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Recent advances in molecular biology have made
large-scale studies of molecular variability within
populations a reality. Data from such studies are
often obtained as random samples of DNA sequences,
or as samples of single nucleotide polymorphisms.
Because the individuals in the sample are related,
these data are highly dependent; understanding the
nature of this dependence is crucial for the analysis
of the variability in the sample.

In contrast to data collected from pedigrees, the
precise nature of the ancestral relationships among
the DNA sequences in a random population sample
is not known, and must be modeled. The coalescent,
introduced by Kingman in 1982, describes one class of
models for the genealogical relationships among a
random sample of chromosomes.

The use of genealogical or coalescent methods is
now central to the analysis of much genetic data. They
allow for efficient simulation of the molecular struc-
ture of a sample of chromosomes; instead of simulat-
ing the entire population and then sampling from that,
one only needs to keep track of the ancestors of the
sample. Furthermore they provide a natural frame-
work for estimation and inference about population
parameters such as mutation rates and recombination
rates, as well as about features of the ancestry of the
sample or population.

The Ancestral Process

The Neutral Case
To describe the genealogy under a neutral model we
assume that the population is haploid and of fixed size
N individuals. Furthermore, we assume that the popu-
lation evolves according to the discrete time Wright±
Fisher model. In this model N descendants are chosen
in each generation according to a multinomial distri-
bution which reflects the gene frequencies in the pre-

vious generation. For instance, in the case of a single
locus with two alleles A1 and A2 with respective fre-
quencies x1 and x2 the probability that there are k
descendants of type A1 in the following generation is
given by

N

k

� �
xk

1xNÿk
2 ; k � 0; 1; . . . ;N

if one ignores the possibility of mutation.
In the neutral case, demography and the mutation

process can be separated. This allows one to determine
the ancestral relationships in the sample without refer-
ence to the allelic types.

When the population size N is large compared to
the sample size the genealogy of a sample of size n can
be approximated by a continuous time Markov chain
A(t) in which time t is measured in units of N genera-
tions. The process starts from A(0) � n and goes
through the states n, n ÿ 1, . . . , 2, 1. A value of A(t)
� j means that the sample had j distinct ancestors time
t ago. The amount of time Tj for which there are
j ancestors is exponentially distributed with mean
2/[ j( j ÿ 1)], and these times are independent of one
another. This Markov chain A(t) is called the coales-
cent process.

Of interest is the time to the most recent common
ancestor (MRCA) of the sample. This time is denoted
by TMRCA. It can be represented as the sum of the
coalescence times Tj, that is,

TMRCA � Tn � Tnÿ1 � � � � � T2

It follows that the expected time to the MRCA is
2(1 ÿ 1/n). Thus in a large sample, the time to the
MRCA is on average about 2N generations.

The genealogy can be visualized as a coalescing
tree. A realization is shown in Figure 1. A tree that
corresponds to a sample of size n has n tips and one
root. The root is the location of the most recent com-
mon ancestor.

A characteristic of the neutral genealogy for fixed
population size is that the last two branches dominate
the height of the tree. This can be seen by comparing
the expected coalescing time of two branches, ET2,
and the expected time to the most recent common
ancestor, TMRCA. The expected time until two ances-
tors coalesce is 1 which is more than half of the total
expected time to the most recent common ancestor,
regardless of the sample size.

Since under neutrality demography and the muta-
tion process can be separated, to obtain a sample of
size n, one can first construct its generalogy and then
superimpose the mutation process on the genealogy.
This provides an extremely efficient way to simulate
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observations from complicated demographic and
mutation scenarios.

We assume the simplest mutation process in which
mutations occur independently to all genes with prob-
ability uN per gene per generation. If time is scaled in
units of N generations and if

lim
N!1

2NuN � �

then mutations occur along the branches of the co-
alescent process according to a Poisson process with
rate y/2 independently in each branch of the coales-
cent.

The distribution of the total number of mutations
in the sample since their most recent common ancestor
follows readily. Given the total length T of the
branches in the tree, which is

T �
Xn

j�2

jTj;

the total number of mutations in the tree follows a
Poisson distribution with mean yT/2.

The Selection Case
In the neutral case, the demography and the mutation
process can be separated. This is reflected in the fact
that the genealogy of a sample can be reconstructed
without reference to the mutation process. Mutations
can be superimposed on the genealogy. This separa-
tion of demography and mutation process no longer
holds true when natural selection is incorporated into
the model. Under selection reproductive success
depends on the allelic type. This is reflected in the
more complicated structure of the ancestral graph.

The simplest case of a population model with selec-
tion and mutation is a discrete time haploid Wright±
Fisher model with two alleles A1 and A2 at one locus.
Mutations from A1 to A2 or the reverse occur with
probability uN per gene per generation. Genes of type
A2 have a selective advantage with selection parameter
sN. That is, if Y1(k) denotes the number of gene of type
A1 at generation k, then

P�Y1�k� 1� � jjY1�k� � i � � N

j

� �
 

j
1�1ÿ  1�Nÿj

with

 1 � p�1ÿ uN� � �1ÿ p��1� sN�uN

p� �1ÿ p��1� sN�

where p � i/N, the fraction of genes of type A1 in
generation k.

Again, when the population size is large, the ge-
nealogy of a sample of n genes can be approximated by
a continuous time Markov process G(t), t � 0. This
limiting object is called the ancestral selection graph.
Time t is measured in units of N generations and

lim
N!1

2NuN � � and lim
N!1

2NsN � �

As in the neutral case, the genealogical process can be
most easily explained when visualized as a graph. The
ancestral graph has a coalescing/branching structure.
An ancestral graph is shown in Figure 2. The ancestral
graph is a stochastic process whose dynamics are as
follows. If there are k branches in the graph, then a
coalescence event occurs at rate k(k ÿ 1)/2, and a
branching event occurs at rate ks/2. Coalescing events
correspond to the merging of two ancestral lines as in
the neutral case. Branching events are a characteristic
of genealogies under selection. They reflect the fact
that the fitter type has a higher reproductive success
than the less fit type. Following an ancestral line back
on the ancestral graph, at a branching point the two
branches coming out of a point constitute possible
ancestral paths. The branch that branches off the
straight branch in the graph is called the incoming
branch, while the straight branch is called the original
branch. If the ancestor on the incoming branch is of
the fitter type, then the ancestral path follows the
incoming branch; if not, it follows the original branch.
Paths in the ancestral selection graph are thus possible
ancestral paths. As long as s < ?, the size of the graph
will eventually reach 1. The ancestor at this instant is
called the ultimate ancestor. Which of the paths are
contained in the embedded genealogy can be deter-
mined once the ultimate ancestor is found.

The type of the ultimate ancestor needs to be chosen
according to the allele frequencies at the time of the
ultimate ancestor. For instance, if the gene frequencies
were in equilibrium at that time, the type of the ultim-
ate ancestor would be chosen from the stationary dis-
tribution.

Mutation events can be treated as in the neutral
case: mutation events are superimposed on the ances-
tral graph at rate y/2, independently in each branch.

Embedded in an ancestral recombination graph is
the true genealogy of the sample, called the embedded
genealogy. with its To find the embedded genealogy,
one starts at the ultimate ancestor and follows the
graph forward in time. At mutation events the type
changes accordingly. At coalescing events, the two
branches coming out of the coalescing point receive
the same type as the branch entering the coalescing
point. At branching points, if the incoming branch has
the fitter allele, then the gene on the incoming branch
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continues. Following these rules one eventually
arrives at the present time and obtains a sample of
size n. Going back up the graph one can then extract
the embedded genealogy and identify, for instance, the
most recent common ancestor. As shown in Figure 3,
this may differ from the ultimate ancestor.

Robustness of the Genealogy

The coalescent is remarkably robust. It provides a
good approximation for a large class of reproduction
models when the population size N is large relative to
the sample size n.

This class includes both discrete time models in
which generations do not overlap and continuous
time models in which generations overlap. One can
also change the offspring distribution. For instance, if
the variance of the offspring distribution is u, then in
the neutral case a change in the time scale of the
coalescent occurs: The average time between coales-
cing events changes by a factor 1/u. This implies that
the time to the most recent common ancestor is short-
ened if the variance of the number of offspring is
increased.

Furthermore, genealogies can be formulated for
diploid populations. In the neutral case when mating
is random (i.e., a panmictic population), diploidy sim-
ply means that the number of genes is doubled: if the
population size is N, then the number of genes is 2N.
The genealogy in the diploid case is then the same as in
the haploid case with N is replaced by 2N. In the
selective case when mating is random, the ancestral
graph is more complicated. At branching points, three
branches now come together. The additional branch is
used to identify the type of the diploid parent. As in
the haploid case it is possible to extract the embedded
genealogy by following the paths in the ancestral
graph.

Varying Population Size

It is straightforward to incorporate deterministically
varying population size into the ancestral process.
This only affects the coalescing rate and is therefore
the same for both the neutral and the selective case.

If N(t) denotes the population size t units in the
past where t is measured in units of N �N(0) genera-
tions and if N�t�=N ! 1=��t�, then the coalescing rate
is k�kÿ 1���t�=2 if there are k branches present at
time t.

The effect of a growing population can be quite
dramatic. For instance, if the population has grown
exponentially, i.e., N�t� � eÿ�tN for some b > 0, then
��t� � e�t and the coalescing rate is k�kÿ 1�e�t=2. The
resulting graph is stretched near the present time and

compressed in the past (i.e., near the root). The result-
ing graph resembles a star phylogeny in the neutral
case.

Recombination

To describe the genealogy of two linked loci, L1 and
L2, we assume that the population is of fixed size N
and evolves according to the neutral Wright±Fisher
model. Recombination occurs independently in each
offspring. In each generation, with probability 1 ÿ r
each offspring independently inherits the genes at loci
L1 and L2 from the same chromosome; with probabil-
ity r the genes are inherited from different chromo-
somes (i.e., a recombination event occurred).

When the population is large and

lim
N!1

2Nr � �

the genealogy of a sample of size n can be approxi-
mated by a continuous time Markov chain R(t), t � 0,
where time t is measured in units of N generations.
This Markov chain, known as the ancestral recombin-
ation graph, can be described as a graph that contains
the lineages of each individual of the sample. Follow-
ing a lineage backwards in time on this graph, recom-
bination events occur at rate r/2. At such times, the
lineage of the two loci L1 and L2 splits which results in
a branching event. One branch follows the ancestry of
one locus, the other branch follows the ancestry of the
other locus. Common ancestry is again represented by
the coalescing of branches. An example is given in
Figure 4.

The dynamics of this recombination graph are
given as follows. If there are k branches in the graph,
then a coalescing event occurs at rate (k

2), that is, each
pair of branches coalesces at rate 1: a branching event
in which a branch splits into two, occurs at rate k r/2,
that is, each branch splits into two at rate r/2.

If one adopts the convention that branches that
correspond to the L1 locus are drawn to the left and
branches that correspond to the L2 locus are drawn to
the right at branching points, then the ancestry of each
locus can be traced separately by following the paths
to the left for the L1 locus and to the right for the L2

locus at each branching point. It follows that the
ancestry of each locus is given by the neutral coales-
cent process and each subtree has its own most recent
common ancestor. These marginal coalescent trees are
of course not independent of one another.

The ancestral graph can be adapted to describe
multiple loci by keeping track of where the break-
points occur at each recombination event. Just as ear-
lier, mutations can be superimposed on the ancestral
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recombination graph at rate y/2, independently in
each branch.

Migration and Subdivision

The assumption of panmixia can be replaced by the
assumption that the population is geographically
structured. The simplest case is that of a subdivided
population in which the popularion consists of a finite
number of islands, each populated by a subpopulation.
The size of the subpopulation on island i is denoted by
Ni for i � 1, 2, . . . , K, where K is the total number of
islands. Reproduction on each island follows the
Wright±Fisher model (possibly with selection). Each
generation, a proportion mij of the offspring on island
i migrates to island j, regardless of their genotype. A
simplifying assumption is to stipulate that the sizes of
subpopulations are fixed, that is, immigration balances
emigration at all times.

When the sizes of all subpopulations are sufficiently
large, thegenealogy ofa sample of size ncanbe approxi-
mated by a continuous time Markov chain S(t), t � 0,
where time t is measured in units of N �PK

i�1 Ni

generations. This process is called the structured coa-
lescent. In addition to the coalescent process in each of
the islands, each branch in island i, i � 1, 2, . . . , K,
`̀ migrates'' to island j at rate mij/2 where

lim
N!1

2N
Ni

Nj
mij � �ij

The effect of population subdivision compared to
the panmictic case is a compression of the coalescent
near the tips of the tree due to the smaller sizes of the
subpopulations. However, further back in the past, the
branches are extended provided the migration rate is
small enough since lineages have to be on the same
island in order to coalesce.

There are cases where these effects balance each
other and the mean coalescing time for a pair of
genes with population subdivision is identical to the
panmictic case. However, the coalescing time in the
subdivided population shows much greater variance
than in the panmictic case.

Strong Selection

Under selection, demography and mutation become
inseparable which results in a more complicated
ancestral process. However, if selection is sufficiently
strong, one can again separate demography and muta-
tion, at least approximately. The embedded genealogy
then becomes approximately a simple time change of
Kingman's neutral coalescent. The reason for this is

that under strong selection the population dynamics
are on a much faster time scale than coalescing events.

In cases where this separation of time-scale occurs,
the ancestral process can be modeled as a change in the
effective population size. In particular, this says that
not only are the expected times between coalescing
events a time change relative to the neutral case but the
distribution of the coalescing events is the same as in
the neutral case except for the time-scale.

Strong selection can often be modeled as a sub-
divided population where the subpopulations corre-
spond to the different alleles. Migration between
subpopulations is then governed by the mutation pro-
cess.

Other Coalescents

The structure of the coalescent has been identified for
a wide variety of other phenomena, such as nonran-
dom mating (e.g., selfing), different sexes, age struc-
ture, and so on. We have assumed in our exposition
that mutation, recombination, and selection rates are
of the order of the reciprocal of the population size. In
cases where this is not true, other behavior for the
genealogy is possible; discrete time branching pro-
cesses arise in this context.

Inference

An important use of coalescents arises when using
random population samples to estimate population
parameters such as r, y, and s. A number of
approaches have been proposed for this purpose,
including those based on the behavior of summary
statistics (for example, the number of segregating
sites observed in a sample of DNA sequences is often
used to estimate y). Full likelihood methods and Baye-
sian approaches are currently of great interest, parti-
cularly as they provide an inferential framework for
mapping disease genes by linkage disequilibrium map-
ping, and by haplotype sharing. Importance sampling
and Markov chain Monte Carlo approaches have
proved useful in this context.
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Figure 1 Coalescent tree of sample of five individuals.

A2

A1 A2 A1 A2 A1

Ultimate ancestor

Figure 2 Ancestral selection graph for a sample of five

individuals. Mutations denoted by [].
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A1 A2 A1 A2 A1

MRCA of sample

Figure 3 Embedded genealogy from Figure 2. Muta-

tions denoted by [].

MRCA of locus L1

MRCA of locus L2

Figure 4 Two-locus ancestral recombination graph
for sample of five individuals.

Typesetter Query:

In page no. 6 of the MS, 6th line from top (`̀ with its to find . . . . . in time''.), please check the readability of
the sentence.
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