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Abstract To investigate metabolic changes during cellular

transformation, we used a 1H NMR based metabolite–

metabolite correlation analysis (MMCA) method, which

permits analysis of homeostatic mechanisms in cells at the

steady state, in an inducible cell transformation model.

Transcriptomic data were used to further explain the results.

Transformed cells showed many more metabolite–metabo-

lite correlations than control cells. Some had intuitively

plausible explanations: a shift from glycolysis to amino acid

oxidation after transformation was accompanied by a

strongly positive correlation between glucose and glutamine

and a strongly negative one between lactate and glutamate;

there were also many correlations between the branched

chain amino acids and the aromatic amino acids. Others

remain puzzling: after transformation strong positive cor-

relations developed between choline and a group of five

amino acids, whereas the same amino acids showed negative

correlations with phosphocholine, a membrane phospholipid

precursor. MMCA in conjunction with transcriptome anal-

ysis has opened a new window into the metabolome.

Keywords Metabolomics � Cellular transformation �
NMR � Metabolite correlations

1 Introduction

There is currently much interest in studying the metabo-

lome, the totality of small-molecule metabolites through

which genes and enzymes create and control the cellular

metabolic phenotype. However, the complex and rapid

interactions between metabolites make the metabolome

much harder to understand than the genome or proteome.

Even if it were currently possible to specify the instanta-

neous concentrations of the several thousand metabolites in

a cell, one would also need to understand the myriad

interactions between them in order to have a useful picture

of the metabolome. Current methods such as metabolic

tracer studies can only tackle small subsets of the problem.

Metabolite–metabolite correlation analysis (MMCA)

(Fiehn and Weckwerth 2003; Kose et al. 2001; Steuer

2006; Steuer et al. 2003a, b) offers a radically new insight

into the metabolome. It is based on the observation that

when many apparently identical samples (e.g. aliquots of

cultured cells) are analysed, the ‘‘biological variation’’ in

the metabolite concentrations will reflect the tiny home-

ostatic adjustments that maintain the metabolome in a

steady state. Thus, the concentrations of certain metabo-

lites will be correlated, either positively if a rise in the

concentration of one metabolite is associated with a rise

in the concentration of a second metabolite, or negatively
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if a rise in the concentration of the first metabolite is

associated with a fall in the concentration of a second

metabolite. The demonstration of such correlations in

unperturbed, apparently identical biological systems has

opened a new window on metabolic research, allowing

monitoring of the effects of cellular perturbations on

signalling mechanisms and/or metabolic pathways, even if

no detectable changes in mean metabolite concentrations

are observed (Hannah et al. 2010; Urbanczyk-Wochniak

et al. 2007). Sometimes the mechanism underlying the

MMCA change is intuitively obvious, as when several

adjacent compounds in a metabolic pathway are positively

correlated, although correlations between adjacent com-

pounds in a pathway are not, in fact, always observed

(Camacho et al. 2005). However, correlations, particularly

negative correlations, are also frequently seen between

apparently unrelated compounds in widely separated

pathways, suggesting the existence of hitherto unknown

metabolic control mechanisms or other interactions. The

MMCA method was introduced in the field of plant sci-

ence (Fiehn and Weckwerth 2003; Kose et al. 2001;

Steuer et al. 2003a, b) and it has subsequently been used

for analysis of data obtained from body fluids (Dunn et al.

2015; Lanza et al. 2010). A recent study investigated

correlation analysis of gas chromatography–mass spec-

trometry (GC–MS) metabolite data from two cancer cell

lines cultures under normoxic and hypoxic conditions

(Kotze et al. 2013). To our knowledge, ours is the first

paper to report the use of NMR based MMCA data on

cultured mammalian cells.

At present it is not possible to measure the complete

metabolome. Subsets of the metabolome, often referred to

as ‘‘metabolic profiles’’, can be obtained by mass spec-

trometry or 1H NMR spectroscopy. NMR, although much

less sensitive than mass spectrometry, gives metabolic

profiles in which the relative metabolite concentrations

are known very precisely, which is ideal for MMCA. We

therefore used it to study malignant transformation, the

process whereby cells gain the properties of cancer by

activation of oncogenes and inactivation of tumour sup-

pressor genes (Weinberg 1994, 1995), a problem that has

been intensively studied at the levels of the genome,

transcriptome and proteome (Deng et al. 2005; Mason

et al. 2006; Vasseur et al., 2003, 2005, ; Woo and Poon

2004; Zongaro et al. 2005). We studied a well-established

in vitro transformation system in human diploid fibrob-

lasts (HDFs) using an implementation of the MMCA

methodology that we have developed (Jauhiainen et al.

2014). Finally, we integrated gene expression and meta-

bolic data (both quantitative and correlative) in a detailed

study of the branched chain amino acid catabolic

pathway.

2 Materials and methods

2.1 Vectors and antibodies

Ectopic genes were introduced to cells by retrovirus-me-

diated gene transfer (Young et al. 2009) using the retroviral

vectors pLNCX2-Neo (ER:H-RASG12V) and pWZL-Hygro

(E1A). Immunoblotting (Young et al. 2009) utilized the

following antibodies: anti-H-RAS, anti-E1A and anti-

HMGA2 (Santa Cruz); anti-ß-actin, anti-cyclin A2, and

anti-p53 (Sigma); anti-PARP (Cell Signaling).

2.2 Cell culture

To compare metabolites between normal and transformed

cells from the same cell line with minimal genetic pertur-

bations, we utilized IMR90 cells, a well-established

genetically normal human diploid fibroblast (HDF) cell

model that can be transformed by ectopic expression of

certain combinations of oncogenes. For example, aden-

oviral oncoprotein E1A, which when used alone can

immortalize HDFs, cooperates with oncogenic RAS to

transform them, at least in vitro (Narita et al. 2006; Serrano

et al. 1997).

IMR90 cells (ATCC) were cultured in DMEM supple-

mented with 10 % FBS. We have previously described the

utility of a 4-hydroxytamoxifen (4-OHT) inducible form of

oncogenic H-RASG12V that is fused to the hormone binding

domain of the human estrogen receptor (ER::RAS) (Young

et al. 2009). To generate E1A/RAS transformed HDFs for

MMCA, we first stably expressed ER::RAS in IMR90

cells. A pool of the ER::RAS expressing cells was next

super-infected with the E1A expressing retrovirus. After a

brief selection for E1A expressing cells, ER::RAS was

induced by 100 nM 4-OHT. To minimize additional

mutations, cells were utilized as soon as possible after

antibiotic selection and ER::RAS induction.

For control HDF cells (Narita et al. 2006; Serrano et al.

1997), 7 biological replicates were grown, and 10 batches

extracted from them, with n = 5, 5, 4, 6, 5, 3, 5, 6, 4, and 9

samples, comprising in total 52 samples. For E1A/RAS, 7

biological replicates were created, with n = 6, 6, 6, 8, 8,

12, and 7 samples, giving in total 53 samples. Each cohort

was grown to a population of 106 cells before harvesting

with perchloric acid, which extracted their water-soluble

metabolites.

2.3 Sample preparation and 1H NMR analysis

Water-soluble metabolites were extracted with perchloric

acid from samples of approximately 106 cells (Madhu

et al. 2006), neutralized, lyophilized and re-suspended in
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1 ml of D2O; 600 ll of the sample was placed in a 5 mm

Wilmad standard NMR tube and 10 ll of 10 mM TSP

was added as the chemical shift and quantitation standard.
1H NMR spectra were acquired with a 5 mm inverse

broadband probe (BBI) equipped with an automated tun-

ing and matching device (ATM), on a Bruker Avance

600 MHz NMR spectrometer (with a TOPSPIN 2.3 soft-

ware). Data was acquired with a water pre-saturation

pulse sequence with 128 averages, 5 s repetition time and

64 K time domain data points. All free induction decays

(FIDs) were pre-processed by 0.3 Hz line broadening,

Fourier transformation, zero and first order phase cor-

rection. Chemical shifts for metabolites were assigned

from our own 2D-NMR spectral (COSY and TOCSY)

data and also cross checked from the human metabolomic

data base (HMDB; http://www.hmdb.ca/)). Absolute

quantitation of TSP was estimated using the ERETIC2

(Electronic Reference To access In vivo Concentrations)

module in Bruker Topspin 3.0, which is based on the

PULCON principle (PUlse Length based CONcentrations

determination) (Akoka et al. 1999; Dreier and Wider

2006; Esmaeili et al. 2014; Wider and Dreier 2006).

Metabolites were identified following the Metabolomics

Standards Initiative (MSI) guidelines (Sansone et al.

2007) and the metabolite identifiers from ChEBI (http://

www.ebi.ac.uk/chebi) to the observed metabolites are

presented in supplementary Table 1s. Intracellular

metabolite concentrations were estimated using the NMR

suite 7.5 (Chenomx� Software package) and then nor-

malized to the protein content in the cell sample. Media

metabolite concentrations (lmoles) were normalized to

cell numbers and incubation time.

2.4 Metabolite–metabolite correlation coefficients

The metabolite concentrations within each group were

normalized using a mixed model approach. For control

HDF samples, a mixed model with fixed metabolite effects,

as well as random effects for cohorts, batches and samples

was adapted. For E1A/RAS samples, a similar mixed

model was adapted, but including only random effects for

the cohorts and samples, as no batches were present. A

covariance matrix between the metabolites in each treat-

ment group was estimated simultaneously with the

parameters in the mixed model. To correct for multiple

testing, the false discovery rate (the expected proportion of

false discoveries among the rejected hypotheses) was

controlled using the Benjamini-Hochberg method when

testing the Pearson correlations. All statistical analysis was

performed using the open source statistical software R,

with the hglm package (available from the CRAN reposi-

tory) (Jauhiainen et al. 2014).

2.5 Minimum sample size

The MMCA studies reported herein were performed on

datasets of [50 identical samples. What would be the

minimum practical number of samples for such a study?

For practical purposes we are only concerned with mea-

suring the strong or medium correlations since we elimi-

nate results from the weakly correlated pairs. Another

simplification can be made because for cultured cell or

tissue extract samples the number of metabolites measur-

able by 1H NMR method will usually be similar to that

observed in the present study.

We illustrate the effect of sample size by using our data

obtained from the control cell lines. In total we have 52

samples with measures of 28 metabolites. A subset of

correlations was selected randomly from three categories:

high, medium and no correlation. We have glycine-choline

(correlation around -0.7, labelled as high on an absolute

scale), aspartate-glutamate: (correlation around 0.5, label-

led as medium), and leucine–lactate (no correlation).

Parametric bootstrap is used to illustrate the behaviour

for decreasing sample sizes. From the observed correla-

tions and mean values of metabolite levels in the normal-

ized data, 10,000 datasets are simulated, each with 52

samples and 28 metabolites, under the normal distribution

(which fits the data well). The metabolite–metabolite cor-

relations are calculated for each simulated dataset, using

from 5 up to all 52 samples. A typical (median) sequence

of correlations (under different sample sizes) is chosen

from the simulated sets for each of the three metabolite–

metabolite correlations and plotted with confidence inter-

vals in Supplementary Fig. S1. 10 randomly selected

sequences of correlations are also shown for each corre-

lation pair to illustrate that the correlation estimates

become highly variable for smaller sample sizes.

Power calculations for correlations can also be of use in

sizing an MMCA study. In order to achieve 80 % power

for a single test, 30 samples would be required for a cor-

relation of 0.5, and 14 samples for a correlation of 0.7 (with

a two-sided 0.05 level test under a normal distribution

assumption). When correcting for multiplicity, the correc-

tions depend on the number of tests, and for FDR correc-

tion, on the dependence structure between tests (which

generally is unknown before the study is performed). Based

on our data from the control cell lines, simulation shows

that adding 8-10 additional samples is needed for correla-

tion 0.5 and 6 samples for correlation 0.7 in order to control

the FDR at the 0.05 level.

2.6 Gene expression data acquisition and analysis

Total RNA was extracted from five independent biological

replicates of control or E1A/RAS expressing IMR90 cells.

Metabolomic changes during cellular transformation monitored by metabolite–metabolite correlation…
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Gene expression analysis was carried out on Illumina

Human HT12 version 3 arrays. All data analyses used the

software R and packages from the Bioconductor project

(Gentleman et al. 2004). Raw intensity data from the array

scanner was processed using the BASH (Cairns et al. 2008)

and HULK algorithms as implemented in the beadarray

package (Dunning et al. 2007). Log2 transformation and

quantile normalisation of the data were performed across

all sample groups. Differential expression analysis used the

LIMMA package (Smyth 2005) from the Bioconductor

project. Differentially expressed genes were selected using

the significance level P\ 0.05 as the cut-off after appli-

cation of FDR correction for multiple testing. The Reac-

tome pathway software was used to visualize the gene

expression variations along the metabolic pathways.

Unless otherwise stated, all results refer to E1A/RAS

cells compared to control HDF cells.

3 Results

3.1 Cell culture

E1A/RAS-transformed cells showed a typical ‘E1A-mor-

phology’, a relatively uniform polygonal shape compared

to control HDF cells (Fig. 1a). We also confirmed in three

independent E1A transductions the typical protein expres-

sion pattern of E1A/RAS-transformation: stabilization of

p53 and upregulation of cyclin A2 (a biochemical marker

of cell cycle progression) and p16 (a positive upstream

regulator of the RB family, which is blocked by E1A). E1A

also sensitizes cells to apoptosis, largely depending on p53,

and we consistently observed modest basal levels of

cleaved PARP, a marker of apoptosis (Fig. 1b).

3.2 Metabolite uptake and output

We analysed the culture media every three days by 1H

NMR spectroscopy. Metabolite uptake or secretion by

control HDFs was found to be similar (as expected) in

media from 0–3 to 3–6 days of cell culture; in contrast,

metabolite concentrations changed throughout the 12 days

during E1A/RAS transformation. Control HDF media

results from 0–3 to 3–6 days are therefore compared with

transformed cell media results at 0–3, 3–6, 6–9 and

9–12 days. Glucose consumption and lactate secretion

were significantly higher in E1A/RAS cells compared to

control cells from day 3 until day 12 after RAS-induction

(Fig. 2a), suggesting that transformation causes the devel-

opment of a more glycolytic phenotype. Consumption of

glutamine (gln), another major substrate of E1A/RAS-

transformed cells (DeBerardinis et al. 2007), was signifi-

cantly higher from day 3 onwards in transformed cells

(Fig. 2b); there was also a significant increase in glutamate

(glu) secretion (Fig. 2b) from day 3 onwards. Figure 2b

also shows secretion of pyro-glu, citrate, fumarate and

PARP

p53

Cyclin A2

Act

Ras

p16

E1A

G E1a
Ras

#1  

G E1a
Ras

#3  

G E1a
Ras

#2  IMR90 Growing 

IMR90 E1a/Ras 

Control 

C C C

E1A/RAS

a bFig. 1 a Phase contrast images

of control and E1A/RAS

transformed cells. b Protein

expression data from western

blots. E1A/RAS expressing

cells show marked differences

in expression of RAS, E1A and

P16 compared to control HDF

cells (c)
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acetate. Supplementary Figure S2 summarises concentra-

tion changes of the amino acid that could be quantified in

the media of transformed cells: there was consumption of

isoleucine (ile), leucine (leu), valine (val), lysine (lys), and

tyrosine (tyr) and secretion of glycine (gly) and formate,

along with modulation of phenylalanine (phe) and

methionine (met) levels.

3.3 Intracellular metabolites

Representative 1H NMR spectra of perchloric acid extracts

of control and E1A/RAS cells at day 12 are shown in

Fig. 3. It was necessary to analyse more than 50 samples in

each group in order to perform MMCA, so we obtained

good statistical significance in our metabolite concentration

results. Intracellular glucose was significantly lower in

E1A/RAS cells but there was no significant difference in

lactate; alanine (ala) was significantly higher and pyruvate,

gln and glu were significantly lower (Fig. 4a).

E1A/RAS cells showed no change in intracellular

phosphocholine (PC), but significant increases in choline

(Cho) and phosphoethanolamine (PE) and a significant

decrease in glycerophosphocholine (GPC) were observed

while betaine (a Cho breakdown product) was also sig-

nificantly lower (Fig. 4a).

Intracellular Cr, PCr and NAD? were significantly

higher in E1A/RAS cells whereas ATP was significantly

lower (Fig. 4a) and the ratio of PCr/Cr was significantly

higher (Supplementary Fig. S3). Because the creatine

kinase reaction is close to equilibrium, the PCr/Cr can be

used as a surrogate for ATP/ADP; this result therefore

suggests that the transformed cells were in a higher ener-

getic state.

We found that 12 amino acids (glu, gln, gly, ile, leu, lys,

met, phe, ser, threonine (thr), tyr and val) had significantly

lower intracellular levels in transformed cells; only ala was

increased and only aspartate (asp) was unchanged (Fig. 4a,

b). Note that arginine, asparagine, cysteine, histidine, and

proline could not be quantified because their concentrations

were too low.

Interestingly, fumarate, a tricarboxylic acid (TCA) cycle

metabolite that is considered to be an ‘oncometabolite’

when it accumulates because of genetic deficiency of

fumarate hydratase, was increased more than twofold in

transformed cells (Fig. 3b). However, there was no sig-

nificant difference between the HIF-1A expressions of the
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Fig. 2 a Metabolites associated with the glycolytic pathway were

measured in culture medium from control and E1A/RAS transformed

cells. The P values (from Student’s t test) for days 0–3 and days 3–6

show the significance when comparing E1A/RAS transformed and

control HDF cells media samples on the corresponding days.

b Metabolites associated with the gln pathway were measured in

culture medium from control and E1A/RAS transformed cells. The P-

values (from Student’s t test) for days 0–3 and days 3–6 show the

significance when comparing E1A/RAS transformed and control HDF

cells media samples on the corresponding days
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transformed cells compared to controls when cultured

under normoxic conditions, suggesting that transformation

did not cause pseudohypoxic HIF-1 activation (data not

shown).

The taurine concentration was significantly higher in

transformed cells but there were no changes in the intra-

cellular concentrations of asp, citrate, myo-inositol or

glutathione (Fig. 3b). A diagrammatic summary of all the

intra- and extracellular metabolic modifications observed

in E1A-Ras transformed cells compared to control HDFs is

shown in Fig. 5.

3.4 Metabolite–metabolite correlation analysis

MMCA heat maps (Fig. 6) were constructed from the

intracellular metabolite data obtained from large numbers

of identical cultures of control HDF cells (n = 52) and

E1A/RAS cells (n = 53). Out of 378 pair-wise correla-

tions from 28 metabolites, 23 positive (yellow to red) and

26 negative (shades of blue) correlations (together about

13 % of the total) were observed in controls; in contrast

72 positive and 90 negative correlations (together about

43 % of the total) were observed in transformed HDFs.

This more than threefold increase in metabolite–metabo-

lite correlations (both positive and negative) reflects the

adjustments in the metabolic pathways as the cells

underwent transformation. Since metabolism is often

described in terms of hierarchical and modular networks

(Ravasz et al. 2002), we next classified the metabolite–

metabolite correlations according to the main metabolic

pathways.

The correlations were divided into six biochemical

modules: glycolysis (glucose, lactate, ala and pyruvate),

energy metabolism (Cr, PCr, NAD? and ATP), membrane

metabolism (Cho, PC, PE, myo-inositol and GPC), gln and
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glu metabolism, TCA cycle (asp, citrate and fumarate) and

amino acid metabolism (gly, taurine, thr, ser, ile, leu, val,

phe, tyr, and lys) (Fig. 6).

In the glycolysis module, negative correlations were

found between glucose and ala both in the control and

transformed cells. Two correlations in the controls, positive

12

3

4
5

677
6

8

9

10
11

12
13

14
15

10
3 1612

1719
20

21
18

E1A/RAS

Control

Control

E1A/RAS

E1A/RAS

Control

Fig. 3 1H NMR spectra of

metabolite extracts from control

(lower) and E1A/RAS treated

HDFs (upper). 1 Branched chain

amino-acids (leucine,

isoleucine, valine), 2 Ethanol, 3

Lactate, 4 Alanine, 5 Acetate, 6

Glutamate, 7 Glutamine, 8

Succinate, 9 Aspartate, 10

Creatine and Phosphocreatine,

11 Choline containing

compounds (Choline, PC and

GPC), 12 Beta-glucose, 13

Methanol, 14 Glycine, 15

Glucose signals, 16

Myoinositol, 17 Alpha-glucose,

18 Fumarate, 19 Tyrosine, 20

Phenylalanine, 21 Formate
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between glucose and pyruvate, and negative between ala

and pyruvate, were lost on transformation, but a new

positive correlation between lactate and ala was observed.

In the energy metabolism module, there were no correla-

tions between any metabolites in the controls whereas two

new correlations, positive between Cr and ATP and nega-

tive between Cr and PCr, were observed after

transformation.

In the membrane metabolism module, a positive corre-

lation observed between Cho and GPC in control HDFs

was not maintained in the transformed samples. Instead,

three new, strong negative correlations, one between Cho

and PC, a second between Cho and myo-inositol and a third

between Cho and PE, were observed. There was also a

strong positive correlation between myo-inositol and PC

after transformation.

The TCA cycle module showed no correlations in con-

trol HDFs but a new positive correlation between asp and

citrate was observed in the transformed cells. In the amino

acid metabolism module, a positive correlation between

gly and thr was preserved in both control and transformed

samples and a new, strong positive correlation between gly

and taurine was observed in the transformed samples.

Transformation induced strong correlations between
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choline metabolites and some amino acids: Cho showed

positive correlations with ile, leu, val, phe, tyrosine and lys,

whereas PC showed negative correlations with all these

amino acids; interestingly ATP and myo-inositol had

almost identical amino acid correlation patterns to PC.

A positive correlation between ile and val in controls

was preserved after transformation, in addition to a set

of new, strong positive correlations that appeared

between the amino acids ile, leu, val, phe, tyr and lys.

Ile and ser both showed strong negative correlations

with gly, taurine and thr. No correlation between gln

and glu was observed in either control or transformed

cells. Gln and ala showed no correlations with any of

the other amino acids, apart from a negative one

between ala and lys in the control HDFs. Glu showed

no interactions with other amino acids in the control

HDFs, but in the transformed cells it showed strong

negative correlations with all the amino acids apart

from ser, thr and ala.

The branched chain amino acids, ile, leu and val, which

are often lumped together, since they are used as oxidative

substrates by several organs, showed no correlations in the

control HDFs but had intense positive correlations in the

transformed cells (Fig. 6).
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3.5 Gene expression

Several glycolytic pathway genes are significantly up-reg-

ulated in transformed cells (Supplementary Fig. S7)

including genes for glucose transporters (SLC2A4 and

SLC2A5) and glycolytic enzymes (PFKM (phosphofruc-

tokinase, muscle), ALDOA/B/C (fructose-bisphosphate

aldolase A, B, and C), GAPDH/S (glyceraldehyde-3-

phosphate dehydrogenase, testis-specific), PGK1 (phos-

phoglycerate kinase 1), PGAM1/2/4/5 (phosphoglycerate
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mutase 1, 2, 4, and 5), ENO2 (enolase 2), PKLR (pyruvate

kinase, liver and red blood cell), LDHA and LDHB (lactate

dehydrogenase A and B).

Supplementary Figures S8 and S9 show expression of

branched chain amino acid catabolism genes. In E1A/RAS

HDFs branched chain amino acid transferase1 (BCAT1)

(cytosolic) expression is lowered, whereas BCAT2 (mito-

chondrial) expression is up regulated, suggesting amino

acid transfer into the mitochondria for catabolism. Signif-

icantly upregulated expression of the branched-chain alpha

ketoacid dehydrogenase complex, 3-methylcrotonyl-CoA

carboxylase, 3-hydroxyacyl-CoA dehydrogenase, acetyl-

CoA acetyltransferase (mitochondrial) and 3-hydroxy-

isobutyrate dehydrogenase was observed (Supplementary

Fig. S9).

Supplementary Figure S10 shows expression fold

changes for proteins in the phe-tyr catabolic pathway that

were significantly differentially expressed after transfor-

mation: expression of cysteine conjugate-beta lyase and

fumaryl acetoacetase was down-regulated whereas pterin-4

alpha-carbinolamine dehydratase and maleylacetoacetate

isomerase expression was elevated. Concentrations of

fumarate and acetate, the end-products of the phe-tyr

catabolic pathway, were significantly higher in E1A/RAS

cells.

Correlations between the TCA cycle, amino acid meta-

bolism and glycolysis genes that were significantly differ-

entially expressed upon transformation are presented in

Supplementary Fig. S11. It is evident from this figure that

due to the E1A/RAS transformation, PSAT1 gene expres-

sion retained its positive correlation with PHGDH, ASNS

and BCKDHA (all these are in amino acid pathway), but

lost positive correlation with PCR1, FH (TCA cycle) and

PFKB3 (glycolysis). Another amino acid pathway gene,

BCKDHA, retained its positive correlation with ASNS,

PHGDH, PSAT1 (all from amino acid pathway) but lost its

positive correlation with PYCR1 (TCA cycle) and GP1

(glycolysis) after E1A/RAS transformation. In addition

BCKDHA gene expression showed new positive correla-

tions with SUCLG1 and IDH3B (both from the TCA

cycle), PCBD1, BCAT2 and GPT2 (all from amino acid

pathways) and ALDOC (glycolysis). Surprisingly, FH, a

TCA cycle gene that has oncogenic effects when mutated

(Tomlinson et al. 2002), retained its negative correlation

with PHGDH and ASNS (both from amino acid pathways)

and lost its negative correlation with PSAT1 (amino acid

pathway) and PYCR1 (TCA cycle) after E1A/RAS trans-

formation. In addition, after E1A/RAS transformation FH

gene expression established new negative correlations with

expression of the BCKDHA (amino acid pathway),

ALDOC (glycolysis) and SUCLG1, IDH3B and ACAT1

(TCA cycle) genes.

4 Discussion

Classical metabolic studies mainly utilise measurements of

metabolite concentrations and fluxes through specific meta-

bolic reactions or pathways, supplemented in recent years

with gene expression data. Previous studies on transformation

of cell lines thus focused on genetic events (Mason et al.

2006), glycolysis (Telang et al. 2006) or alterations in the

glycolytic and glutaminolytic pathways (Mazurek et al. 1999)

and in oxidative phosphorylation (de Groof et al. 2009).

Metabolomic studies require a broader, more statistically

based approach, utilising methods such as PCA and OPLS-

DA. However, these latter methods do not indicate specific

interactions between metabolites. In the present study,

therefore, as well as measuring metabolite concentrations,

substrate utilisation and gene expression, and using metabo-

lomic methods such as PCA and OPLS-DA, we have intro-

duced an MMCA method with a new normalization strategy

which efficiently corrects for batch and cohort effects

(Jauhiainen et al. 2014). The MMCA method is different from

the STOCSY (Cloarec et al. 2005) analysis method, as we

have de-convoluted the individual metabolite signals; abso-

lute metabolite concentrations were obtained and then used

for estimating the correlations. Our biochemical modular

method of plotting the pairwise metabolite correlations

(Fig. 6) provides an easy insight into the cellular metabolism

along established biochemical pathways.

Conventional PCA analysis (Supplementary Fig. S4)

demonstrated that the most important metabolite concen-

trations that differentiated transformed cells from control

cells were glucose, glut, gln, lactate, acetate and formate.

An OPLS DA analysis showed that the metabolite con-

centrations that best distinguished the control from the

transformed cells were glucose, amino acids, Cr, PCr and

PC (Supplementary Figs. S5 and S6). Neither method

offered any insights into the interrelationships between the

metabolites. By using MMCA we were able to make a

more sophisticated analysis.

There were many more metabolite–metabolite correla-

tions in the E1A/RAS transformed cells (72 positive and 90

negative) than the control cells (23 positive and 26 nega-

tive), suggesting that transformed cells activate additional

metabolic control mechanisms to bring about the pheno-

typic changes characteristic of transformation (Fig. 6). We

have previously found that any genetic or environmental

perturbation tends to increase the number of MMCA cor-

relations, both positive and negative (Madhu et al.,

unpublished observations). Many metabolite pairs that

showed positive correlations in transformed cells, such as

lactate and ala or phe and tyr, are involved in the same

biochemical pathway, which is thus the most obvious

explanation for the observed correlations. Similarly, the
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positive correlations between the TCA metabolites asp and

citrate in transformed cells may indicate a modification in

the regulation of the TCA cycle. The negative correlations

in transformed cells between Cr and PCr may be connected

with the increased Cr and PCr concentrations and the

increased PCr/Cr ratio that were measured (Supplementary

Fig. S3), all of which indicate modified energy metabolism.

The PCr/Cr ratio can be regarded as a surrogate for the

ATP/ADP ratio (since the enzyme creatine kinase catalyses

a reaction close to equilibrium) so a higher ratio suggests

that the transformed cells are in a higher energetic state.

4.1 Energy metabolism: glycolysis, glutaminolysis

and amino acid catabolism

Our initial analysis focussed on conventional metabolic

studies of substrate utilisation. Significant increases in glu-

cose consumption and lactate secretion were observed in the

E1A/RAS cells (Fig. 2a) along with over-expression of

several glucose uptake and glycolytic pathway genes (Sup-

plementary Fig. S5), suggesting the development of a more

glycolytic phenotype. Less than half of the excess glucose

consumed formed lactate, so the remainder might have gone

into biosynthesis or oxidative energy metabolism. Surpris-

ingly, the MMCA correlations between the glycolytic

metabolites glucose, ala and pyruvate observed in control

cells were lost after transformation. In Ras-transformed

mouse fibroblasts, the glycolytic enzyme PFKFB3 was an

essential downstream metabolic mediator of oncogenic RAS

(Telang et al. 2006) and up-regulation of glycolytic flux has

been reported after malignant transformation of rat liver oval

cells (Mazurek et al. 1999). In a cellular model of tumori-

genesis (Ramanathan et al. 2005) cancer-causing genes

increased glycolytic and decreased mitochondrial energy

production. Our gene expression and metabolomic data

(Supplementary Fig. S12) are consistent with these obser-

vations but present a more comprehensive description.

The control HDFs took up gln and secreted a smaller

amount of glu; both gln uptake and glu output increased

after transformation, with glu output still substantially

smaller than gln uptake. Overall, however, (Supplementary

Figs. S13, S14, S15) the main carbon source, both for

control HDFs and E1A/RAS cells, was glucose. The net

carbon contribution from uptake of gln and other amino

acids (allowing for the secretion of small amounts of ala,

glu, gly and phe) was 4–8 % of that from glucose in all

periods studied, except for days 0-3 after transformation

when it rose to 13 % (amino acid carbon net uptake as a

percentage of glucose carbon uptake: control HDFs, days

0–3, 6 %; days 3–6, 4 %; E1A/RAS transformed cells,

days 0–3, 13 %; days 3–6, 8 %; days 6–9, 8 %; days 9–12

7 %). Significantly reduced levels of all the measured

amino acids were observed in the transformed cells.

De Groof et al. recently showed that E1A/RAS trans-

formation increased oxidative phosphorylation before

causing a rise in glycolysis (de Groof et al. 2009). Since

amino acid catabolism is oxidative, the transient increase in

net amino acid carbon uptake we observed in our trans-

formed cells on days 0-3 post-transformation could have

been associated with a similar phenomenon, since amino

acids are metabolised oxidatively. The elevated glucose

uptake and lactate output by the E1A/RAS cells constituted

a Warburg effect (Warburg et al. 1924), but since oxidative

amino acid catabolism will phosphorylate approximately

15 times as much ATP per carbon atom compared with

glycolysis, and only *50 % of the glucose formed lactate

by glycolysis, the amino acids taken up were a larger

potential source of energy than the glucose.

Could the up-regulation of glycolysis and glutaminoly-

sis we observed in E1A/RAS HDFs involve a combined or

even synergic regulation of these pathways? Our MMCA

results suggest that a shift in their metabolic interaction had

indeed occurred, since the negative correlation between

glucose and glu in control cells was replaced after trans-

formation by a strongly positive one between glucose and

gln and a strongly negative one between lactate and glu; a

weaker negative correlation between lactate and gln was

conserved. These results are consistent with the correla-

tions we observed between expression of genes for gly-

colysis, the TCA cycle and amino acid metabolism

(Supplementary Fig. S11). Mazurek et al. found that weak

positive correlations between glu and lactate in control cell

lines turned to strong negative correlations during trans-

formation (Mazurek et al. 1999). DeBerardinis found that

transformed cells consumed more gln than they needed for

protein and nucleotide synthesis, thus permitting the use of

glucose-derived carbon and TCA cycle intermediates as

biosynthetic precursors (DeBerardinis et al. 2007). A recent

study showed that oncogenic K-RAS decouples glucose

and gln metabolism in order to support cancer cell growth

(Gaglio et al. 2011). Myc gene expression was also up-

regulated in our E1A/RAS cells (data not shown). Mason

et al. found up-regulation of c-Myc and subsequent acti-

vation of hTERT and other genetic events in E1A/RAS-

transformed HDFs (Mason et al. 2006), whilst Mazurek

et al. also found metabolic cooperation between different

oncogenes during cell transformation (Mazurek et al.

2001).

4.2 Amino acid metabolism

Conventional metabolic studies showed relatively little

about amino acid metabolism. Intracellular phe and tyr

were significantly decreased in transformed cells, whereas

phe and tyr consumptions were significantly increased in

the first three days after transformation (Supplementary
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Fig. S2). Additionally, secretion of two end products of the

phe catabolic pathway, fumarate and acetate, was higher in

transformed cells (Fig. 2b) and intracellular fumarate was

also significantly increased (Fig. 4b). As there is no known

mitochondrial transporter mechanism for fumarate it seems

likely that fumarate secreted into the media is formed in the

cytosol from phe and tyr catabolism.

Our MMCA results demonstrated many strong correlations

between the amino acids, particularly the branched-chain

amino acids, leu, ile and val and the aromatic amino acids phe

and tyr. There were numerous positive correlations between

ile, val, leu, lys, tyr and phe after E1A/RAS transformation but

almost none in the control HDFs. The mitochondrial branched

chain amino acid catabolism gene BCAT2 was also up-reg-

ulated whereas BCAT1, the gene for the cytosolic catabolism

enzyme was down-regulated (Supplementary Fig. S9), sug-

gesting a shift to catabolism in the mitochondrial matrix.

Figure 6 also shows that in transformed cells all branched

chain amino acids were positively correlated with each other

and that all were negatively correlated with glu, a product of

the first step in their catabolic pathway; none of those corre-

lations were observed in the control HDFs. The gene

expression correlation plots for amino acid metabolism

enzymes in supplementary Fig. S16 show several positive and

negative correlations between the catabolic pathways for

branched chain and aromatic amino acids. Expression of

pterin-4-alpha-carbinolamine dehydratase (PCBD1) in the

phenylalanine catabolic pathways is positively correlated

with that of branched chain ketoacid dehydrogenase

(BCKDHA) in the branched chain amino acid catabolic

pathway (Fig. S16). Consistent with that, the MMCA heat-

maps (Fig. 6) show strong positive correlations between phe,

tyr and the three branched chain amino acids. Thus the

branched-chain and aromatic amino acid catabolic pathways

seem to be upregulated in a concerted manner in the E1A/

RAS-transformed cells.

The strongly positive correlations between the amino acids

suggest a feed-forward interaction between the metabolites in

these pathways whereas the strongly negative correlations

between glucose and ala in control and transformed cells

suggest feed-back bias of that pathway. Supplementary Fig-

ure S11 shows pairwise gene expression correlations in gly-

colysis, the TCA cycle and amino acid metabolism. The

integrated metabolic and gene expression plots for the bran-

ched chain amino acid catabolic pathway show a number of

positive and negative correlations that might indicate feed-

forward and feed-back mechanisms respectively in these

metabolic pathways (Supplementary Figs. S9, S10).

4.3 Choline metabolites

Significant increases in Cho and phosphoethanolamine

(PE) and a significant decrease in glycerophosphocholine

(GPC) were observed after transformation; while betaine (a

Cho breakdown product) was also significantly lower

(Fig. 4a). In the membrane metabolism module, a positive

correlation observed between Cho and GPC in control

HDFs was not maintained in the transformed samples.

Instead, two new, strong negative correlations, one

between Cho and PC and another between Cho and PE,

were observed.

Elevated choline-containing metabolites have frequently

been observed by in vitro and in vivo 1H and 31P NMR in

cultured cancer cells, tumour models in animals and human

tumours (Glunde et al. 2011; Podo 1999). Phosphatidyl-

choline (PtdCho) is a major component of biological

membranes, so increased cellular PC, a metabolite

involved in its formation, might be expected in rapidly-

dividing transformed cells, and increased PC has been

proposed as a marker of malignancy (Katz-Brull et al.

2002). Upregulated remodelling of cellular membranes is

also likely in transformed cells, leading to altered con-

centrations of the PtdCho breakdown product GPC. We

found increased intracellular PC/GPC (mainly due to

decreased GPC) in the transformed cells, similar to earlier

results in transformed human mammary and prostatic

epithelial cells (Aboagye and Bhujwalla 1999; Ackerstaff

et al. 2001). The PtdCho pathway also appeared on the top

of the list of gene expression data from our Metacore

analysis of metabolic networks that are modified due to

E1A/RAS transformation (Data not shown). The Cho

transporter genes SLC22A2 and SLC44A1 (CTL1) that

were significantly overexpressed in transformed cells

(Supplementary Fig. S17) would facilitate Cho uptake.

Decreased intracellular GPC (Fig. 3a) and concomitant up-

regulation of gene expressions for four iso-enzymes of

GPC phosphodiesterase (GDPD2, GDPD3, GDPD4,

GDPD5) along with lysophospholipase (LYPLA1 and

LYPLA2) and phospholipase A2 iso-enzymes (PLA2G4A/

B/C) indicate that membrane breakdown may be more

active in transformed cells (Supplementary Fig. S17).

A puzzling group of interactions between two mem-

brane metabolites and a group of amino acids was induced

by transformation. In control HDFs Cho and PC showed no

correlations with ile, leu, phe, tyr or lys apart from a weak

positive correlation between Cho and lys. After transfor-

mation there were positive correlations between Cho and

all these amino acids whereas there were negative corre-

lations between PC and the same amino acids. Intriguingly,

this is the group of amino acids that displays uniformly

positive correlations after transformation. Another inter-

esting interaction between an amino acid and Cho is the

negative correlation between Cho and glu, seen both in the

control and transformed cells. Cho and glu participate in

neurotransmitter cycles, and glutamatergic mechanisms in

the brain have been shown to mediate cholinergic effects
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(Parikh et al. 2008). Perhaps transformed fibroblasts co-opt

cholinergic and glutamatergic signalling pathways to

enhance their growth rate. Correlations between the peaks

of glu ? gln and of choline compounds have previously

been noted in 1H MRS studies in vivo on chronic hepatitis

in human patients (Cho et al. 2001; Orlacchio et al. 2008)

and attributed by Orlacchio et al. to liver regeneration and/

or infiltration by inflammatory cells. Infiltration could not

have occurred in the present study, which was performed

on a single cell line; however the biochemistry of cellular

transformation and liver regeneration may be similar.

5 Conclusions

MMCA has demonstrated perturbed cellular metabolic

homeostasis in the transformed HDFs with generally

increased metabolite–metabolite correlations and enhanced

(or occasionally decreased) expression of related genes.

Transformation also increased glucose uptake and lactate

secretion (the Warburg effect) and amino acid catabolism,

while increased PCr/Cr, indicated an upregulated cellular

energetic state. Altered choline MMCA correlations sug-

gested increased membrane turnover. Reduced amino acid

concentrations and associated strong positive MMCA

correlations between amino-acids (as well as unexplained

MMCA interactions with choline metabolites) in trans-

formed cells may indicate remodelled amino acid meta-

bolism associated with transformation. The branched chain

amino acid catabolic pathway in mitochondria was up-

regulated in transformed HDFs, increasing secretion of

fumarate and acetate into the culture media. This combi-

nation of traditional metabolomics data (in medium and

intracellular) and gene expression, together with MMCA

which has demonstrated numerous interactions in this

system is clearly a powerful new dimension for probing the

metabolome that greatly enhances the interpretation and

understanding of the observed data.
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