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ABSTRACT

Summary:Wehave developed a newmethod (BioHMM) for segment-

ing array comparative genomic hybridization data into states with the

same underlying copy number. By utilizing a heterogeneous hidden

Markov model, BioHMM incorporates relevant biological factors (e.g.

the distance between adjacent clones) in the segmentation process.

Availability: BioHMM is available as part of the R library snapCGH

whichcanbedownloaded fromhttp://www.bioconductor.org/packages/

bioc/1.8/html/snapCGH.html

Contact: J.Marioni@damtp.cam.ac.uk

Supplementary information: Supplementary information is available

at http://www.damtp.cam.ac.uk/user/jcm68/BioHMM.html

INTRODUCTION

Array Comparative Genomic Hybridization (aCGH) is an experi-

mental technique used to detect DNA copy number changes across

the genome. Test and reference samples are dyed with Cy3 and Cy5

respectively and hybridized to an array spotted with clones con-

taining small regions of normal genomic DNA. The array is then

scanned and image analysis software is used to measure the signal

emitted from each clone. After preprocessing and normalization, the

log2 ratio of the signal in the test and reference channels is determ-

ined for each clone. Subsequently, the aim is to segment these ratios

into states, where all of the clones in a state have the same under-

lying copy number. Finally, a post-processing step is necessary to

assign biological meaning to the different states.

From a statistical perspective, segmentation has received most

attention and many different schemes have been proposed. These

include calling clones as gained or lost if the ratio is above or below

a set threshold, genetic local search algorithms (Jong et al., 2004),

circular binary segmentation (Olshen et al., 2004), adaptive weights

smoothing (Hupé et al., 2004) and hidden Markov models (HMMs)

(Fridlyand et al., 2004). Two recent studies comparing the perform-

ance of segmentation schemes (Lai et al., 2005, Willenbrock and

Fridlyand, 2005) have identified problems with existing methods.

Despite the large number of methods, models have yet to

be developed that take account of additional biological covariates

such as the distance between adjacent clones or clone quality that

are likely to affect the segmentation. In this article we describe a

new segmentation scheme, BioHMM, which extends the

HMM approach of Fridlyand et al. (2004) to take account of

such information.

BioHMM is an integral part of the R library, snapCGH (Seg-

mentation, Normalisation And Processing of aCGH data), which is a

developer package obtainable from the BioConductor website (see

Abstract for the address). This library also lets the user apply other

segmentation schemes using common input and output data objects.

In addition, snapCGH works seamlessly with limma objects

(Smyth, 2005), enabling the use of pre-processing (and other) func-

tions therein.

APPROACH

A hidden Markov model (HMM) is used to partition observations

y1, y2, . . . , yn made at ‘locations’ t1, t2, . . . , tn into K (hidden) states,

where K < < n. In the context of aCGH data, the observations are

(normalized) log2 ratios associated with clones arranged along a

chromosome. For each clone t1, t2, . . . , tn we know the start and end

positions measured in base pairs and we assume that they are

ordered along each chromosome by their start position. Sub-

sequently, using the notation of Fridlyand et al. (2004) and

Rabiner (1989), we can characterize a discrete (homogeneous)

HMM where the observations are continuous as follows:

(1) The number of states, K, in the model. The states are denoted

S1, . . . , SKand the chain is assumed to be irreducible;qidenotes

the actual state at position i (1 � i � n).

(2) The initial state distribution, p, where pk ¼ P(q1 ¼ Sk).

(3) The transition matrix,A, giving the probability of moving from

one state to another, where

alm ¼ Pðqi+1 ¼ Smjqi ¼ SlÞ

for 1 � i � n � 1 and 1 � l, m � K.�To whom correspondence should be addressed.
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(4) The distribution, bk, of log2 ratios for clones in state

Sk is assumed to be Gaussian with unknown mean and

variance, i.e.

bk � Nðmk‚s
2
kÞ for 1 � k � K‚

where we allow the possibility that the variance terms are

equal.

Given the number of states, we can write the parameters to be

estimated in the vector l ¼ (A, B, p) where A, B and p denote the

parameters in the transition matrix and the emission and initial

distributions respectively. The optimal value of l can be found

by maximizing the likelihood, L(l|Y), where Y is a vector containing

the observed log2 ratios. The likelihood is calculated by computing

the forward–backward equations and the optimal values of the

parameters are estimated using the EM algorithm, a Bayesian

framework or a suitable numerical optimizer. Models with different

numbers of states are (in general) distinguished using a criterion

based upon the likelihood and the number of parameters, such as

the AIC (Akaike, 1974). Finally, the Viterbi algorithm (Viterbi,

1967), or a similar method, is used to allocate clones to particular

states.

We now describe a heterogeneous HMM, BioHMM, where the

transition probabilities depend upon the distance, defined as the

difference in midpoints, between adjacent clones. These distances

are contained in a vector, x, which is of length n � 1 since there are

only n � 1 transitions; information about the state to which the first

clone is allocated is captured in the initial distribution. After con-

structing x, the information it contains can be incorporated into the

transition probabilities of an HMM by considering a modified trans-

ition matrix, Ai, defined for 1 � i � n � 1 as

Ai ¼
�

1 � p1ð1 � e�f iÞ p1ð1 � e�f iÞ
p2ð1 � e�f iÞ 1 � p2ð1 � e�f iÞ

�
,

where f i ¼ xri for 1 � i � n � 1 and r 2 R. We can rewrite this as

Ai ¼ A1 + e�f iA2 for 1 � i � n � 1,

where

A1 ¼
�

1 � p1 p1

p2 1 � p2

�
and A2 ¼

�
p1 � p1

� p2 p2

�

We include the parameter r in the model because we expect there

to be non-linear differences in the probabilistic structure of

the transition matrix depending upon whether adjacent clones are

very close or very far apart. We note that p1 and p2 have to be

estimated subject to the constraint 0 � p1, p2 � 1.

To estimate the value of these parameters (and the other para-

meters contained in l) we used a numerical method to optimize the

likelihood. To find initial parameter estimates, we used the methods

described in Fridlyand et al. (2004) where applicable (for more

information see Section 1.1.2 of the Supplementary Material);

the initial estimate of r was set to be 1.

BioHMM is also capable of taking account of other biological

information when segmenting the log2 ratios. This might include the

length of each clone or a quality measure associated with each clone

(perhaps obtained from the image analysis software). Some discus-

sion of how we have incorporated additional covariates is given in

Section 1.1.1 of the Supplementary Material.

We have only described the structure of the model when there are

two underlying states. For details of the model when there are more

states and an example of the application of BioHMM see the Sup-

plementary Material.

DISCUSSION

In order to check that BioHMM yielded a sensible segmentation of

real data, we applied it to the Coriell cell lines (Snijders et al., 2001).

This is a well-known cell line for which independently verified

karyotype information is available. BioHMM correctly identified

all of the changes which have been previously catalogued. For more

information see Section 3.1 of the Supplementary Material, where

we also provide an example of how transition probabilities vary

depending upon the distance between the clones.

To further investigate the efficacy of BioHMM, and in particular

to assess its performance relative to other segmentation schemes, a

large amount of analysis will need to be carried out; this is beyond

the scope of this application note.

One of the aims of both ourselves and Fridlyand et al. (2004) is to

extend the HMM-based approach so that the whole genome can be

segmented at once. Theoretically this is straightforward, but choos-

ing suitable initial parameter estimates is difficult, and at present it

is unclear how this should be done.

In conclusion, the approach adopted by BioHMM has a number of

advantages over current segmentation schemes. Most importantly,

by taking account of the distance between adjacent clones,

BioHMM better models chromosomes where some regions are

densely covered and others are covered at lower resolutions. In

addition, BioHMM can be extended to take account of other

biological covariates. We believe that these features, and the

ease with which the model can be implemented, will ensure that

BioHMM plays a useful role in the analysis of aCGH data.
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Supplementary material for “BioHMM: a heterogeneous

hidden Markov model for segmenting array CGH data”

J.C. Marioni, N.P. Thorne and S. Tavaré

7th February 2006

1 Extending BioHMM

1.1 The structure of the model when there are more than two states

We now describe how BioHMM is used when there are more than two underlying states. Most of
the components of the model can be extended in an obvious way using the framework described
in the Approach section of the paper. Because of the constraints imposed upon the parameters in
the transition matrix, its structure is slightly counter-intuitive. Hence we give a brief description of
the structure of the transition matrix in the situation where there are three underlying states. The
extension to four or more states is, indeed, straightforward.

Suppose that we wish to fit our heterogeneous HMM when there are three underlying states. We
assume that there are n clones located on a chromosome and that a measure of the distance between
adjacent clones is captured in a vector, x, of length n− 1. We then define the transition matrix Ai

for 1 ≤ i ≤ n− 1 as follows:

Ai =

0@1− (p1 + p2)(1− e−fi) p1(1− e−fi) p2(1− e−fi)

p3(1− e−fi) 1− (p3 + p4)(1− e−fi) p4(1− e−fi)

p5(1− e−fi) p6(1− e−fi) 1− (p5 + p6)(1− e−fi)

1A
where fi = xr

i and r ∈ R. We can rewrite this as

Ai = A1 + e−fiA2 for 1 ≤ i ≤ n− 1

where

A1 =

0@1− p1 − p2 p1 p2

p3 1− p3 − p4 p4

p5 p6 1− p5 − p6

1A and A2 =

0@p1 + p2 −p1 −p2

−p3 p3 + p4 −p4

−p5 −p6 p5 + p6

1A
The parameters are estimated subject to the constraints 0 ≤ pk ≤ 1 (for 1 ≤ k ≤ 6), p1 + p2 ≤ 1,
p3 + p4 ≤ 1 and p5 + p6 ≤ 1.

1.1.1 Adding additional covariates and the selection of fi

At present, we have only examined the effect of incorporating a distance covariate in the model.
However, BioHMM is capable of taking account of additional biological covariates such as the length
of each clone or the quality of the log2 ratio associated with each clone (perhaps obtained from the
image analysis software). We now give a brief overview of how such information might be included
in the model.
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Given such information, we can define a covariate matrix, X, of dimension (n − 1) × c where c
is the number of covariates. We impose the constraint on X that its first column must contain a
measure of the distance between clones. In order to incorporate these covariates into the HMM we
can use a modified version of Ai.

There are many choices for the structure of fi depending upon how we think the covariates are
related. Below, we describe two of the simpler options:

1. If we assume that the covariates act independently of one another we might set fi to be an
additive function (with no interaction terms). For example, fi =

∑c
j=1 xij .

2. Alternatively, if we assume that there is an interaction between different covariates, we might
set fi to be a multiplicative function. For example, fi =

∏c
j=1 xij .

In the current implementation of BioHMM we use a modified version of the second option since we
expect there to be an interaction between different covariates (at least between those that have been
considered to date - see the discussion below on incorporating spot quality weight as a covariate).
The modified structure we used is as follows:

fi =
c∏

j=1

x
rj

ij

where rj ∈ R for j = 1 and rj = 1 for j > 1.

We use the parameter r1 when modelling the “distance” covariate (recall that the first column in
X must contain a measure of the distance between adjacent clones) because we expect there to be
non-linear differences in the probabilistic structure of the transition matrix depending upon whether
adjacent clones are close or far apart. For other covariates we do not include such parameters as we
expect the effect of these covariates on the transition probabilities to be linear.

As an example, we consider how spot quality might be incorporated into BioHMM. We assume
that spot quality is measured on a continuous scale between 0 and 1 (where the lower the score the
poorer the quality of the spot), and we use this value as the jth of c covariates. Therefore, if the
(i + 1)th clone along a chromosome is of poor quality, fi will be near to 0 irrespective of the values
associated with any of the other c− 1 covariates. As fi tends to 0, e−fi will tend to 1 and so Ai will
tend towards the identity matrix. In other words, because we do not have much confidence in the
measurement associated with the (i + 1)th clone, BioHMM decreases the probability that this clone
is in a different state regardless of the distance to its neighbours.

1.1.2 Parameter estimation

We estimate the parameters using the Nelder-Mead numerical optimisation algorithm [2] which is
written in C and called from within snapCGH. This method determines a local optimum and the
corresponding parameter values, and is known to perform well for non-differentiable functions.

In general, we use the initial parameter estimates described in [1]. For the emission distribution,
B, the estimates of the means and variances for a given number of states are taken to be the mean
and variance of the states determined by applying a Partitioning Around Medoids (PAM) algorithm
to the data and for a given K, the initial estimates for π are all set as 1/K. Additionally, the initial
estimate of the rate parameter r1 is set to be 1. However, for the parameters in A, the transition
matrix, the initial diagonal estimates are all 0.95 (rather than 0.99 in [1]) and given the number of
parameters, K, the off-diagonal terms are 0.05/K for K > 1.
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2 Using BioHMM

BioHMM is an integral part of the snapCGH library. In this section we provide an overview of
how snapCGH might be used and include examples of the format of the clone order and covariate
information required. In section 3 we give the commands that were used to apply BioHMM to a
real dataset.

2.1 Reading in and preprocessing the data

snapCGH uses functions from the limma library to read in the data and create a typical limma type
object. The next step is to add information about the genomic location of clones to this object. In
order to do this it is necessary to create a clone order information file. This should be a dataframe
with rows corresponding to individual clones arranged by their starting position along the genome.
There should be three columns: the first column should be called “Clone” giving the name of the
clone, the second column should be called “Chr” giving the chromosome on which a clone is located
and the third column should be called “Position” giving the midpoint of a clone (in megabases).

Figure 1: An example of a clone information input file for BioHMM created using Excel. The file is saved in “txt”
format.

After this information has been added, the data can be background corrected and normalised
using standard functions within limma. Subsequently, before the data can be segmented it is neces-
sary to tidy them up in order to account for replicated clones and for clones which are not mapped
to the human genome. All of these operations can be carried out within snapCGH.

2.2 The format of the covariate information

The covariate information is read in as a dataframe with Ac + 2 columns and N − t rows, where c is
the number of covariates, A is the number of different arrays (or samples), N is the total number of
clones located along the genome and t is the number of chromosomes on which clones are located.
The first two columns in the dataframe should give the chromosome on which a clone is located
(“Chr”) and the position of a clone along a particular chromosome (“Mb”). The clones should be
ordered according to their position along the genome - however, information about the clone located
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nearest the left hand telomere should be excluded for each chromosome. This is necessary because
for each chromosome with n clones located on it there are only n− 1 transitions.

For array 1 the covariate information is then contained in the next c columns in the dataframe
(columns 3 to 3 + (c− 1)). Similarly, for array 2 the covariate information is contained in columns
3+c to 3+(2c−1) and so on for the remaining arrays. We note that columns 3, 3+c, 3+2c . . .must
contain a measure of the distance between adjacent clones (in megabases). If no information about
the distance between clones is available (equivalent to the situation where all clones are equally
spaced) we can model this in BioHMM by setting the distance between all of the clones to be one.
The covariate information can be created using Excel where it should be saved as a “txt” file before
being read into R.

As an example of such a file, suppose we want to include the following covariates in our model:

1. The distance between the midpoint of adjacent clones measured in megabases;

2. A score of clone quality obtained from the image analysis software. This is assumed to be a
value between 0 and 1, where a score close to 0 indicates that the spot is of poor quality, while
a score close to 1 indicates that the spot is of high quality.

The corresponding “txt” file should then have a similar structure to the extract shown below.

Figure 2: An example of a covariate input file for BioHMM created using Excel. This file is saved as a “txt” file.

After the covariate information has been read in we can apply BioHMM (and the other segmen-
tation methods available within snapCGH) to the data.
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3 Examples of the application of BioHMM

We now illustrate the output obtained when BioHMM is applied to the Coriell cell lines [4], an
(unpublished) breast cancer dataset containing 10 samples and a dataset simulated using a novel
scheme that is included within snapCGH. The sole covariate used in each example is the distance
between clones. For the breast cancer dataset we contrast the segmentation achieved using BioHMM
with those obtained using other schemes. We do not claim that this is a thorough comparison of
BioHMM with other segmentation methods, but the example described illustrates a situation where
we expect our model to yield a different segmentation to current methods.

3.1 Real data

The Coriell cell lines

As described in the Discussion section of the paper, the Coriell cell lines [4] are commonly used in
assessing the efficacy of methods for segmenting aCGH data since independently verified karyotype
information is available for all major transitions. In common with the homogeneous HMM [1]
BioHMM was able to identify all such changes as well as finding a number of other transitions whose
veracity has not been established. Examples of some of the changes correctly identified by BioHMM
are shown in Figure 3.

0 20 40 60 80 100

−1
.0

−0
.5

0.
0

0.
5

1.
0

Distance along chromosome (Mb)

9

2   GM01750

lo
g2

 ra
tio

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

0 50 100 150

−1
.0

−0
.5

0.
0

0.
5

1.
0

Distance along chromosome (Mb)

6

3   GM01524

lo
g2

 ra
tio

●

●
●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

0 50 100 150

−1
.0

−0
.5

0.
0

0.
5

1.
0

Distance along chromosome (Mb)

5

4   GM01535

lo
g2

 ra
tio

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●
●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

0 20 40 60 80 100 140 180

−1
.0

−0
.5

0.
0

0.
5

1.
0

Distance along chromosome (Mb)

4

15   GM13330

lo
g2

 ra
tio

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

(a) (b)

(c) (d)

Figure 3: Examples of the application of BioHMM to the Coriell cell lines. Fig. (a) shows a single clone aberration
on the p-arm. It is not possible to verify whether this is a biologically meaningful aberration or simply a mismapped
clone or experimental noise.

The Coriell cell line data only has a small amount of noise and the transitions are very well
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defined - in this sense it is atypical of much array CGH data. We now give an example of how
BioHMM can be applied to a much noisier (and therefore more difficult to accurately segment)
breast cancer dataset. We also give the R commands that were used to fit BioHMM to this dataset.

The breast cancer dataset

The commands used to apply BioHMM to this dataset are given below. For more details on how
the functions used below operate see the relevant R help files.

library(snapCGH)
targets <- readTargets("targets.txt")
RG <- read.maimages(targets$FileName, source = "genepix")

RG <- read.clonesinfo("cloneinfo.txt", RG)
# This adds the information about the location of each clone on the genome to the
RG object

RG$printer <- getLayout(RG$genes)
RG1 <- backgroundCorrect(RG, method = "minimum")
MA1 <- normalizeWithinArrays(RG1, method = "median")

MA1$design <- rep(-1,10)
# A -1 in the design matrix indicates that the test sample is in the green channel

MA2 <- processCGH(MA1, method.of.averaging="mean")
# This averages replicated clones and removes unmapped clones as well as tidying up
the dataset

covariates <- read.table("covariates.txt", header = T, sep = "\t")
covariates <- as.data.frame(covariates)
# These commands read in the covariate information into the R session

BioHMM <- fitBioHMM(MA2, covariates = covariates, numiter = 30000)
# This command runs BioHMM

BioHMM.merged <- mergeStates(BioHMM, MergeType = 2, minDiff = 0.2)
# For merging states whose means are too close to each other

plotSegmentedGenome(BioHMM.merged, array = 1, chrom.to.plot = 8)
# A function for plotting the resulting output

We illustrate the (unmerged) segmented output (for a particular chromosome and sample) ob-
tained using DNAcopy [3], a homogeneous HMM and BioHMM. The coverage of the clones is 1Mb
for the majority of this chromosome, but for a small region on the short arm the clones are tiled
(i.e. they overlap) and so the resolution is much higher. This is the sort of clone layout where we
expect the distance between clones to impact upon the segmentation.

In Figure 4 we illustrate the segmented output for the whole of the chromosome. We can observe
that there are differences in the segmentations obtained which nicely illustrate a number of features
associated with each scheme. We can observe that in each of the HMM-based segmentation schemes,
the first clone is allocated to a different state than the second clone. This is not the case in the
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Figure 4: Data segmented using different schemes. The segmentations obtained using DNAcopy, a homogeneous
HMM and BioHMM (from left to right respectively) are superimposed upon the actual data. The segments and the
actual data are plotted against the physical location of the clones on the chromosome.

segmentation suggested by DNAcopy because, by its construction, it is not able to allocate a single
clone to a different state than its neighbours.

Other than this, we can observe that the segmentations suggested by DNAcopy and the homo-
geneous HMM are extremely similar with only minor differences in the locations of the breakpoints.
However, the segmentation obtained using BioHMM is clearly different. In particular, we can ob-
serve four transitions which are not seen in the other segmentations. While it is difficult to infer why
a difference exists between the segmentations obtained using BioHMM and DNAcopy, the reasons
for the difference in the segmentation between BioHMM and the homogeneous HMM are explained
by differences in the transition matrices.

The transition matrix for the homogeneous HMM, Ahom, is as follows:

Ahom =

0.973 0.015 0.012
0.020 0.980 0.000
0.065 0.000 0.935


The transition matrix obtained when BioHMM is applied, ABio, is:
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ABio
i =

0.782 0.218 0.000
0.323 0.627 0.050
0.081 0.000 0.919

 + e−x1.46
i

 0.218 −0.218 −0.000
−0.323 0.373 −0.050
−0.081 −0.000 0.081


for 1 ≤ i ≤ n− 1.

The first thing to note is that r = 1.46 - this is a relatively large value which suggests there is
quite a degree of heterogeneity in the model fitted using BioHMM. We can observe this more clearly
if we compare a typical transition matrix in a region where the coverage is 1Mb, with a transition
matrix in the tiled region.

A1Mb =

0.790 0.209 0.000
0.311 0.641 0.048
0.078 0.000 0.921

 and Atiled =

0.999 0.000 0.000
0.013 0.985 0.002
0.003 0.000 0.997


We also note that by using the likelihood ratio test (p = 0.013) we can conclude that the model
fitted using BioHMM is statistically superior to the homogeneous HMM.

Clearly, the probability of a transition out of the current state is much greater in regions where
the clones are located further apart than in tiled regions and correspondingly, this explains the
different segmentations obtained using a homogeneous HMM and BioHMM.

3.2 The simulated dataset

We illustrate the segmentation for a single chromosome and we focus in on a region which illustrates
the effect we expect BioHMM to have.
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Figure 5: Simulated data segmented using BioHMM for the whole chromosome (left) and for a particular region
of the chromosome (right). The segments and the data are plotted against the physical location of the clones on the
simulated chromosome.

This example shows how BioHMM sensibly takes account of the distance between clones when
carrying out a segmentation. In the right hand plot we can observe that in the tiled region (between
20 and 23 Mbs) there is quite a lot of variation in the log2 ratios. However, because the clones are
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very close together, the probability of a transition between states for these clones is small and hence
all of these clones are allocated to the same state. This contrasts with the clones in the untiled
region (from 23Mb onwards) where there is a much lower probability of remaining in the current
state and thus there are many more transitions.
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