If, whenp(G) ; f(G | D, E, U).
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Figure 4.—Possible moves in case B.Figure 2.—Two possible coalescence patterns.

p1(L | E). We also have Q1(L → L9) 5 Q1(L9 → L), and wewe pick a level, we find we are in case A, and exactly two of
note that Q changes only two of the times associated with Tthe lines carry the UEP, then we cannot change the order in
or T 9. Hence h reduces towhich the two coalescences occur, since such a change would

produce a new tree topology that is inconsistent with E. In
such a situation, we leave the topology unchanged. h 5 min




1,

P(D | G9, E)
P(D | G, E)

P(U | G9, E)
P(U | G, E)

p2(T9)p3(M9)
p2(T)p3(M)Having constructed a new tree topology, which may be the

same as the existing topology, we now generate a new set of
times, T 9. We generate new times T 9l and T 9l21 according to 3

fl(tl)fl21(tl21)
fl(t9l )fl21(t9l21)

Q3(M9 → M)
Q3(M → M9)




, (8)

an arbitrary distribution and leave other times unchanged.
Thus, we only alter the times corresponding to the levels at

where fl(·) and fl 2 1(·) are the densities of the time updatingwhich the topology has been changed. This ensures that (L9,
mechanism given that changes occur to the tree L at levels lT 9) is similar to (L, T) and will therefore have a reasonable
and l 2 1.probability of being accepted. We found that a kernel that

Practical considerations: A key feature of the Metropolis-proposes new values of T 9l and T 9l21 having the predata coales-
Hastings algorithm is that one wishes to observe the processcent distribution worked well on the data sets described later
X(·) once stationarity has been reached, so that the process hasin the article. We also found that proposals that are Normally
come to a steady state under which the distribution of X(t) isdistributed with mean equal to the currently accepted value
the required p. There are many heuristic tests one mightworked well. We chose to truncate the Normal distribution
employ to assess whether X(·) is stationary. For a critique ofto ensure that negative times were not proposed. The variances
these, see Gilks et al. (1996). We chose to look at functionsof the Normal distributions are parameters that can be tuned
of the statistics of interest such as autocorrelations and movingto get good mixing properties. This choice effects the effi-
averages. Another useful diagnostic is to run the chain startingciency of the method, but makes no difference to the numeri-
from widely dispersed starting points to see whether the long-cal results.
term behavior is the same in each case. We also used the testsFinally, we update M 5 (g, k, m), where g and k are the
contained in the software package CODA (Best et al. 1995).rate parameters for the sequence and m is the rate parameter
The output discussed later in the article performed well onfor the UEP. Parameters g and k were updated every 10th
such tests.iteration, and m was updated on each iteration for which g was

Significant time can be saved by starting the process fromnot updated. These were updated using truncated Normals, as
a genealogy (L, T) for which P(L, T | D, E, U) is relativelyin the last paragraph; for example, we generate a new value
high. For example, one might use a UPGMA tree generatedg9 according to a Normal distribution with mean g. The vari-

ances of these distributions required some tuning to ensure from the sequence data D, as described in Kuhner et al.
well-behaved, i.e., uncorrelated, output. We have explored a (1995); the resulting tree should satisfy the constraints re-
number of modifications to this basic approach, some of which quired by E.
are described further in Markovtsova et al. (2000). For the analyses discussed in the next section, the output

The Hastings ratio: Writing G 5 (L, T, M), the kernel Q typically appeared to be nonstationary for at least 200,000
can be expressed as the product of three terms: iterations of the algorithm. In a bid to be conservative, we

generally discarded the first 25 million iterations. After this,Q(G9 → G) 5 Q1(L9 → L)Q2(T9 → T | L9 → L)Q3(M9 → M).
we sampled every 5000th iteration. Our output is typically

Consequently, using (4), (5), and (6), the Hastings ratio, the based on 5000 samples from our stationary process. The accep-
probability with which we accept the new state, can be written tance rate was generally z70%. For runs in which, for example,
in the form we needed to “tune” the variance parameter, the burn-in

length varied, but the estimated parameter values were un-
h 5 min




1,

P(D | G9, E)
P(D | G, E)

P(U | G9, E)
P(U | G, E)

p1(K9 | E)
p1(K | E)

p2(T9)
p2(T)

p3(M9)
p3(M)

changed for the different variances we tried.

3
Q1(K9 → K)
Q1(K → K9)

Q2(T9 → T | K9 → K)
Q2(T → T9 | K → K9)

Q3(M9 → M)
Q3(M → M9)





,
RESULTS

the unknown term P(D, E, U) canceling. For our choice of
We applied our method to find the conditional dis-transition kernel Q, (2) can be used to show that p1(L9 | E) 5

tribution of the age of the mitochondrial region V de-
letion in a sample of Yakima described by Shields et
al. (1993). The sample comprises n 5 42 individuals,
of whom b 5 26 have the deletion. The data D comprise
360 bp from hypervariable region I of the control re-
gion, sequenced for all 42 individuals. The observed
base frequencies are (pA, pG, pC, pT) 5 (0.328, 0.113,
0.342, 0.217). We note that all individuals having a given
control region sequence had the same deletion status,Figure 3.—Possible moves in case A.
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Figure 5.—Posterior den-
sity of mutation rate u.

as might be expected if the deletion arose once quite posterior is proportional to the likelihood. From a ker-
nel density estimate we obtained an MLE of û 5 0.039recently.
with an estimated standard error of 0.010. This is consis-Preliminary analysis of the sequence data (without
tent with the estimate of û 5 0.040 found for the Nuuregard to presence or absence of the deletion) was per-
Chah Nulth data by Kuhner et al. (1995). Since theformed using the approach outlined in Markovtsova
base frequencies in both data sets are similar and theet al. (2000). For the present mutation model, we took
mutation rates are likely to be the same, we concludeuninformative priors (in the form of uniform densities
that the effective sizes of the two populations are alsohaving wide but finite support) for the mutation rates
approximately equal. The effective population size ofg and w and examined the posterior distribution of k 5
the Nuu Chah Nulth was estimated (from anthropologi-w/g (data not shown). The posterior median was 65.9,
cal data) by Ward et al. (1991) to be N z 600, a numberthe distribution having 25th percentile of 34.0 and 75th
we take for the Yakima as well.percentile of 160.2. The data are certainly consistent

In the absence of data, the mean time to the MRCAwith the value of k 5 100 assumed by Kuhner et al.
of a sample of n 5 42 is 2(1 2 1/42) 5 1.95. With an(1995) in their analysis of the same region in a sequence
effective size of N 5 600 and a 20-year generation time,of Nuu Chah Nulth sequences of Ward et al. (1991).
this is z23,500 years. The posterior density of the timeWe therefore chose to take k 5 100 as fixed in the
to the MRCA given the control region data D is shownsubsequent analyses; from (3) we find that u 5 88.17g.
in Figure 6. The posterior mean is 0.72, or z8600 years.We repeated the analysis with an uninformative prior,
Summary statistics are given in Table 2. The posterioruniform on (0, 0.1), for the single parameter g. This
distribution of the total tree length L 5 R42

j52 jTj hasresulted in the posterior density for u given in Figure
mean 5.68.5. Summary statistics are shown in Table 1. Our ap-

Including the deletion: We turn now to the deletionproach also provides a way to find the maximum-likeli-
data. We ran our MCMC algorithm using a uniform (0,hood estimator (MLE) of u, since with a flat prior the
10) prior for m and a uniform (0, 0.1) prior for g. The
posterior density of u is shown in Figure 5. Summary

TABLE 1 statistics are presented in Table 1. The distribution is
qualitatively the same as that obtained by ignoring theSummary statistics for u
deletion data. The posterior density of the deletion pa-
rameter m is shown in Figure 7. The posterior mean isu No deletion m variable m 5 0
0.75, the median is 0.61, the 25th percentile is 0.34, and

Mean 0.044 0.045 0.041 the 75th percentile is 0.99.
Median 0.042 0.043 0.040 The posterior density of the time to the MRCA of the
25th percentile 0.036 0.037 0.034

group carrying the deletion is shown in Figure 8. The75th percentile 0.050 0.051 0.047
summary statistics are found in Table 3. The deletion
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Figure 6.—Posterior den-
sity of TMRCA.

arises uniformly on the branch indicated in Figure 1, would occur on such a tree; we obtained an estimate
of 0.36. Similarly, we estimated the probability of at leastso that the age of the mutation is the time to the MRCA
one mutation occurring as 0.57, so that the conditionalof the deletion group plus a uniform fraction of the
probability that the mutation occurred once, given itmutation branch length. The posterior distribution of
occurred at least once, is estimated to be 0.63. Thus itthe age is given in Figure 9, and summary statistics are
is not unreasonable to assume that the deletion arosein Table 4. We also looked at the time to the MRCA
just once.of the entire sample when the deletion status of each

The case m 5 0: In the Introduction, we pointed tosequence is included. The posterior density of this time
a number of theoretical results concerning the age ofis shown in Figure 6, with summary statistics given in
a UEP given its frequency in the sample in the limitingTable 2. For these data the inclusion of deletion status
case m → 0. To compare these results with those ob-has little effect on the posterior distribution.
tained by including the sequence information, we modi-The output from the MCMC runs can be used to
fied our algorithm to allow m 5 0. The mutation parame-assess whether the UEP assumption is reasonable. We
ter M is now one-dimensional: M 5 (g). The otherfirst generated 5000 observations of the tree length L
change occurs to the conditional probability in (6),conditional on the data D; as noted above, the sample
since now P(U | G, E) ~ S, the length of the branchmean is 5.68. The modal posterior value of m is 0.30, a
on which the UEP mutation must occur. This changevalue that we treat as a point estimate of m. The expected
appears in the Hastings ratio (8), wherenumber of deletions arising on the coalescent tree is

then 0.30 E(L|D)/2, which we estimate from the poste- P(U | G9, E)
P(U | G, E)

5
S9

S
.rior mean tree length as 0.30 3 5.68/2 5 0.85. We can

also use this value of m and the simulated values of L
to estimate the probability that exactly one mutation The posterior density of u is also shown in Figure 5,

TABLE 2

Summary statistics for time to MRCA of the sample

Time to MRCA No deletion m variable m 5 0

Mean 0.72 (8,600 yr) 0.70 (8,400 yr) 0.76 (9,200 yr)
Median 0.69 (8,300 yr) 0.67 (8,000 yr) 0.73 (8,800 yr)
25th percentile 0.57 (6,800 yr) 0.56 (6,700 yr) 0.61 (7,300 yr)
75th percentile 0.84 (10,100 yr) 0.81 (9,700 yr) 0.88 (10,600 yr)
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Figure 7.—Posterior den-
sity of mutation parame-
ter m.

with summary statistics given in Table 1; there is little The summary statistics for the posterior distribution
of the time to the MRCA of the group carrying thedifference from the case where m is allowed to vary. The

posterior density of the time to the MRCA is given in deletion are given in Table 3. The results are qualita-
tively the same as the case of variable m. The posteriorFigure 6, with summary statistics in Table 2. The mean

time of 0.76 (or z9100 years) stands in marked contrast density of the age of the deletion appears in Figure 9,
with summary statistics shown in Table 4. The posteriorto the value of 2.68 (z32,200 years) obtained from

Griffiths and Marjoram (1996). mean is 0.36 (or z4400 years), compared to the value

Figure 8.—Posterior den-
sity of TMRCA of deletion.
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TABLE 4TABLE 3

Summary statistics for the time to MRCA of Summary statistics for age of the deletion
the group carrying the deletion

Age of deletion m variable m 5 0
Time to MRCA m variable m 5 0

Mean 0.34 (4100 yr) 0.36 (4400 yr)
Median 0.31 (3700 yr) 0.33 (4000 yr)Mean 0.20 (2400 yr) 0.21 (2600 yr)
25th percentile 0.23 (2800 yr) 0.25 (3000 yr)Median 0.19 (2300 yr) 0.20 (2400 yr)
75th percentile 0.41 (5000 yr) 0.44 (5300 yr)25th percentile 0.15 (1800 yr) 0.16 (1900 yr)

75th percentile 0.24 (2900 yr) 0.25 (3100 yr)

terms of the form P(U | G, E) need be modified. Slat-
of Ej42,26 5 1.54 (or z18,500 years) when the sequence kin and Rannala (1997) and R. C. Griffiths and
data are ignored. As expected, the mean age is higher S. Tavaré (unpublished results) considered the case
than it is when m is nonzero. where further molecular data are obtained only for those

individuals carrying the UEP mutation. We have imple-
mented this ascertainment scheme when the extra mo-

DISCUSSION
lecular data come in the form of DNA sequences. We

We have described a Markov chain Monte Carlo have also implemented a version of the algorithm that
method for finding the conditional distribution of the allows both the mutation rates g and w to vary; this is
age of a mutation that is assumed to have arisen once equivalent to allowing the transition/transversion pa-
in the history of the population under study, when fur- rameter k to vary. Code that implements the methods
ther data in the form of completely linked DNA se- described in this article is available in the form of C11
quences are found for the individuals in the sample. source code and executables from the authors, and at
There are several comments that should be made. In http://hto-e.usc.edu.
our analysis of the region V mitochondrial DNA deletion We thank the referees for helpful comments on an earlier version
we assumed a constant population size (cf. Shields et of this article. The authors were supported in part by National Science

Foundation grant BIR 95-04393 and National Institutes of Healthal. 1993). We have also implemented a version of our
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Griffiths, R. C., and S. Tavaré, 1994a Simulating probability distri- populations. Am. J. Hum. Genet. 53: 549–562.
butions in the coalescent. Theor. Popul. Biol. 46: 131–159. Slatkin, M., and B. Rannala, 1997 Estimating the age of alleles
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