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Recently, the extent of copy number variation (CNV) throughout
the genome has been shown to be far greater than previously
thought. Further, it has been demonstrated that specific copy
number variable regions (CNVRs) are associated with particular
diseases, suggesting that these genetic variations may have an
important biological role. Hence, calling CNVRs and subsequently
classifying samples as ‘‘losses’’ or ‘‘gains’’ is of great interest. A
number of papers have been published containing classifications of
CNVs, and here we show how the presence of pedigree informa-
tion can be used for assessing the performance of those classifi-
cation methods. In this article, by examining CNV classifications
made in the HapMap samples, we show that estimates of the
number of false-positive classifications per individual made by
current approaches can be determined. Moreover, commonplace
technologies for determining the locations of CNVRs aggregate
information across the maternal and paternal chromosomes at the
locus of interest. Here, we show that copy number variation on
each chromosome can be inferred and, in particular, we discuss the
existence of a class of CNVs that are inevitably misclassified and
give an estimate of their prevalence. Although our focus is not on
the development of calling algorithms per se, we describe and
provide an example of how our model might be incorporated into
the initial classification procedure to produce more robust results.
Finally, we discuss how this methodology might be applied to
future studies to obtain better estimates of the extent of CNV
across the genome.

array CGH � classification � copy number variation � HapMap Project �
pedigree information

Copy number variation (CNV) has been found in all mam-
malian genomes examined thus far (1, 2) and seems to be

widespread. CNVs are variations in copy number on a local scale,
perhaps just kilobases in length, as distinguished from larger
aberrations in copy number, such as those long known to be
involved in the onset and development of cancer (3). Within
humans, associations have been uncovered between specific
copy number variable regions (CNVRs) and the chance of
developing adverse phenotypes such as HIV-1 infection (4) and
Alzheimer’s disease (5). With the advent of high-resolution
microarray technology, it has become possible to obtain genome-
wide maps of the location of CNVRs. This, in turn, has resulted
in an increased appreciation of the scale of human genetic
variation, an understanding that has been labeled the scientific
breakthrough of 2007 (6).

There are two groups of tools for genome-wide identification
of CNVs in mainstream use. We focus here on array Compar-
ative Genomic Hybridization (array CGH) technologies, which
directly interrogate the amount of DNA present and comple-
mentary to the bacterial artificial chromosomes (BACs) or,
increasingly these days, oligonucleotide probes present on the
array. The current common alternative is to make inference from
SNP genotyping (7), and in the near future, massively parallel
resequencing seems set to become popular for such applications.

One of the first comprehensive maps of CNVRs was described
by Redon et al. (2) in late 2006. Therein, CNVRs were identified

from the array CGH data using a threshold-based approach that
called CNV-harboring probes one sample at a time. In a later
work (8), a mixture model, fitted across all samples simulta-
neously, was applied one probe at a time. For each probe, a
sample was classified into one of four categories: gained [1],
normal [0], lost [�1], or complex [2]. Such calls clearly depend
on the choice of reference to be regarded as ‘‘normal,’’ and the
paradigm is not ideal but is followed here for consistency and
(save for the addition of ‘‘complex’’) after the example of the
database of genomic variants (http://projects.tcag.ca/variation).

To call and classify CNVRs, the technologies described above
combine information across copies of chromosomes. Conse-
quently, the data do not lend themselves to making inferences
about the extent of CNV on specific chromosomes. In this article,
we examine the CNV classifications made previously for a subset
of the HapMap population (9) while incorporating the family
information contained therein. In doing so, we show (i) that it is
possible to model the output from a genome-wide array CGH
experiment at a chromosome copy level using information about
family structures, (ii) that such a model is a valuable tool for the
assessment of CNV classification exercises, (iii) how a previously
published set of classifications for the HapMap samples fares
under assessment, (iv) the inevitability of the existence and
estimated frequency of a class of CNV that is misclassified by
such technologies, and (v) the manner in which the model might
be incorporated into the initial classification procedure to
produce more robust results, with an example of such an
application.

Motivating Example. As has been mentioned, arguably the most
comprehensive map of CNVRs was described in late 2006 (2). In
this article, nominally diploid lymphoblastoid cell lines from the 270
HapMap samples were analyzed by CGH using high-density BAC
arrays. Using these data (in conjunction with complementary
information from Affymetrix 500K EA chips), 1,447 CNVRs
spanning 360 Mb (�12% of the genome) were identified.

These data were subsequently reanalyzed by using a mixture
model (8), where individuals were classified for each BAC as
‘‘lost,’’ ‘‘normal,’’ ‘‘gained,’’ or ‘‘complex’’ [see supporting infor-
mation (SI) Fig. S1 for a summary of the analysis leading to these
classifications]. The ‘‘complex’’ calls were idiosyncratic to this
analysis and broadly represented clones where the mixture model
could not identify separate components, yet the variance of the
observed log ratios exceeded that which seemed plausible if
there was no CNVR. We make no further use nor mention of
these complex clones, because (i) the ‘‘complex’’ calls were made
‘‘globally,’’ and thus there is no variation across the pedigree that
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can be modeled, and (ii) we present these methodologies as a way
of assessing the output of a generic array CGH experiment, and
most would not offer these ‘‘complex’’ calls.

The HapMap samples include 90 individuals from the Yoru-
ban population, who make up 30 parent–offspring trios. In this
article, the classifications from the mixture model are combined
with information about the family structure of these Yoruban
individuals, information that was not used in the original clas-
sifications. We use these data to obtain a (global) measure of the
probability that a copy number variant is present on neither, one
or both inherited copies of a chromosome in this population.

In Table S1, the classification data are broken down into 27
groups that correspond to the different combinations of classi-
fications that can be observed for each parent–offspring trio.
These provide the basis for the modeling approach used in this
article.

Use of Familial Information in Classifying CNVs. We are not the first
to advocate the use of family information when analyzing CNV
data derived from parent–offspring trios (or other known ped-
igrees). An approach previously presented, which might repre-
sent the gold standard, fully exploited family data at a single
locus (10). A Bayesian approach was used to update the actual
number of copies present at the locus of interest for each
individual in a family, to examine whether the CNV was
associated with a particular phenotype.

In this example, however, the copy number had been deter-
mined by using PCR. This naturally provides more accurate
values than could reasonably be expected from a genome-wide
array. Moreover, all measurements were repeated, and the
model was applied to the log-ratios rather than classifications. It
would not be reasonable to anticipate the application of such a
model to our dataset of interest. Not only is the data quality far
worse than would arise from focused PCR experiments, with
little or no replication, but also the computational burden (and
indeed demands on the judgement of the analyst) of a genome-
wide application of the model would be prohibitive.

A recent article (11) described a method for calling CNVRs

from SNP genotyping data (some of which was generated by
using HapMap samples) that made a posteriori use of trio
information. By using Bayes’ rule, sample-specific CNVR calls
were updated to yield the posterior probability of observing a set
of classifications within a particular trio. Wang et al. (11) then
assumed that the set of classifications with the largest posterior
probability represented the true copy number classifications for
the trio of interest. This approach makes use of allele frequency
information not available from array CGH platforms and (to
highlight one difference from the approach presented here) does
not distinguish between the case where a mother has two copies
of a sequence, one on each of two copies of a chromosome, or
two copies of a sequence but both on the same copy of a
chromosome. So, for example, under this model if a father has
two copies and a mother has two copies, barring a de novo
mutation, the offspring has to have two copies.

Our model, by contrast, allows for more flexible inheritance
probabilities and naturally distinguishes between the two cases
mentioned above. It requires neither allele frequency informa-
tion nor the actual log ratios, which may be either impossible or
difficult to obtain, depending on where and with what technology
the data were generated. With additional or better-quality data,
previously proposed methods may be preferable, but even in
these cases, the computational feasibility of this approach may be
appealing.

Results
If a sample is diploid, the CNVR classifications of each probe
(gained, normal, or lost), as nominated by array CGH, are a
function of the number of copies of that region present on each
copy of the relevant chromosome. We assume the region of
interest can be normal (N), gained (G), or lost (L) on each
chromosome. Six combinations of the two chromosomes are thus
possible (GG, GN, LN, LL, NN, and LG), and a CNVR
classification determined from the array CGH data can be linked
with any one of these. Ideally, the GG and GN pairings would
be called as gained, the LL and LN pairings would be called as
losses, and any NN pairing would be called as normal.

Table 1. Parameter estimates

Chromosomes CNVR classification Parameters Estimate Conditional estimates Proportions in each category Renormalized within a category

GG 1 a1 0.00607 0.1020 1
�10�6

�10�6

GG 0 a0 � 10�6 � 10�6 0.1020
GG �1 a-1 � 10�6 � 10�6

GN 1 b1 0.00012 0.0019 0.475
0.525
�10�6

GN 0 b0 0.00012 0.0021 0.0040
GN �1 b-1 � 10�6 � 10�6

LN 1 c1 � 10�6 � 10�6 �10�6

0.583
0.417

LN 0 c0 0.00008 0.0014 0.0024
LN �1 c-1 0.00006 0.0010

LL 1 d1 � 10�6 � 10�6 �10�6

�10�6

1
LL 0 d0 � 10�6 � 10�6 0.0660
LL �1 d-1 0.00391 0.0660

LG 1 e1 0.00021 0.0034 0.233
0.555
0.212

LG 0 e0 0.00048 0.0081 0.0146
LG �1 e-1 0.00019 0.0031

NN 1 f1 � 10�6 � 10�6 �10�6

1
�10�6

NN 0 f0 0.98880 0.8110 0.8110
NN �1 f-1 � 10�6 � 10�6

The first two columns illustrate the different combinations of chromosomes and the corresponding CNVR classifications, as ascertained from the array CGH
data. The fourth and fifth columns show the parameters’ estimates and estimates conditional on a probe containing a CNVR, respectively. Column 6 shows, for
the CNVR probes, the proportion of samples within each of the six chromosome categories. The final column illustrates the proportions in column 5, normalized
within each of the chromosome categories.
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The estimated probabilities of each chromosome/classification
pair are denoted as in Table 1. For example, the probability that
two chromosomes are genuinely gains, and that the sample is
classified as a gain from the array CGH data, is denoted a1. The
other parameters in the third column of Table 1 complete the
notation in a similar manner. Further, we note that, because they
represent probabilities, their associated values must sum to one.

This model provides an average measure of the parameters
(column 3, Table 1) across all probes. Although different effects
may be observed for some probes, these measures will yield
substantial information about the character of CNV across the
genome. Further, the model also assumes that copy number
variants do not arise sporadically (i.e., they must be inherited).
There are some reasons to believe this will be the case (12), and
additional evidence for the rarity of such events is provided by
the ease with which the populations within the HapMap project
cluster together (8). This assumption could be relaxed, because
the arguments for it are not conclusive; however, in the absence
of a sensible prior for the mutation rate, distinguishing between
misclassifications and de novo mutations would prove difficult.

The vast majority of probes were not called as CNVRs. Thus,
the most common occurrence in the population is that individ-
uals have two normal copies of a chromosome and are classified
as harboring no copy number aberration. The probabilities of
observing each chromosome/classification pair, conditional on
the overall probe being called as a CNVR, are given in column
5 of Table 1. As was observed by Redon et al. (2), there are more
copy number gains than losses.

These results provide much information regarding the per-
formance of the original classification algorithm. In particular,
by examination of the values associated with parameters b0 and
c0, we see indications that, half of the time, GN and LN pairings
are misclassified as ‘‘normal.’’ Many of the probes called as
CNVRs across the entire HapMap population show little vari-
ation within the Yoruban population (albeit they might, for
example, all be classified as ‘‘gains’’ within the Yoruban popu-
lation), so the proportions of GN pairings and LN pairings seen
here are lower than might be anticipated. That the combination
of the technology and classification algorithm seems unable to
correctly identify these individuals as being variant may be an
even greater concern if considering a more heterogeneous
population.

Similarly, it appears those individuals who are NN, GG, or LL
are called correctly on nearly all occasions. It should be noted
that this is probably because if it were not easy to classify GG and
LL individuals, then the probe would have been unlikely to have
been called in the first place. We can therefore say little about
the true false negative rate, but the false negative classification
rate conditional on being in a probe called as a CNVR can be
estimated, and this rate and perhaps those in previous studies
seem to be driven by an inability to classify correctly individuals
who harbor a CNV only on one copy of the chromosome.

We can deduce that (for a particular locus) this leads to the
situation that an offspring with (only) one parent classified as
having a copy number gain/loss will inherit from that parent a
chromosome with a gain/loss at that locus 97.5%/97.0% of the
time but will be classified as gained/lost from the array CGH data
only 44.8% and 38.5% of the time, respectively (see Methods for
details of these calculations). Although an apparent inheritance
rate of a little under 50% would not cause alarm, the disparity
from the true inheritance rate is a concern.

In summary, it appears from these data that approximately 4%
of ‘‘loss’’ classifications made within CNV harboring probes are
incorrect, and approximately 3% of ‘‘gain’’ classifications and
1% of ‘‘normal’’ classifications are similarly erroneous. Note that
these are not comparable to the validation values in the previous
studies, because those values also considered errors in the initial
calling of a probe as being CNV harboring.

If we extrapolate to the entire HapMap population classifi-
cation (8), trusting the initial calling of probes as being CNV
harboring as accurate, then we anticipate that approximately
1,300 (� 30,031 � 0.0442) classifications of ‘‘loss’’ are in error.
We anticipate that �1,400 (� 43,449 � 0.0317) classifications of
‘‘gain’’ are in error, and that �4,000 (� 303,324 � 0.0141)
classifications of ‘‘normal’’ are in error. This is equivalent to five
individuals having been misclassified at each CNV harboring
probe.

When estimating the error associated with a platform/
classification method, the LG combination of chromosomes is of
special interest (see Fig. 1 for an example of how such a situation
could arise). Previous studies have shown there are sites for
which both gains and losses are common within the same
population (albeit conditional on the choice of reference sample,
as must be all of these classifications), and so it seems inevitable
there will be children who inherit both. Although the other
discordant examples, GN and LN, ought to be classified as
‘‘gains’’ and ‘‘losses,’’ respectively, it is not clear a priori whether
there is any net gain or loss in an LG combination, or how current
methods will classify such samples, or indeed how they ought to
be classified. Thus, any instance of an LG must be considered
misclassified, because none of the available classifications
(‘‘gain,’’ ‘‘loss,’’ ‘‘normal’’) are adequate.

LG combinations account for one and a half percent of all
states (conditional on being a CNVR) in this sample, and we
have already noted that other samples will be more heteroge-
neous than this, and thus may have higher percentages as a
whole. In Table 2 we see the potential for LG calls among the
HapMap population, with 54 probes having substantial numbers
of both ‘‘loss’’ and ‘‘gain’’ calls.

Considering the posterior reclassification of samples (as de-
tailed in Methods) using the results generated from this model,
the vast majority of trios/probes are extremely unlikely to display
a change in the updated classification. In general, for a particular
CNVR, most samples are classified as ‘‘normal’’ to begin with,
and will remain classified as ‘‘normal’’ after the exercise. Be-

Table 2. The potential for the LG status in the HapMap
population

Number of classifications (C) 10 20 30 40 50 60 70
Number of probes 54 24 19 11 7 4 2

Presented are the numbers of probes for which, among the HapMap
population, at least C �loss� classifications and C �gain� classifications were
originally made (8) for varying values of C. These are the probes where one
might naturally anticipate LG pairings being inherited.

GN GN

NN

a

?

GG LL

LG

c

GG GN

GN

b

Classified Gain 

Classified Loss 

XX True Status

Fig. 1. Examples of trios that may cause confusion. Two examples illustrating
how the trio of classifications (mother and father ‘‘gain,’’ offspring ‘‘normal’’)
can arise either from the parents having discordant copies (a) or the child
being misclassified (b). The third trio (c) shows the ease with which an
offspring with LG status can arise.
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cause of this, and the considerable computational burden of
fitting the model to one trio/probe at a time, we do not advise
attempting such a comprehensive reclassification. Rather we
recommend applying the updating scheme to selected probes.

When the probes were originally classified for each individual,
this was done by use of a probabilistic mixture model and,
whereas individuals were ultimately placed in one of three bins,
a measure of the certainty of that classification is available. It is
natural then to apply such reclassification as a priority to those
trios containing individuals for which the original classification
was doubtful.

An example of its effectiveness is shown in Table 3. For this
trio/probe, when family information is not used, only the off-
spring is classified as having a gain at this locus. However, once
the trio information is incorporated, both offspring and father
are called as having a gain. Given that copy number variants have
been shown to be highly heritable, this change in classification
makes biological sense.

Discussion
This article illustrates the value of pedigree information for
assessing CNV classifications. A question arises as to whether a
study might include such structures for the sole purpose of
evaluating the resultant CNV classifications. Many studies will
naturally contain such family structures as a mechanism for
conducting their investigations of interest, and these in particular
should benefit from this methodology. For other studies, the
forced inclusion of families will use arrays that could have been
used to run replicates of existing samples (providing some scope
for technical validation) or additional samples (improving the
quality of estimates produced). It is not appropriate to suggest
that the quality of a study should routinely be compromised so
its performance might be quantifiable. Nevertheless, such quan-
tification may be necessary in many situations, and there will
likely be enough studies containing pedigrees as a matter of
course for this methodology to be useful.

Using such methodology, we have demonstrated (and quan-
tified) a significant limitation in current CNV analysis methods,
namely, the inability to deal with discordant variants. That is,
those where the CNV status of the region of interest is different
on each inherited copy of a chromosome; in the language of this
article, the NGs, NLs, and LGs. Previous observations that gains
are more frequent than losses may have simply reflected a
greater power to detect gains in the classification algorithms
used. Our model suggests that, on the contrary, more gains are
also being missed than are losses, and so we find no evidence
from the pedigree information to suggest this is a technical
rather than biological result, although the choice of reference is
obviously influential.

Although we illustrated our methodology on data generated
using array CGH technology, these problems will also affect
other technologies. This is particularly important at present,
because new studies that aim to examine CNVs in more depth,
using both higher-resolution array platforms and larger cohorts,
are being planned. When SNP genotyping arrays are used to

investigate CNV, a measure of copy number is typically obtained
by combining data from each allele-specific probe. Where a
different base is present on each inherited copy of a chromo-
some, the genotype data can be used to partially infer the
allele-specific nature of the CNV, and family information can be
used to further strengthen the inference. However, the full
inference will require the incorporation of family information in
a manner such as we have described and will rely on SNPs being
located conveniently, which, although often the case, is not
guaranteed. Irrespective of the technology used, in the situation
where no family information is available, it is not clear whether
computational approaches will be able to shed light on the
character of the data and, instead, novel experimental
approaches may have to be developed.

As well as providing a methodology for assessing CNV clas-
sifications, our approach allows for investigation of discordant
CNVs in the presence of family data, in particular the LG cases.
This is especially important, because our analysis suggests these
variants are likely to account for the vast majority of misclassi-
fications and so need to be considered for methodological
improvements to be made. Our method also has the advantage
that it can be used to generate improved classifications of
CNVRs. It would be wrong, however, to attempt to iterate the
process. If the CNVR classifications are updated via this ap-
proach, then the model cannot be used to assess those new
classifications in an unbiased manner. However, alternative
estimates of parameters of interest such as the false discovery
rate may still be obtained by considering the numbers of
classifications that change in the process.

We have used a motivational example where the probes used
in the array CGH technology were relatively large and few in
number. Therefore, neighboring probes could be treated as
independent without causing great distress, in both the original
classification and our model. By contrast, SNP technologies and
array CGH technologies using oligonucleotides have (increas-
ingly) larger numbers of much shorter probes and may be
classified by analyzing several neighboring probes at a time, both
to deal with the quantities of data and to address issues of
dependence among serial probes.

Adjustment of our approach for such data will have to be
tailored in each case depending both on how the classifications
were made, and how they are being interpreted. There are,
though, three immediately apparent general strategies that might
be considered for any circumstance. First, it is common for such
data that classifications are made for regions of successive probes
and not for individual probes. For many purposes, interpretation
of a single probe called as a CNV would be difficult at best. Thus,
by applying the methodology to regional classifications, one
would approximate the application to the large BACs used in our
example. The second is simply to apply the model to subsamples
of the data, as we did here for validation. Because one starts with
a larger number of probes, fitting the model to a subset of the
data need cause no difficulty, and because the retained probes
will be sparser, the dependence among them will be weakened.

Table 3. Example of a change in classification

M F O

log2 ratio 0.0126 0.0745 0.1745
CNVR classification � 0 � � 0 � � 0 �

Probability ignoring family � 10�4 0.999 � 10�4 � 10�4 0.863 0.137 � 10�4 � 10�4 0.999
Probability using family � 10�4 0.999 � 10�4 � 10�4 0.380 0.620 � 10�4 � 10�4 0.999

The probabilities of a family member’s CNVR classification at a particular probe are shown, both before and after family information is accounted for. M refers
to a mother, F to a father, and O to their offspring. Values in bold font correspond to the highest probability (and hence the CNVR classification) for each individual
before and after family information is accounted for.
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Finally, one could make the model more complicated to
incorporate such dependence. This would need to be done at two
levels, once for the dependence of the ‘‘truth’’ and once for the
classification. The likelihood is easily, if crudely, adjusted for the
believed underlying truth by subtracting a penalty function that
increases in magnitude the more often neighboring classifica-
tions would be predicted to differ. Adjusting for dependence in
the classification would have to be specific to the algorithm used;
however, it is not difficult to imagine increasing the number of
states modeled from three (G, L, N) to representing ‘‘gain with
a neighboring gain,’’ ‘‘gain with a neighboring normal’’ and so on,
or to even more complicated representations. This step would
increase the dimension of the parameter space considerably, but
the large increase in observations in these datasets would make
such a model practicable.

In summary, the work described in this article can be used
better to model data generated to examine CNVRs across the
genome when family information is present. This method can be
used to evaluate and/or update calls generated by any calling/
classification scheme where the probability of a region being
classed as a CNVR for an individual can be calculated. By taking
account of chromosome-specific copy number changes, this
model and other similar approaches are vital if we are to obtain
better insights into the extent and role of CNV in the genome.

Methods
Data Processing. For each individual in one of the 30 Yoruban parent–
offspring trios, we downloaded the CNVR classifications (described in ref. 8)
for probes mapped to an autosomal chromosome.

Constructing the Likelihood. Using the parameters described in the third
column of Table 1, we can write the probability that an individual is classified
as a gain by summing over all chromosome/classification pairs where the
classification is a gain:

P(classification � 1) � a1 � b1 � c1 � d1 � e1 � f1.
Further, we can write the joint probability of a child inheriting a chromosome-
type from a particular parent and of observing the CNVR classification as-
signed to their parent. For example,

P(child inherits a gain and parent classified as 1) � a1 �1

2
(b1 � e1).

Subsequently, we can find the probability that a child has, for example, a
gained copy of a chromosomal segment conditional on their parent’s CNVR
classification. Defining this probability as G1, we obtain

G1 �
a1 � 1

2
(b1 � e1)

a1 � b1 � c1 � d1 � e1 � f1
.

Using similar arguments, we can obtain formulae for Gi, Ni and Li, where i
denotes the parent’s CNVR classification, and G, N and L represent the situa-
tions where a child inherits, from a specified parent, a chromosome with a
gained, normal or lost copy in the region of interest.

We can now construct the likelihood. The first step is to write down the
probability that a child has a particular classification given their parents’. For
each trio, we need first to define the probability that parents have an
offspring with a specific CNVR classification, given their own classifications.
Define this probability as Pj,i, where j corresponds to the joint classification of
the parents (e.g., {gain, gain} represented as 11), and i is the classification of
the child. Using the probabilities defined above, we have (for example)

P11,1 � G1
2 a1

a1 � a0 � a�1
� N1

2 f1

f1 � f0 � f�1
� L1

2 d1

d1 � d0 � d�1

� 2G1N1

b1

b1 � b0 � b�1
� 2L1N1

c1

c1 � c0 � c�1

� 2G1L1

e1

e1 � e0 � e�1

The data in Table S1 can be modeled as a multinomial distribution with these
probabilities.

However, to construct the likelihood we need also use the probabilities that
two parents with particular CNVR classifications meet. Define these probabilities
as Quw where u,w � {1,0, � 1}. Thus, assuming that two parents meet at random
within the population, we have (for example) Q11 � (a1 � b1 � c1 � d1 � e1 � f1)2.
Consequently, supposing the parameters (a0, a1, . . . , f�1) are contained in a
vector, �, we can write the log-likelihood as:

l��|data	
�
j

Njlog�Qj) � �
j

�
i��1

1

nj,ilog(Pj,i),

where nj,i is the number of trios where the parents have the joint classification
j and the offspring has classification i, and Nj is the number of parents with
joint classification j (Table S1).

Optimizing the Likelihood. To obtain the estimates of the parameters, we
maximized the likelihood using a constrained numerical optimizer (column 4,
Table 1). To assess whether the optimizer converged to the global optimum,
we started from a variety of initial values. Further, to check that correlations
between genomically adjacent probes were not affecting the parameter
estimates, we reestimated them using every tenth probe; this yielded the same
estimates, thus providing confidence in the efficacy of the model. Finally, we
used a bootstrap-based approach to estimate 95% confidence intervals for the
parameters; these are provided in Table S2.

Renormalizing the Parameters. Toease their interpretation,werenormalizedthe
parameter estimates by removing the effect of probes not classed as CNV har-
boring. To do this, we excluded probes classed as complex and calculated the
proportion of the remaining probes not called as CNVRs. We then subtracted this
value from f0 and, to obtain the modified parameter estimates, we scaled this
value and the other parameter estimates so that they summed to one.

Inheritance Rates of Classifications. Where we comment on the inheritance
rates of classifications, e.g., the probability of a child being classified as a
‘‘gain’’ given that exactly one of their parents is classified as a ‘‘gain,’’ we
calculate the probabilities as follows. For this particular example, we first
calculate the probabilities of inheriting a gained copy, normal copy or loss
copy from the parent classified as a gain. These have already been denoted G1,
N1, and L1. In a similar manner, we then calculate the three probabilities of
inheritance from the parent not classified as a ‘‘gain.’’

From these two sets of probabilities, it is possible to calculate the proba-
bilities of the six possible states that the child may possess (GG, GN, etc.), and
from the results in Table 1, we can calculate the probabilities of the three
possible classifications that the child may be given.

GG GN

GG

a

?

GG GN

GN

c

GG NN

GN

b

Probability = 0.4 Probability = 0.25

Probability = 0.35

Classified Gain 

Classified Loss 

XX True Status

Fig. 2. A hypothetical example of the final step of the Bayesian reclassifi-
cation. Illustrated are three plausible true statuses for the situation where the
classifications made to father and offspring were ‘‘gain’’ and that to mother
was ‘‘normal.’’ If the posterior probabilities associated with each were calcu-
lated to be as shown, then methods choosing the most probable family would
choose a. We, however, are looking to reclassify the individual and so, for the
individuals, sum the probabilities for families that have common states. In this
case, the posterior probability that the child is GN is 0.6, and so the posterior
statuses assigned would correspond to family (c).
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Updating the Classifications. To obtain the prior probabilities of observing
different combinations of CNVR classifications within a trio, we used the opti-
mized parameter values obtained after conditioning on a probe containing a
(noncomplex) CNVR (column 5, Table 1). For example, suppose the mother is
normal, the father isnormal,andtheoffspringhasagain.Wecanthendefinethe
prior probability of observing this trio as pr0,0,1, where pr0,0,1 � Q00 P00,1. We can
define the prior probabilities of observing the remaining 26 combinations
similarly.

In ref. 8, for each probe, the EM algorithm was used to fit a Normal mixture
model to the log2 ratios observed across all of the HapMap samples. The fitted
model was then used to classify a sample as a copy number loss or gain, or as
having a normal copy number status for that probe. For a specific probe/trio,
we can refit this model when the classifications of the trio of interest are fixed
a priori. Estimation of the parameters in the mixture model and the allocation
of the other samples to components of the fitted model were performed by
using the EM algorithm. For the probe/trio of interest, we can fit this model 27
times, corresponding to the different combinations of CNVR classifications
that are possible (see the previous paragraph and Table S2) and thus obtain 27
different likelihoods. Subsequently, using Bayes’ rule, we can multiply the
prior probabilities and the likelihoods together to obtain a value proportional
to the posterior probability of observing a particular set of CNVR classifica-
tions for the trio of interest. For example, define the posterior probability of

observing the trio where the mother and father are both classified as normal,
and the offspring is classified a gain as �0,0,1. Then, �0,0,1 
 pr0,0,1 � likeli-
hood0,0,1, and naturally we can normalize these values to estimate �0,0,1.

We can calculate the probability, M1, that the mother should be classified
as a copy number gain by summing the probabilities over all families consis-
tent with this classification. Probabilities for loss and gain and for the father
and offspring can be obtained by using the same approach. Subsequently, the
updated classification for each individual is found by considering the classifi-
cation for which the probability is largest. Note that this differs from the
approach of Wang et al. (11), who take the classification associated with the
most probable family (Fig. 2). Finally, we can compare these classifications
with those found in the original mixture model, where no family information
was incorporated, and examine whether there are any changes (e.g., Table 3).

Web Resources. The code used to perform the calculations described through-
out this article and some additional information on the likelihood calculation
are available at www.compbio.group.cam.ac.uk/resources.html.
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Fig. S1. An outline of the process that generated the data.
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Table 1. The classifications made from the array CGH data for the 30 Yoruban parent-offspring trios are summarized depending upon
the classification assigned to the parents and their offspring

1&13 1,0,1 4,148 N11

1&13 1 4,035 n11,1

1&13 0 92 n11,–0

1&13 �1 21 n11,–1

1&03 1,0,–1 1,373 N10

1&03 1 635 n10,1

1&03 0 730 n10,0

1&03 �1 8 n10,–1

1&-13 1,0,–1 164 N1–1

1&-13 1 66 n1–1,1

1&-13 0 43 n1–1,0

1&-13 �1 55 n1–1,-1

�1&-131,0,–1 2,626 N-1–1

�1&-13 1 14 n-1–1,1

�1&-13 0 77 n-1–1,0

�1&-13 �1 2,535 n-1–1,-1

�1&031,0,–1 978 N-10

�1&03 1 11 n-10,1

�1&03 0 570 n-10,0

�1&03 �1 397 n-10,-1

0&03 1,0,–1 762,696 N00

0&031 258 n00,1

0&030 762,236 n00,0

0&03 �1 202 n00,–1

Probes classified as complex have been excluded; see ref. 1. We note that 1 & 13 1,0,1, assigned the symbol N11, is the number of trios where both parents
were classified as having a CNVR gain from the array CGH data. Similarly, 1&13 1, denoted n11,1, is the number of trios where both parents and their offspring
are classified as gained from the array CGH data. The other values in the table are defined similarly. These values provide the data necessary to compute the
likelihood described in the paper.

1. Marioni JC, et al. (2007) Breaking the waves: Improved detection of copy number variation from microarray-based comparative genomic hybridization. Genome Biol 8:R228.
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Table 2. Bootstrap confidence intervals for the parameter estimates

Parameter MLE CI�lower CI�upper

a1 6.07E-03 5.87E-03 6.24E-03
a0 1.05E-08 9.02E-09 1.20E-08
am 1.00E-13 1.00E-13 1.00E-13
b1 1.16E-04 1.72E-05 4.18E-04
b0 1.23E-04 1.82E-05 4.43E-04
bm 9.85E-12 9.15E-12 1.04E-11
c1 1.00E-11 1.44E-13 1.10E-11
c0 8.20E-05 8.37E-10 4.11E-04
cm 6.09E-05 5.89E-10 3.09E-04
d1 2.61E-12 3.77E-13 9.98E-09
d0 6.46E-16 3.76E-27 9.87E-07
dm 3.91E-03 3.74E-03 4.05E-03
f1 9.94E-10 9.80E-10 1.01E-09
f0 9.88E-01 - -
fm 9.98E-11 9.91E-11 1.01E-10
e1 2.02E-04 8.81E-05 2.67E-04
e0 4.85E-04 5.34E-05 6.17E-04
em 1.87E-04 7.90E-05 2.42E-04

Bootstrap confidence intervals for the parameter estimates are provided, with the exception of f0, because the parameters are constrained by the fact that
they must sum to 1. The values have been rounded to two decimal places using standard scientific notation. The code that generated these values is available
at www.compbio.group.cam.ac.uk/Resources/John/CNVchrs.html
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