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Letter to the Editor

On a Test of Depaulis and Veuille
Lada Markovtsova,* Paul Marjoram,† and Simon Tavaré*†‡
*Department of Mathematics, †Biostatistics Division, Department of Preventive Medicine, and ‡Program in Molecular
Biology, Department of Biological Sciences, University of Southern California

In a recent letter to this journal, Depaulis and
Veuille (1998) discussed two possible tests of neutrality,
the ‘‘haplotype number test’’ and the ‘‘haplotype diver-
sity test.’’ They present in their tables 1 and 2 means
and percentage points of the distribution of the number
Kn of haplotypes and the sample heterozygosity Hn 5 1
2 , where p1, . . . , are the relative frequen-K 2nS p pi51 i Kn

cies of those haplotypes in a sample of size n for dif-
ferent values of the number of segregating sites s ob-
served in the data. They assume a neutral infinitely-
many-sites model of mutation with no recombination.
These percentage points were found by repeatedly sim-
ulating a random coalescent tree with n tips, randomly
distributing s mutations on the tree, and calculating the
observed values of Kn and Hn. See Hudson (1990) for
a description of how such simulations can be performed.

Depaulis and Veuille’s (1998) procedure produces
observations whose distribution is independent of the
underlying neutral mutation rate u. The authors present
the method as though the resulting simulated values had
the conditional distribution of Kn and Hn given Sn 5 s,
respectively. However, this is not true, as the following
argument shows. Denote the coalescent tree by L and
the coalescence times by T 5 (Tn, . . . , T2), so that Tj

is the time for which there are j distinct ancestors in the
tree L. We see that for mutation rate u, the conditional
distribution of (Kn, Hn) given Sn 5 s can be represented
as

P (K 5 k, H 5 h z S 5 s)u n n n

5 P (K 5 k, H 5 h z L 5 l, T 5 t, S 5 s)O E u n n n
l t

3 f (l, t z s) dt,u (1)

where fu(l, t z s) is the joint conditional density of (L, T)
given Sn 5 s. Because of the Poisson nature of the mu-
tation process, the first term under the integral signs in
equation (1) does not depend on u. It follows that in
order to simulate observations from the joint conditional
distribution of (Kn, Hn) given Sn 5 s, one first simulates
from the conditional distribution of (L, T) given Sn 5 s
and then randomly distributes the s mutations over the
resulting tree and calculates the values of Kn and Hn.
Notice that Depaulis and Veuille’s (1998) procedure
simulates from the unconditional distribution of (L, T)
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instead of the conditional distribution of (L, T) given Sn

5 s. The joint distribution of (Kn, Sn) in the case of
constant population size is discussed by Griffths (1982),
and that in the variable population size case is discussed
by Griffths and Tavaré (1996).

Depaulis and Veuille (1998) suggested that the per-
centage points of their statistics could be used as a test
of neutrality: for a given sample size n and observed
value of s, one compares the observed values of Kn and
Hn with the given 95% credible intervals. Values falling
outside those intervals lead to rejection of neutrality.
Given that the true conditional distributions of Kn and
Hn in fact depend on the unknown mutation rate u, it is
likely that the power of this test varies dramatically as
a function of u for given n and s. To assess this hy-
pothesis, we simulated observations from the true joint
conditional distribution using equation (1) and then es-
timated the probability that either statistic would fall
outside the limits given by Depaulis and Veuille. This
gave an empirical estimate of the probability that their
test would reject neutrality for different values of u.

We used a Markov chain Monte Carlo (MCMC)
approach to simulate observations from the conditional
distribution of (L, T) given Sn 5 s. MCMC methods
produce correlated samples, but these samples may be
made approximately independent by sampling the output
at widely spaced intervals. The results below were gen-
erated using the approach in Markovtsova, Marjoram,
and Tavaré (2000). An alternative approach is the rejec-
tion algorithm of Tavaré et al. (1997). Table 1 shows
the fraction of 10,000 observations that fell inside the
DV nominal 95% intervals for three different scenarios.
As noted by Fu and Li (1993), Sn is not a sufficient
statistic for u, so the fraction of observations that fall
within the DV nominal 95% intervals varies greatly. It
appears that if the true u value is well supported by the
data, the test of neutrality based on the DV intervals
will work well. However, if the true u value is not well
supported by the data, the test will be inaccurate, leading
to incorrect rejections of neutrality. For further discus-
sion, see Wall and Hudson (2001).

As we have seen, the power of the DV test depends
on the unknown parameter u. Even if the mutation rate
is known, the compound parameter u still depends on
the underlying effective population size at the time of
sampling, and this is not known in practice. Depaulis
and Veuille (1998) discuss a data set from the Su(H)
locus in Drosophila melanogaster for which n 5 20, s
5 44. The observed values of K20 and H20 were 7 and
0.76, respectively. The nominal P values were estimated
to be 0.011 and 0.017, respectively. We used the simu-
lation approach outlined above to find empirical esti-
mates of these P values for different values of u, using
10,000 simulated values once more. We used values of
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Table 1
Fraction (%) of 10,000 Observations Falling Within the
DV Interval

95% DV
Interval u 5 1 u 5 10 u 5 50 u 5 100

n 5 10, s 5 10
Kn . . . .
Hn . . . .

[3, 8]
[0.48, 0.86]

96.1
91.4

98.3
97.8

96.2
96.1

95.7
95.7

n 5 20, s 5 40
Kn . . . .
Hn . . . .

[8, 16]
[0.77, 0.93]

17.0
30.6

98.0
97.1

83.3
87.2

75.2
81.0

n 5 50, s 5 50
Kn . . . .
Hn . . . .

[13, 27]
[0.81, 0.95]

1.9
17.5

98.6
97.3

56.9
79.0

34.1
66.8

Table 2
P Values for Drosophila melanogaster Data

u 5 1 u 5 5 u 5 12.4 u 5 50 u 5 100

K. . . . .
H. . . . .

0.346
0.345

0.135
0.121

0.005
0.013

0.000
0.000

0.000
0.000

u 5 1, 5, 12.4, 50.0, and 100 for illustration; the value
12.4 corresponds to Watterson’s (1975) segregating-sites
estimator. Results are shown in table 2.

From table 2, we see that for u in the range 12.4
or larger, the data are highly unlikely under a neutral
scenario. However, for a range of smaller u values, in-
cluding, for example, u 5 5, the data become much
more likely. Thus, the ability to reject the supposed neu-
tral scenario depends on the true value of u. It should
be noted that one cannot reject neutrality on the basis
of this test; rather, one can reject the model upon which
the test is based. As Depaulis and Veuille (1998) note,
this model does not include recombination (although it
is easy to alter it to do so); neither does it include any
population demographics such as stratification. If the
model is rejected, any of these missing factors could be
the cause, not necessarily the assumption of neutrality.

Computer programs that implement both the
MCMC approach and the rejection method to generate
observations from the joint conditional distribution of,
for example, (Kn, Hn) given the value of Sn for a given
distribution for u under a variety of demographic sce-
narios can be obtained from the authors.
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GRIFFITHS, R. C., and S. TAVARÉ. 1996. Monte Carlo inference
methods in population genetics. Math. Comput. Modelling
23:141–158.

HUDSON, R. R. 1990. Gene genealogies and the coalescent pro-
cess. Pp. 1–44 in D. FUTUYMA and J. ANTONOVICS, eds.
Oxford surveys in evolutionary biology. Vol. 7. Oxford
University Press, Oxford, England.

MARKOVTSOVA, L., P. MARJORAM, and S. TAVARÉ. 2000. The
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