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Linkage disequilibrium (LD), or the nonrandom pattern
of association between alleles at different loci within 
a population, has recently received much attention.
This is primarily because population associations are
potentially useful in the fine-scale mapping of human
disease loci [1,2], but also because of the increasing use
of haplotype data (e.g. DNA sequence polymorphism) 
as the basis for historical or evolutionary inference. 
The statistical aspects of LD mapping are reviewed
elsewhere [2,3]. In this paper, we aim to introduce the
population genetics theory that is necessary for an
understanding of LD and haplotype data.

A genealogical view of LD

Linkage disequilibrium refers to the nonrandom
association of alleles in haplotypes. Such associations
underlie all forms of genetic mapping. However,
whereas linkage analysis is based upon associations in
well-characterized pedigrees, LD refers to associations
within populations of ‘unrelated’ individuals. There 
is nonetheless a close relationship between the two
approaches, because the ‘unrelated’ individuals in 
a population are unrelated only in a relative and
approximate sense. In general, chromosomes sampled
from ‘unrelated’ individuals in a population will be
much more distantly related than those sampled from
members of traditional pedigrees. This is precisely
what makes LD mapping suitable for fine-scale
mapping: there will have been more opportunities 
for recombination to take place. Whereas pedigree
studies work with recombination events that
exchange megabase chunks of chromosomes, LD
studies deal with segments measured in kilobases.

Figure 1 shows a genealogy of three copies of a
short chromosomal segment. The segments are traced
backward within the pedigree of the individuals.
Recombination events allow the resulting pieces to
have different genealogical trees. Thus, the genealogy
of a sample of chromosomal segments is usually a
graph rather than a tree. In linkage mapping the
pedigree is known, making it possible to model the
genealogy of the chromosomes using basic genetics
[4]. When dealing with unrelated individuals,

however, the pedigree is almost completely unknown,
and different models are needed to take into account
this additional level of uncertainty.

So far, we have discussed only the genealogy of
chromosomes. There are no alleles in Fig. 1. How 
does the genealogy relate to LD? Polymorphism in a
sample is the result of mutations along the branches
of the genealogy that relates the sampled sequences.
The genealogies of closely linked loci will tend to be
highly correlated, whereas those of distantly linked
loci will be effectively independent of one another.
Hence, the allelic states of closely linked loci will be
correlated (i.e. in LD), whereas those of distantly
linked loci will be more-or-less independent.

Figure 2 shows a simple example of particular
relevance to LD mapping. All existing copies of a unique
mutation can be traced back to the most-recent common
ancestor (MRCA) of that mutation. Each haplotype that
contains the mutation must also have inherited from the
MRCA a small piece of chromosome surrounding the
mutation. Different haplotypes might carry different
pieces, depending on the history of recombination.
Alleles at polymorphic marker loci within the region
covered by these pieces of chromosome will be in LD with
the mutation. The length of the region depends on the
age of the MRCA, and the strength of the association
depends on the age of the marker mutation (and the
recombination rate and many other factors). The age 
of the MRCA and that of the marker mutation are
reflected in the respective allele frequencies. We shall
return later to the frequency dependence of LD.

For the purpose of LD mapping, the pattern of
association between the polymorphic markers is of
interest only because it contains information about
the pattern of recombination. If the recombination
history could be inferred directly, there would be no
need to rely on genetic markers [5]. LD mapping can
therefore be viewed as a missing data problem, where
the underlying, unobserved genealogy contains all
the information. This suggests that our thinking
about LD should focus on descent (i.e. genealogy)
rather than on state (i.e. marker mutations). In
particular, the traditional pairwise measures of
association (Box 1) are not likely to be informative.

What does history tell us about LD?

To understand the properties expected of a sample 
of haplotypes, we must model their history. The
coalescent with recombination provides a flexible 
and powerful method for doing this (Box 2). Although
the coalescent can be adapted to include almost any
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biological scenario, here we use the basic version.
Most of the following conclusions stem simply from
the existence of an underlying genealogy, and do not
depend on details of the model.

Variability of pairwise LD
Pairwise LD is expected to be extremely variable. 
This variation is attributable both to the history of
recombination and to the history of mutations. To
understand the difference between the two, consider
the case where there is no recombination, so that the
haplotypes are related by a single genealogical tree.
As illustrated in Fig. 3, it is nonetheless possible for
pairwise measures of LD to vary considerably, simply
because of the history of mutation and coalescence. Note
that, as there is no recombination, this variability
does not reflect physical distance and is therefore
uninformative for mapping purposes. Figure 4 shows
the result of a coalescent simulation that illustrates the

same phenomenon. Association studies have often found
markers closely linked to the focal (disease) mutation
that show less LD than do more distantly linked ones.
Given that much of the variation in LD might not reflect
recombination at all, this should not be surprising.

For mapping purposes, it is the recombination
history that is important. The mutations are of
interest only to the extent that they reveal something
about this unobservable history. However, the
recombination history is itself variable, and the
pattern of LD reflects this too.

The resulting variability is evident in the simulated
dataset shown in Figs 5 and 6. The top row of panels in
Fig. 5 shows the decay of haplotype sharing with respect
to particular focal mutations (disease mutations, say),
and the remaining panels illustrate how this
underlying genealogical pattern is reflected by markers
through two widely used pairwise measures of LD. 
The relationship between LD and distance is far from
smooth, in agreement with what is typically observed.
Figure 6 shows the behavior of LD when all pairwise
comparisons between sets of loci are made. This
illustrates that LD is expected to vary between
chromosomal regions as well as between pairs of loci.

It is clear that, although there is a statistical
relationship between the LD measure and distance,
the variability is too great for reliable estimates to be
made from any particular pair of loci. It will rarely be
possible in practice to estimate the genetic distance
between two markers using LD [6,7]. Note that this is
different from the use of multiple markers to map a
particular locus [8–12]. It is evident from Fig. 5 that
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Fig. 1. A genealogy for three copies of a short chromosomal segment. (a) Tracing the segmental
lineages back in time, we observe the following events: (1) the ‘green’ lineage undergoes
recombination and splits into two lineages, which are then traced separately; (2) one of the resulting
green lineages coalesces with the ‘red’ lineage, creating a segment, part of which is ancestral to both
green and red, part of which is ancestral to red only; (3) the ‘blue’ lineage coalesces with the lineage
created by event 2, creating a segment that is partially ancestral to blue and red, partially ancestral to
all three colors; (4) the ‘other’ part of the green lineage coalesces with the lineage created by event 3,
creating a segment that is ancestral to all three colors in its entirety. (b) The recombination event
induces different genealogical trees on either side of the break. 
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Fig. 2. Genetic polymorphism is the result of mutations along the
branches of genealogical trees. The genealogical trees for linked
chromosomal positions will not, in general, be statistically
independent. Therefore, neither will the allelic states of linked loci be
statistically independent, that is, there will be linkage disequilibrium
between the loci. This is illustrated here by adding two unique
mutations to the trees from Fig. 1. The mutation at locus B occurred
earlier than the mutation at locus A. The A2 allele therefore arose in a
population that was polymorphic with respect to locus B. The most
recent common ancestor of the A2 alleles carried a B1 allele. Two of the
three haplotypes shown here still do; the third recombined with a
haplotype carrying a B2 allele (as depicted in Fig. 1).
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Llinkage disequilibrium (LD) is often quantified using statistics of
association between the allelic states at pairs of loci. Consider two
loci, A and B, with alleles A1/A2 and B1/B2, respectively. Let pAi

stand
for the frequency of allele Ai, where i =1, 2, at locus A, and similarly
for locus B. Let pAiBj

stand for the frequency of the AiBj haplotype.
Examples of measures of LD used in the present review are:
• |D ′|, the absolute value of D = pA1B1

− pA1
pB1

, normalized to take
values between 0 and 1 regardless of the allele frequencies;

• r2 = D2/(pA1
pA2

pB1
pB2

), the squared correlation in allelic state
between the two loci as they occur in haplotypes.

Both these measures are symmetric, in the sense that it does
not matter which allele is associated with which, or, in the context
of mapping, which locus is the disease locus and which is the
marker locus. A measure for which the latter is not true is:
•d2 = (pA2B1

/ pA2
− pA1B1

/ pA1
)2, which measures the association

between the alleles at (marker) locus B and the alleles at
(disease) locus A.

All these measures are closely related to each other and to
the standard χ2-statistic for a 2 × 2 contingency table [a,b]. 
They nonetheless have different properties, as will become
clear later.

When ‘significant LD’ is discussed, it is usually in the sense 
of a simple contingency-table test of association [c]. However,
significant LD can be found even between unlinked loci – because
of population structure, for example. In general, the view taken in
this paper is that pairwise measures of association make poor use
of modern, multilocus data, and their usefulness for mapping
purposes is questionable.
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Box 1. Pairwise measures of linkage disequilibrium

What is the coalescent?

The coalescent is a stochastic process that describes the 
history of recombination and coalescence in a sample of
n homologous sequences [a,b]. For a detailed description, 
see Refs [c,d]. Of particular relevance here is a version of 
the coalescent known as the ancestral recombination graph,
which allows the modeling of any number of loci, and 
arbitrary recombination mechanisms [e]. The ancestral
recombination graph generates random genealogical graphs 
of the type depicted in Fig. 1. The behavior of the process
depends on the recombination parameter ρ, which 
determines the rate at which ancestral lineages undergo
recombination.

What about mutations? 

Random neutral mutations are superimposed on the graph as 
in Fig. 2. The rate at which mutation events occur along the
edges of the graph is determined by the mutation parameter µ.
The mutation mechanism itself is arbitrary, and can
accommodate microsatellites, single nucleotide
polymorphisms (SNPs), etc.

Why is it useful?

The coalescent is useful as a tool for simulating data [c,d]. 
Each replicate of an ancestral recombination graph with
mutations added provides a sample from the evolutionary
model, just as in classical forward simulations. However, the
coalescent has several advantages, of which the primary one 
is that only information about those ancestors who leave
genetic traces in the sample need be recorded. We do not 
need to simulate the entire population from which we 
sample. Coalescent simulations typically result in enormous
increases in speed and efficiency. Furthermore, unlike classical
methods, the coalescent provides a natural framework for
calculating likelihoods for samples, and therefore for statistical
inference [f].

Which parameters? 

Time in the ancestral recombination graph is measured in units of
the effective number of chromosomes in the present generation,
and the parameters ρ and µ are scaled accordingly [d]. A direct
estimate of µ can be obtained from sequence data. Typical
estimates for humans are ~10–3 per bp [g]. It is much harder to
estimate the recombination parameter ρ from polymorphism
data. An alternative is to use the fact that the ratio ρ/µ is equal to
the ratio of the per generation probabilities of recombination and
mutation, which can be estimated directly. A reasonable guess for
humans is that ρ = µ = 100 for a 100-kb region.

What is assumed? 

The coalescent can be adapted to incorporate a broad range of
biologic scenarios. Founder effects can be modeled by
appropriate assignment of types to ancestors or by simulating for
a fixed period. Alternative recombination models (e.g. hot-spots
and gene conversion), different mutation mechanism
(e.g. variable rates), variable population size, selfing, age
structure, diploidy, variable reproductive success, and population
subdivision have all been studied [c,d]. Modeling the effects of
selection is more difficult, and this is an active area of research [d].
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Box 2. Modeling haplotypes using the coalescent
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the joint pattern of LD exhibited by all the markers
might contain considerable information about the
position of the locus being mapped.

Ages and frequencies
The behavior of LD depends strongly on the coalescence
time of alleles, which under most models will be
reflected in their frequencies. From the point of view of
LD mapping, Fig. 5 illustrates the key part played by
the frequency of the allele being mapped in determining
how quickly LD with linked markers decays. As is
shown in the top panels, this decay reflects the altered
size distribution of the ancestral segment shared by the
haplotypes that carry the disease allele. Disease alleles
with a younger MRCA will usually be surrounded by 
a much larger ancestral haplotype. Most successful
applications of LD mapping to date have been for rare
diseases. If alleles underlying common diseases are
more common, they will probably also be much older,
and in these cases a very dense map may be needed.

Figure 5 also shows that the extent of LD depends on
the ages/frequencies of the markers in addition to those
of the disease. The sensitivity to allele frequencies varies
between measures. As is further illustrated in Fig. 6, |D′|
appears to be much more sensitive than d2. The reason
for this is that |D′| has been normalized to lie between
0 and 1 regardless of allele frequencies. This has some
desirable consequences: for example, |D′| = 1 between
all loci in the absence of recombination (as in Fig. 4).
However, it also means that |D′| will tend to be high if
there is a young allele at either of the two loci. Therefore,
the high values of |D′| in the upper right panel of Fig. 5
do not reflect conservation of the ancestral disease
haplotype, but conservation of ancestral marker
haplotypes. As we stated earlier, LD depends on the
history of mutation and coalescence, and not only on
the history of recombination. A consequence is that all
measures of LD are frequency dependent [13]. We
believe that this frequency dependence is best viewed
as age dependence, an integral aspect of LD.

The extent of LD in human populations is
controversial [14–30]. We discuss demography and
population structure in the next section, but it should
be noted that it is necessary to take into account allele
frequencies when comparing LD (however measured or
defined). Therefore, the statement that LD around a
variant at 50% frequency, with an MRCA that is almost
certainly older than 5000 generations, is unlikely to
extend beyond a few kb [14] is not contradicted by the
finding that in pairwise comparisons between random
markers, LD with respect to the youngest allele (with
an estimated MRCA several hundred generations ago)
extends much further [20]. Similarly, studies cannot be
compared unless the same measure of LD is used [15].
As can be seen in Fig. 5, LD measured as d2 might
extend only a few kilobases whereas LD measured 
as |D′| might extend almost 100 kb.

For disease mapping purposes, is it useful to know
the typical extent of LD between random markers? After
all, the extent of LD around a disease allele is largely
determined by the history of that allele. This history
might bear little resemblance to the history of random
markers, especially if the disease allele is present at a
very different frequency or has been subject to selection.

Demography and population structure
The role of population subdivision, bottlenecks and
expansions in human evolution has been much
discussed. The coalescent can be used to draw general
conclusions about the probable effects of each. It is
important to understand that, loosely speaking, the
timescale of the coalescent reflects the speed at which

A 1 A 2

C 1 C 2

B1 B2

TRENDS in Genetics 

Fig. 3. Most pairwise measures of linkage disequilibrium are highly
variable even in the absence of recombination. Three mutations at three loci
are shown here superimposed on a genealogical tree for a sample of size
ten. Imagine that we are trying to map locus A using the polymorphisms at
the other loci as markers. Consider, for example, d2 (Box 1): for locus B,
we have d2 = (0 − 4/5)2 = 0.64, but for locus C, we have d2 = (3/5 − 1)2 = 0.16.
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Fig. 4. A further illustration of the behavior of linkage disequilibrium
(LD) in the absence of recombination (cf. Fig. 3). Each dot in the figure
represents a comparison between a pair of dimorphic marker loci, the
chromosomal position of which (in arbitrary units) can be read off the
axes. Hence, dots along the diagonal represent comparisons of loci
with themselves. The color of each dot represents the strength of LD,
measured here as |r | (Box 1). Because this measure is symmetric with
respect to the two loci, the figure is symmetric about the diagonal. The
figure was calculated from a sample of size n = 50, simulated using a
standard coalescent with µ = 100. Markers at less than 10% frequency
were excluded to allow comparison with Fig. 6. For clarity, only a
randomly selected subset of the remaining sites is shown.
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Fig. 5. Examples of haplotype sharing and linkage disequilibrium (LD) in a single simulated sample of size n = 50. The standard ancestral recombination graph with infinite-
sites mutations and µ = ρ = 100 was used. As explained in Box 2, the horizontal axis, representing chromosomal position, might thus correspond to ~100 kb. The plots illustrate
the haplotype sharing and LD with respect to particular focal mutations: (a) the focus is a relatively low-frequency mutation (5/50 = 10%); (b) the focus is a relatively high-
frequency mutation (22/50 = 44%). The chromosomal positions of these mutations are indicated by the vertical lines. The top row of plots shows the extent of haplotype sharing
with respect to the most recent common ancestor (MRCA) of the focal mutation among the 50 haplotypes. The horizontal lines indicate segments that descend from the MRCA
of the focal mutation. Red indicates that the current haplotype also carries the focal mutation; black that it does not. Note that the red segments necessarily overlap the position
of the focal mutation. For clarity, segments that do not descend from the MRCA of the focal mutation are excluded, and haplotypes that do not carry segments descended from
the MRCA of the focal mutation are therefore invisible. The remaining four rows of plots show the behavior of two commonly used pairwise measures of LD, d 2 and |D ′| (Box 1),
for different choices of markers. In each plot, the horizontal position of a dot represents the chromosomal position of the marker, and the vertical position the value of the
measure (on a zero-to-one scale).
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genetic drift operates (Box 2). Lineages coalesce faster
in a small population, and more slowly in a large one.
In a population that has experienced recent rapid
growth, almost no coalescence events will have
occurred during the growth phase. This explains 
why the recent exponential expansion of the human
population might not have had much effect on LD
between high-frequency markers [14]. These markers
are likely to have ancient MRCAs (perhaps several
hundred thousand years old), and the growth phase
was too short to have affected the pattern of LD
present before growth started.

More generally, any change in the population size
does not have much effect on the coalescent unless the
change lasts for a number of generations that is of the
same order of magnitude as the (new) population size.
For example, a bottleneck that instantly reduced 
the population size from 10 000 to 50 would not be
noticeable unless it lasted for around 50 generations;
its effects would be similar to a bottleneck of
500 individuals that lasted for around 500 generations.
As a consequence, bottlenecks such as those caused by
the major European plague epidemics cannot possibly
have affected the pattern of variability (except of course
at any loci involved in resistance to the disease).

When coupled with the fact that the MRCA of 
a frequent marker is likely to be very old, these
observations explain why LD between high-frequency

markers might be little affected by recent demography
[14] – most of the recombination events occurred earlier.
In a similar vein, the observation [18,19,23–28] that 
LD between high-frequency markers shows a similar
pattern across different populations can be attributed 
to the common early history of those populations. Of
course, this does not mean that all populations must
show similar levels of LD; they clearly do not [29–32].
The effects of demography on LD have often been
discussed in the context of choosing the right population
for LD mapping [14,16–20,22–29,33,34]. However, as
noted above, it could be more relevant to focus on the
probable effects of demography on the history of the
disease alleles, rather than on the pattern of LD
between random markers. One undisputed advantage
of isolated populations is that allelic heterogeneity 
for the disease is less likely [35–37]. Such effects of
demography might well be more important than the
effects on LD. Nonetheless, it is clear that LD can be
much more extensive in sufficiently small populations,
especially when inbreeding takes place. This might be
of relevance not only in humans [31,32], but also in
other species [38–40].

Finally, it is well known that population
subdivision followed by admixture can increase levels
of LD. This can be both a boon and a bane for LD
mapping. Essentially, it increases the extent of LD,
but it also introduces a significant risk of detecting
spurious linkage [41–45].

Extensive LD as a sign of past selection
When the extent of LD surrounding an allele seems
unusually large, given the frequency of the allele, it is
tempting to conclude that the allele is very young and
must have been driven to its present frequency by
natural selection. There are at least three common
problems with such arguments.

First, it is important to distinguish between the age
of the MRCA and the age of the mutation [46,47]. The
difference between the two can be substantial [48,49].

Second, the history of an allele that is known to
have a certain frequency today is not the same as the
history of a random allele [46,48,49]. This makes it
hard to evaluate the significance of claims of past
selection [46], especially when coupled with scenarios
of past population subdivision.

Third, it is worth recalling a classic paradox from
population genetics theory: when viewed from the
present, the history of a positively selected allele is
the same as the history of a negatively selected allele
[50]. Thus, extensive LD surrounding a relatively
frequent allele that causes disease today might
simply reflect past selection against the allele, rather
than past selection for the allele. Which is more
probable depends on the relative rates at which
selectively deleterious and favorable alleles occurred.
Given our lack of knowledge of these parameters, this
is almost a philosophical question.

Whereas past selection on specific loci can be
difficult to demonstrate, it might be easier to infer the
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Fig. 6. All pairwise comparisons are shown for the data from Fig. 5. For clarity, only a subset of the sites
matching the frequency criteria were included: (a) plots of |r |; (b) plots of |D ′|. The figure is analogous to
Fig. 4, except that the data were generated with recombination. The ‘cross’ of missing points visible in the
lower panels demonstrates the variability of this type of data. It appears because the underlying genealogy
for that part of the chromosome is such that all minority alleles are present at a frequency of less than 30%.
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action of selection on a genomic scale, perhaps by
looking at the variance of LD [21], or by comparing
synonymous and nonsynonymous polymorphisms [23].

Haplotypes and sample size
Population genetic data are correlated because of the
single underlying genealogy. This has important
statistical consequences. Coalescent theory shows 
that increasing the sample size n is often surprisingly
unhelpful, essentially because one samples more of the
same events. For example, when estimating the scaled
mutation rate µ, the variance of the estimator decreases
at best at a rate of 1/log n rather than 1/n. Precisely the
same problems should apply to LD mapping, albeit that
the fine details depend on the assumed demographics.
It is clear from Fig. 5 that most of the recombination
events are shared between segments. Therefore,
increasing the sample size should often yield haplotypes
that have already been observed. Of course, large
sample sizes might nonetheless be needed to decrease
the variability attributable to factors such as
incomplete penetrance [51].

Number of recombination events
We noted earlier that the recombination and mutation
rates will, on average, be of a similar order of magnitude
in many organisms, including humans. It then follows
from coalescent theory that the genealogy of the genome
contains approximately as many recombination events
as it does segregating sites. It is therefore not surprising
that some datasets show little tree structure [52]. The
ratio of segregating sites to recombination events is
likely to be much higher in inbred organisms [53], as
well as in regions of low recombination [30]. However, in
the latter context it is important to distinguish between
actual variation in recombination rates, and apparent
variation caused by recombination history.

Prospects

Our main purpose in writing this paper has been 
to emphasize the value of thinking about LD – or
indeed any population genetic data – in terms of the
underlying genealogy. Although it is far from clear
that explicit modeling of this genealogy will be directly
useful for mapping purposes, there can be little doubt
that such modeling can provide considerable insight.

There would seem to be two main obstacles to
using LD for mapping purposes. The first is the
variability of LD. As noted above, LD is the outcome 
of a complex historical process. Much of the variation
in LD is attributable to this process, and cannot be
eliminated (unless we re-run evolution). However, LD
mapping has been applied successfully on several
occasions, often using simple methods, and much
more powerful methods based on multiple markers
are being developed [8–12]. Some genes might be
difficult or impossible to map using LD because of the
history of recombination and mutation around them,
but this will not be true for all genes.

A potentially much more serious problem is the
genetic architecture of the traits being mapped. If 
a common disease is caused by thousands of rare
mutations at hundreds of loci, it will not be amenable
to mapping [37]. Population genetics models can be
used to predict the likelihood of this scenario [54,55],
but given the uncertainties about the relevant
parameters, this issue will have to be resolved
empirically.

Mapping is not the only motivation for modeling
LD. For example, it has been noted that the pattern of
LD across the human genome appears not to fit the
standard models [15]. More realistic demographic
models will probably fit the data better, but it also
possible that we shall learn more about fundamental
genetic mechanisms such as recombination.
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The realization that p53 [1], the archetypal tumor
suppressor in higher mammals, in fact belonged to a
family of related genes came in 1997, almost 20 years
after the discovery of p53 [2]. The report of the first
homolog, p73 [3], and the fact it was located in a long-
suspected tumor suppressor locus, was met with great
excitement and anticipation. Was this another tumor
suppressor? And would decades of work on p53 enable us
to understand this close relative readily? The situation
was quickly complicated by the appearance of yet

another homolog, p63 (also named KET, p51, p40, p73L)
[4–8], and the myriad gene products it encoded. Far from
fitting into classic p53 roles in tumor suppression, the
homologs are claiming their own turf in stem cell biology,
neurogenesis and a host of other physiological processes.
The past four years of work on p63 and p73 have also
added layers of complexity to the p53 family as a
whole. Here, we review the individual functions of the
p53-related genes and explore evolutionary origins that
could offer an intriguing perspective on the p53 family.

The burning question: tumor suppressors or not?

When they were first discovered, it seemed entirely
reasonable to imagine that p63 and p73 would follow 
in the footsteps of p53 and be involved in tumor
suppression and cell cycle control. The sequence
similarity and conservation of functional domains
among the p53 family members are indeed striking
[3,4]. p63 and p73 both share the hallmark features
that identify p53 across all species – an acidic,

The discoveries of the p53 homologs, p63 and p73, have both fueled new insights

and exposed enigmas in our understanding of the iconic p53 tumor suppressor.

Although the pivotal role of p53 in cancer pathways remains unchallenged,

because p63 and p73 are now implicated in stem cell identity, neurogenesis,

natural immunity and homeostatic control. Despite their seemingly separate

tasks, there are hints that the p53 family members both collaborate and interfere

with one another. The question remains, therefore, as to whether these genes

evolved to function independently or whether their familial ties still bind them in

pathways of cell proliferation, death and tumorigenesis.

On the shoulders of giants:

p63, p73 and the rise of p53
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