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Rearrangement processes and structural variations
show evidence of selection in oesophageal
adenocarcinomas
Alvin Wei Tian Ng 1,2,38, Gianmarco Contino3,4,38, Sarah Killcoyne1,5, Ginny Devonshire 2, Ray Hsu6,

Sujath Abbas1, Jing Su2, Aisling M. Redmond1, Jamie M. J. Weaver2,7,8, Matthew D. Eldridge 2,

Simon Tavaré2,9,10,11, Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS) Consortium*,

Paul A. W. Edwards 1,2,8 & Rebecca C. Fitzgerald 1✉

Oesophageal adenocarcinoma (OAC) provides an ideal case study to characterize large-scale

rearrangements. Using whole genome short-read sequencing of 383 cases, for which 214 had

matched whole transcriptomes, we observed structural variations (SV) with a predominance

of deletions, tandem duplications and inter-chromosome junctions that could be identified as

LINE-1 mobile element (ME) insertions. Complex clusters of rearrangements resembling

breakage-fusion-bridge cycles or extrachromosomal circular DNA accounted for 22% of

complex SVs affecting known oncogenes. Counting SV events affecting known driver genes

substantially increased the recurrence rates of these drivers. After excluding fragile sites, we

identified 51 candidate new drivers in genomic regions disrupted by SVs, including ETV5,

KAT6B and CLTC. RUNX1 was the most recurrently altered gene (24%), with many deletions

inactivating the RUNT domain but preserved the reading frame, suggesting an altered protein

product. These findings underscore the importance of identification of SV events in OAC with

implications for targeted therapies.
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Patterns of rearrangement can reflect the underlying
mechanism generating the rearrangement, genetic
instabilities or mutagen exposures, and these may in turn

determine response to therapy or help explain the underlying
aetiology1,2. Rearrangements in driver genes, such as deletions,
amplifications, gene breakages and gene fusions, seem likely to be
at least as important a source of driver mutations as single
nucleotide variants (SNVs) and indels in many carcinomas3–5.
The Pan-Cancer Analysis of Whole Genomes (PCAWG) analysed
whole genome sequencing data from multiple cancer types and
this revealed a remarkable heterogeneity of SVs. In some cancer
types, such as breast and ovary, it was estimated that up to three
times more driver genes are altered by SVs than by SNVs and
indels3. Nevertheless, our ability to identify SV driver events lags
far behind that of SNV and indel events. This is primarily because
there is no measure of the background SV mutation rate, unlike
synonymous SNV mutations, that enable the identification of
driver genes disrupted by SNVs and rearrangements often involve
large genomic regions6,7.

Oesophageal cancer, especially the subtype oesophageal ade-
nocarcinoma (OAC), emerged from the PCAWG analysis
(n= 100 OACs) as a cancer type with one of the highest burdens
of SVs with complex rearrangements1,3. These include breakage-
fusion-bridge (BFB) cycles; catastrophic chromothripsis events
with oscillating copy number patterns8, deletions in the fragile-
sites and the highest rate of somatic mobile element (ME) inserts
of any cancer type1,9–12. MEs are mainly inserts from Long
Interspersed Nuclear Element-1 (LINE-1) retrotransposons, and
can consist either of LINE-1 sequence alone or LINE-1 with up to
a few kb of 3′ flanking unique genomic sequence transduced11,13.

Driver alterations in SNVs and indels are well characterized in
OAC, as are distinct copy number (CN) amplification of onco-
genes (e.g. ERBB2, EGFR, RB1, GATA4/6, CCND1 and MDM2)
and loss of tumour suppressors (e.g. TP53, CDKN2A,
CDKN2B)9,10,14. Rearrangement processes such as BFB cycles and
extrachromosomal circular DNA (ecDNA) have been shown to
result in copy number amplification in key oncogenes15–18 while
a variety of SVs can disrupt tumour suppressor genes, including
LINE-1 insertions11,14. However, to date the analysis of these
complex events in OAC has not been performed at the detail
required to fully elucidate the spectrum and underlying
mechanisms for complex SVs.

In this analysis we combine recent advances in methods for
dissecting complex rearrangements and identifying driver
events1,3,11,19–22 to characterize SVs in a large cohort of 383
OACs with paired whole transcriptome sequence (WTS) in a
subset (n= 214). Coupled with detailed clinical annotation, this
analysis has enabled us to establish the functional relevance of the
driver genes affected by these rearrangements.

Results
Rearrangement patterns in OAC genomes show frequent
mobile element insertions and complex SV. We analysed 383
OAC genomes and observed a wide variation in the numbers of
structural variants (SV) between cases, with a predominance of
deletions (DEL), inter-chromosome junctions (BND) and tandem
duplications (DUP) (Fig. 1a). The SV were deconvoluted into
rearrangement signatures (RS, Supplementary Fig. S1A) by
combining the types of SVs with the size and degree of
clustering2,23, mapped to known signatures (Supplementary
Fig. S1B)24 and clustered to show distinct profiles of rearrange-
ments in different groups of patients (Fig. 1b, c, Supplementary
Fig. S2A, Supplementary Data 1). Six RS were identified: two with
DEL sizes of 1–10 kb and 100 kb–1Mb (signatures RS7 and RS9,
respectively); a non-clustered inter-chromosomal junction (BND)

(RS2) and a clustered inter-chromosomal junction signature
(RS4); and a clustered SV signature with a high number of DELs,
INVs, and DUPs of size 1–10Mb, corresponding to a combina-
tion of signatures (RS6a and RS12) and a non-clustered
100 kb–1Mb DUP signature RS124. We identified a lower bur-
den of focal amplifications and extrachromosomal DNA
(ecDNA) cycles in the RS7+ RS9 group (p= 0.0056, p= 0.0061,
respectively, Wilcoxon rank sum test, Supplementary Fig S2B, C),
an enrichment of mobile element (ME) insertions in the RS4
group (p= 4 × 10−11) and complex clusters of SVs in the RS1
group of patients (p= 8.2 × 10−7, Fig. 1d–g, Supplementary
Fig. S2B–G).

To determine the contributions of ME insertions in generating
SVs in OAC, we used the TraFic algorithm11,13, which identified a
median of 60 (IQR 3–117) ME inserts per tumour (Fig. 1f,
Supplementary Data 2). The majority of inserts (81%, 37,475)
were of LINE-1 sequence alone (‘solo’), while 19% (8517) included
transduced 3′ flanking sequence. Of these 7% (3195) retained
LINE1 sequence, while 12% (5322) were ‘orphan’ transductions,
i.e. transduced sequence alone (Fig. 1f, Supplementary Data 2).
Since transduced sequence reveals the origin of the LINE-1 in the
genome, we could assign 13% (6109) to germline elements and,
remarkably, 5% (2408) to novel, somatically acquired elements. In
the tumours with the highest numbers of inserts, the active
germline LINE-1s were generally those described by Rodriguez-
Martin et al. as ‘Plinian’, i.e., rarely present but with high activity
when activated. This is in contrast to the ‘Strombolian’ germline
LINE-1 elements, which are frequently active in cancer and tend
to be active in tumours with fewer inserts3,11. We also identified
ME insertions among our conventional SV calls and as most are
inter-chromosomal, most resemble translocations. Hence, there
were 13,189 inter-chromosomal junctions that had at least one
breakpoint overlapping with a ME called by TraFic in the sample
(Supplementary Data 2).

Rearrangement signatures in OAC correspond to processes
leading to ME insertions, DNA damage repair and complex
rearrangements. To identify the features of biological processes
associated with each RS, we carried out a logistic regression based
on the presence of each RS in each tumour and orthogonal fea-
tures including the number of ME insertions; chromothripsis
events, complex SV clusters, SNV signatures subtypes10, BFB or
ecDNA events numbers and in known driver genes (Supple-
mentary Data 3).

RS4, a signature of unknown aetiology consisting of clustered
inter-chromosomal junctions (affecting 74% of cases), was
strongly associated with the number of ME insertion events
(log odds: 6.13, p= 3.21 × 10−9, Supplementary Data 4). We
further determined if each inter-chromosomal junction cluster
overlapped with nearby ME insertions or source elements and
found 59% (1622/2751) of RS4 clusters overlapped with ME
insertions—41% called by TraFic, while the remaining 18% of
RS4 clusters overlapped with regions with previous evidence of
transductions by MEs11,13 (Supplementary Data 5). We also
identified an association with the number of ecDNA amplicons
(log-odds= 0.46, p= 0.009, Supplementary Data 4) and
increased KRAS expression (log odds 0.54, p= 5.47 × 10−4,
logistic regression, p= 0.026, Wilcoxon rank sum test) in
tumours with RS4, driven by tumours (15/19) with both ME
insertions and KRAS amplification (Supplementary Fig. S2H,
Supplementary Data 6). In addition, RS4 was associated with a
lower expression of Leucine Rich Repeat Kinase 2 (LRRK2), a
gene with interactions with ATM and roles regulatingMDM2 and
TP53 in DNA repair pathways25 that was previously identified14

(log odds=−0.99, p= 4.91 × 10−4, Supplementary Data 4). In
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addition, we observed that tumours with RS4 had an increased
frequency of SVs in genomic regions containing MDM2, H3F3B,
PTPRB and GRM3 compared to tumours devoid of RS4
(Supplementary Fig. S2I).

Signature RS2 (87%) was associated with a lower number of
ecDNA amplicons involving ERBB2 (log odds −0.89, p= 0.033,
FDR= 0.051, Supplementary Data 4). Tumours with a high
proportion of SVs assigned to RS2 have a low burden of SV
events (p= 0.0181, Wilcoxon rank sum test, Supplementary
Fig. S2A) and are genomically stable compared to other tumours.

The deletion signature, RS7 (69%) was associated with an
absence of ME insertions (log odds=−1.53, p= 2.85 × 10−8)
and a higher burden of the SNV signature SBS17a (log
odds= 0.55, p= 3.33 × 10-6). RS9 (68%) was associated the
presence of the DNA damage response (DDR) phenotype based
on SNV signatures described by Secrier et al. 10 (log odds 1.41,
p= 1.71 × 10−4) and a lower number of ecDNA cycles affecting
the cell cycle regulator Cyclin E1 (CCNE1, log odds=−1.14,
p= 0.025, Supplementary Data 4).

Signature RS1 (47%) was associated with ecDNA events
encompassing (log odds 3.28, p-value= 0.004, logistic regression,
Supplementary Data 4) and increased expression of CCNE1
compared to other tumours (log odds 0.88, p-value= 1.55 × 10−4,
logistic regression, Supplementary Data 4, p= 7.5 × 10-7, Wil-
coxon rank sum test, Supplementary Fig. S2J). Tumours
with RS1 were associated with an absence of ecDNA spanning
CDK6 (log odds −1.18 p= 0.008) and low ME insertions
(−1.14, p= 2.55 × 10-4, Supplementary Data 4). RS1 corre-
sponded to the tandem duplication phenotype signature,
associated with high CCNE1 expression (p= 3.6 × 10−6, Wil-
coxon rank sum test, Supplementary Fig. S2J) and replication
stress, previously reported in breast, ovarian, stomach and
liver cancer2,26–28

The ‘clustered’ signature RS6a+ RS12 (69%) was associated
with complex SV including a higher number of ecDNA and
BFB cycles (log odds= 0.47, p= 0.003, log odds= 0.69,
p= 9.19 × 10−5, respectively). Complex rearrangements consist-
ing of clustered inversions and foldback inversions made up 20%

Fig. 1 Classification of OACs according to the proportions of SV types and signatures. Tumours are shown classified into groups according to their
predominant SV signature defined by Nik-Zainal et al. (2016). a Box plot showing numbers of SVs by SV type for the entire cohort and in each group
(named after the simplest rearrangement that could generate such a junction, DEL: deletion, INV: inversion, BND: ‘breakend’, i.e. an inter-chromosome
junction or translocation, DUP: tandem duplication). b Bar plots of rearrangements associated to each rearrangement signatures in OAC. c Heatmap
showing proportions of SVs associated to each signature and a comparison with related variables: whole genome doubling (WGD), SNV signature
classification (Mutagenic, DDR and C > A/T) described by Secrier (2016), d focal amplifications, e number of BFB and ecDNA cycles, f number of mobile
element insertions and g complex SV clusters. h Circos plots of representative tumours from each signature group with ME insertions highlighted in red.
*Denotes tumour with >2500 SVs excluded from plot.
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of SV clusters associated with RS6a+ RS12, and many additional
clusters containing larger complex events (Fig. 1e, g).

Five example tumours are shown, respectively, with a high
proportion of predominant deletions (RS7+ RS9); non-clustered
SVs (RS2); densely clustered SV inversions (RS6+ 12); inter-
chromosomal junctions overlapping LINE-1 ME insertions (RS4)
and clusters of tandem duplications (RS1) (Fig. 1h).

Complex SVs involving known oncogenes in OAC can be
explained by ecDNA amplicons. Complex clusters of rearran-
gements are thus a prominent feature in OAC and we sought to
identify clusters which are likely due to the formation of BFB
cycles consisting of foldback inversions and circular ecDNA
events that alter known oncogenes. We identified ecDNA events
by applying the Amplicon Architect tool15, that starts from
regions estimated by CNVKit29 to have an absolute copy num-
ber > 4.5 and segment size > 50 kbp and searches for additional
regions in the genome that are joined to form an amplicon. As
ecDNA events can arise from BFB events and Amplicon Architect
identifies BFB, BFB-linked cyclic amplicons and cyclic amplicons,
we grouped these events as BFB or ecDNA amplicons. We
identified 507 BFB or ecDNA amplicons, of which 58.2% (295)
encompassed oncogenes known to be drivers in OAC, accounting
for 22% of complex SV clusters overlapping a known oncogene
(Supplementary Data 5). Among these ecDNA or BFB events, at
least 13 showed inclusion of regions with H3K27Ac marks
(p= 0.0002, regioneR30, permutation test) identified in OAC cell
lines and tumours31 and devoid of genes—most notably, 4
enhancer elements on chromosome 17 amplified and part of
amplicons involving CDK12, ERBB2, RNF43 and CLTC (Sup-
plementary Data 7, Supplementary Fig. S3).

Known driver genes in OAC were recurrently amplified
through BFB or ecDNA amplicons, with 35.5% (136) patients
having one or more amplicons encompassing ERBB2, KRAS,
CDK6, GATA4, MYC, EGFR, CCNE1, GATA6 or MDM2 (Fig. 2a,
Supplementary Data 8). Amplicons showed a wide variation of
copy number (median CN= 12, IQR 7.9–19.1) and positive
correlation (Pearson’s correlation= 0.42, p= 2.993 × 10−5) with
high gene expression (Fig. 2b). In addition, several likely driver
genes were co-amplified in large complex amplicons, notably
CCR7, and/or RARAco-amplified with ERBB2 (Fig. 2c, Supple-
mentary Fig. S3); and AKAP9 and/or GATAD1 with CDK6
(Supplementary Fig. S3).

It is instructive to consider individual cases. For example, in a
tumour with 28 SV breakpoints in two clusters around the highly
amplified CDK12-ERBB2 (copy number= 115) and STAT5B-
STAT3 (copy number= 72) loci, reconstruction suggested there
were multiple ecDNA circles or segments carrying either ERBB2
or STAT5B alone, plus some carrying both amplicons (copy
number= 25). The combined structure was consistent with a
circular ecDNA structure (Fig. 2c, d) that included two clusters of
enhancers (hg19/chr17:37773759-37939651, chr17:39768677-
39852129). The enhancers were identified in publicly available
OAC tumours and OAC cell lines data31 and the ecDNA encoded
a CDK12-STAT5B fusion, that was confirmed using RNA
sequencing. Similarly, an EGFR-SEC61G fusion previously
predicted from DNA sequencing in a PCAWG study22, proved
to be in an EGFR amplification that was part of a cyclical ecDNA
with enhancer marks on both chromosome segments
(chr13:33846776-33860433, chr7:55132499-55154521, Fig. 2e, f).

Identifying SVs in OAC driver events. To assess the contribu-
tion of SVs to driver events we first considered genes that we had
previously identified to be targets of SNV, indel, amplification
and deletion driver events3,14. We identified likely additional

driver events due to SVs where the interval between two break-
points overlapped an exon or exons of known driver gene.
Adding these SV events substantially increased the recurrence
rates of known drivers. For example, among major tumour sup-
pressors, recurrence CDKN2A increased from 25% to 43% and
SMAD4 from 14% to 27%, PTEN from 4% to 17% and APC to
from 10% to 22% while TP53 showed a predominance of SNV
alterations (Fig. 3, Supplementary Data 9).

We carried out a two-proportionsz-test to compare the
recurrence of all 48 canonical drivers (p-value= 2.2 × 10−16)
and in each individual gene, with and without considering SVs.
Aside from four genes (TP53, AXIN1, NOTCH1, STK11) known
to be affected by SNVs, 44 out of 48 genes show a significantly
higher recurrence when SVs are considered (Supplementary
Data 9).

Next, we attempted to identify OAC driver genes affected by
SVs, or “hotspots”, characterized by more frequent breaks per
unit of genome (1 Mb bins, 500 kb overlapping), after removing
known fragile sites, and regions flanking amplicons and deletions.
By comparing the recurrence and density of SVs in each hotspot,
we identified that fragile sites and copy number altered hotspots
obscured driver genes affected by SVs and selected a method that
adjusts for CN alterations and other genomic context (Fig. 4a).
We identified hotspots in two steps, the first using a previously
published method that accounts for genomic context32. Secondly
to find focal SVs, we used a consensus approach where bins had
to be identified in at least two of the following methods: (1)
background distribution modelling of SVs in a whole-genome, (2)
per-chromosome context and (3) rank-sumk-means clustering
(see the “Methods” section). We further required that the genes to
be listed as cancer-relevant by the CGC/COSMIC database.

A total of 108 regions (1Mb bins, or groups of adjacent bins)
with frequent breaks were identified in either the genomic-
context dependent model or focal approach and 41 regions
contained known COSMIC genes (Fig. 4b, Supplementary
Data 10). These included bins containing RUNX1, MALAT1,
RAD51B, COX6C, GPHN, NBN, KAT6B, CLTC, ETV5 and
PTPRD that were identified by both approaches (Fig. 4b, c,
Supplementary Data 10, 11). We noted that PTPRD and GPHN
were identified as genes in possible fragile sites33,34 and excluded
them from further analyses. As the COSMIC genes present in
hotspots might not be directly affected by SVs, we narrowed
down driver gene candidates using the criteria of the SV spanning
or overlapping the gene by intersecting the genomic region
between the start and end position for intra-chromosomal SVs
and between the start and end of both breakpoints in an inter-
chromosomal breakend (defined by MANTA) with exons of a
gene. Sixty-one candidate genes were identified with RUNX1 as
the most recurrent deleted as many of the SVs in the regions
overlapped the gene (Fig. 4b, c), and this is discussed in
detail below.

Aside from RUNX1, CDKN2A, BCL3 and MYB were identified,
with predominant focal deletions affecting CDKN2A and
duplications affecting BCL3 and MYB (Supplementary Fig. S4).
The MYB proto-oncogene, originally found as the retroviral
oncogene myeoloblastosis B, is a driver not previously identified
in OACs through SNV and CN analyses. Duplications over-
lapping MYB span the gene and the evidence of ecDNA events in
four patients (CN= 5–45) support its role as an oncogene as
identified in other cancer types.

Of the candidate genes identified, 10 were already known as
OAC drivers, leaving 51 candidate SV OAC drivers (Fig. 4c,
Supplementary Data 11). We classified each rearrangement using
ClusterSV1 as simple (a single rearrangement not belonging to a
cluster) or complex (multiple rearrangements forming a cluster)
and the type of alteration. To accurately estimate the prevalence
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of rearrangement overlapping with each gene, we identified intra-
chromosomal regions spanning each pair of breakpoints and the
genes lying within each region. This was done to capture
oncogenes which are generally comprised within breakpoints in
SVs that lead to amplification (i.e, DUPs, INVs or BNDs) or
deletion (mainly DELs). A clear pattern emerged where simple
alterations affected tumour suppressors genes including
CDKN2A, ARID1A, SMAD4 and RUNX1, while complex clusters
tended to affect oncogenes (ERBB2, CDK6, GATA4, GATA6)
often involving amplifications (Fig. 4c). In addition, breaks within
known tumour suppressor genes CDK12, ZNF21 and RNF43 were
observed (Figs. 2c, 4c) and have been shown to result in loss in
function (Supplementary Fig S4).

We curated genomic regions identified in our SV driver
analysis without COSMIC genes and identified an additional 15
genomic bins containing 31 putative driver genes. These genes
overlap with several OAC specific driver genes (GATA6, MUC6)

previously identified14. In addition, drivers reported in other
cancer types (PVT1, THADA and YES1) and ion channel genes
(CACNG1, CACNG4, CACNG5, KCNB1, KCNS2, KCNK6) were
identified to be preferentially affected by SVs (Supplementary
Data 12).

RUNX1 is frequently disrupted by internal deletion of exons.
RUNX1 was a candidate for a recurrent OAC driver (24% of
patient samples, 92/383), uniquely affected by SVs, a known
target of inter-chromosomal translocations in leukaemias, that
has been shown to play a role either as an oncogene or TSG in a
variety of cancer types35–37. It was previously reported as com-
monly deleted in OAC10,38, with a likely role as a tumour
suppressor39,40.

RUNX1 was most commonly affected by simple SVs (60
patients) while 32 patients had complex SVs. The simple SVs

Fig. 2 Complex SVs leading to amplification of oncogenes. a Recurrent amplicons detected by Amplicon Architect associated with known OAC
oncogenes. The number of tumours with detected amplicon is shown above. Y-axis showing copy number of segments spanning each gene, averaged along
the length of segment. b Correlation of gene expression (TPM) and copy number of amplicons. c Example of an amplified region spanning CDK12, ERBB2,
STAT3 and STAT5B, resembling ecDNA and d Reconstructed amplicon as an extrachromosomal circle containing ERBB2 and a CDK12-STAT5B fusion.
e An amplified region spanning EGFR and joining chromosomes 7 and 13, forming an ecDNA and reconstructed as a circle (f).
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comprised deletions (n= 53 events), duplications (n= 14) and
inversions (n= 1) (Fig. 5a, Supplementary Data 11). To under-
stand the biological effects of the RUNX1 deletions, we used data
obtained from GTEX and RUNX1 isoform expression in our
cohort (Supplementary Fig. 5A) to identify the most expressed
transcript (ENST00000344691) for the RUNX1 locus and showed
that the most frequently deleted regions encompassed one or
more of three features: an enhancer element (chr21:36250083-
36262951, 65 patients), three exons (ENSE00002454902,
ENSE00003519701 and ENSE00001380483, 61 patients) that
code for the Runt DNA binding domain, and the promoter
2 sequence (58 patients) (Fig. 5a, Supplementary Data 13). The
loss of expression of the deleted exons 1–4 were observed
significantly in transcriptomic sequencing compared to unmu-
tated tumours (Fig. 5b, Supplementary Fig. S5B). In addition, we
observed that patients with promoter 2 loss have RUNX1
expression abolished while patients with exon deletions do not
show significant difference in expression compared to unmutated
tumours (Supplementary Fig S5B, C).

We investigated the consequences of SVs for RUNX1, using PCR
to confirm the genomic junctions, in 69 sequenced tumours as well
as in two OAC cell lines, FLO-1 and OE3341. DNA was available for
17 tumours with a total of 22 RUNX1 SVs, and 20/22 (91%) were

verified by PCR and Sanger sequencing, as were 3 SVs in the two
cell lines (Supplementary Fig. S5D, Supplementary Data 14).

Strikingly, many of the verified SVs were predicted to preserve
the reading frame of RUNX1, and encode a protein with absent or
modified Runt domain. Most of the individual verified SV calls,
18 of 23 (including 2 of 3 SVs in cell-lines), were internal
deletions or duplications that removed or duplicated exons; at
least 17 of these 18 were predicted to preserve reading frame; and
15 would encode a protein with absent or modified Runt domain.

Discussion
In this study, we identified rearrangement signatures and pro-
cesses that shape the mutational and structural landscape of
OAC. These encompass known DNA damage related processes
including replication stress, complex rearrangements and a sig-
nature of unknown aetiology, associated with ME insertions. We
estimated the contributions of ME insertions to the signature as
multiple processes can result in clustered inter-chromosomal
junctions. By assigning the clusters of inter-chromosomal junc-
tions back to RS4, we found that 59% of clusters had evidence of
ME insertions within the cluster. The reactivation of ME has been
observed in multiple cancer types and previously been shown to

Fig. 3 Estimates of recurrence in known driver alterations with and without SVs. Oncoplot showing recurrence of known OAC driver gene mutations
(taken from Frankell et al., 2019 and Campbell et al., 2020) with and without SV. Estimates of recurrence without SVs includes copy number gains and
losses, INDELs and SNVs. Recurrence with SVs are counted when the interval between two breakpoints overlaps with exon or exons of the gene. Two-
proportions z-test with multiple hypothesis testing (FDR) used to test if recurrence is significantly higher with SVs included.
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associated with amplifications and deletions, most notably in
CDKN2A11 and BFB events. We found that ME activity in our
cohort was mainly of the Plinian type leading to a large number
of retrotranspositions. Recently, expression of transposable ele-
ments has been associated to DNA damage and immune response
in cancer42 with possible implications for targeted therapies
in OAC.

Complex rearrangements were shown to be prominent in OAC
in previous studies3,9,10 and we estimated the contributions of
ME insertions and ecDNA amplicons in generating complex
rearrangement clusters. The evidence of BFB cycles and ecDNA
accounting for 22% of complex clusters overlapping oncogenes
suggest that it is a frequent process resulting in amplifications in

OACs that can undergo selection. The high copy number and
expression of these amplicons, observation of enhancer hijacking
and the co-amplification of multiple cancer associated genes point
to a potent mechanism of tumorigenesis, often with well-known
oncogenes affected17,43–45. Recently, mechanistic studies have
shown that of telomere loss and chromosome bridge formation,
generates BFB and micronuclei in in vitro systems46. We spec-
ulate that ecDNA can arise from multiple mechanisms in OAC
including chromosome bridge formation and via the episomal
model that explains the wide variety of BFB-linked and non-BFB
linked ecDNA we observed in this study18.

In addition to SV-driven CN gains or losses, we identified the
contribution of SVs to the mutational burden of known OAC

Fig. 4 Recurrence and density of SVs in 1Mb genomic bins. a Scatter plot showing recurrence, the number of patients with an SV break in each 1Mb bin
(y-axis) and density, the average number of SV breaks in the bin over all tumours (x-axis). Bins are labelled with genes or fragile sites that they overlap:
black, fragile sites; purple, intervals of amplification and deletion; red, putative genes under selection. b Manhattan plot showing 1MB bins containing
putative drivers (red) and fragile sites (black) and genes coloured by methods discovered: Glodzik model adjusting for genomic context (Black), Focal (F,
blue) and both methods (brown: FG). c Oncoplot showing candidate driver genes identified using focal and Glodzik methods and annotated if each gene
was found in Frankell et al. (2019). Horizontal bar plots show total number of simple (light orange) and complex (dark orange) SVs found in the given gene;
proportions of SVs classified as simple that are of the various SV types; and similarly for SVs classified as complex. Each oncoplot cell shows if each patient
has a simple or complex SV and the combination of SV types.
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drivers that would be recurrently affected by rearrangements,
compared to SNVs and INDELs14. We adopted conventions from
TCGA and ICGC to annotate SV-affecting exons in canonical
transcripts of each driver gene for a conservative estimate.
Notably, a substantial number of SVs encompass exons, however
more work is needed to identify alterations that have strong
functional effects such as a loss of protein function seen in
RUNX1. The large overlap of candidate driver events with CN
gains and losses provides a reliable way to identify patients with
driver gene alterations, but poses challenges in the clinical
interpretation of copy neutral variants due to inversions and
translocations.

Our results suggest that, for heavily rearranged tumours, cur-
rent approaches based on targeted gene panels may miss a sub-
stantial number of driver gene alterations despite inclusions of
large deletions and amplifications and more work is required to
identify events that are clinically relevant. For the driver genes

affected by SVs, we observe that 37% are affected by gains, 33.3%
losses and 4.9% have fusions involving a driver gene in either
fusion partner. In addition, fusions are more likely to be asso-
ciated with copy number gains (3.8%), compared to copy neutral
fusions (0.4%) and losses (0.7%), The increased frequency of
fusions associated with gains is likely influenced by the rearran-
gement process generating the SV, such as the formation of
ecDNA. Overall, our findings are in keeping with the literature
which suggest that fusions in OAC are rare events and few are
targetable or clinically relevant.

It remains the case that there are substantial challenges for
identifying and prioritizing driver genes within SVs including: (1)
gene dosage effects are hard to estimate as complex CN changes
such as whole genome doubling are present in the majority of
tumours; (2) complex SVs affecting driver genes can encompass
large regions with multiple passenger genes implicated; and (3)
downstream effects of SV events are hard to determine and need

Fig. 5 Deletions and duplications in RUNX1 affecting RUNT domain exons. a Genomic regions with SVs at the RUNX1 locus (arcs) with cumulative
numbers of SV intervals at each position (bottom). RUNX1 is transcribed from the negative strand. RUNT domain and enhancers, from H3K27Ac data, in
grey, and promoters in red. b Exon expression of RUNX1-202 (ENST00000344691) for with tumours with alterations in RUNX1 (red) and no alterations
(grey). Read counts were normalized to length of exons. *, *** denotes p≤ 0.05 and p≤ 0.001 respectively. Gene structure for RUNX1-202 shown as it was
determined to be highest expressed transcript by GTEx and in the cohort of 214 tumours. No transcription from promoter 1 was detected.
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to be validated experimentally. In our analysis we focused on
driver genes in OAC and other cancers, as these genes often
coincide with the recurrence of SVs within a large genomic
region. We used additional evidence such as the patterns of SVs,
focal deletions and duplications spanning the gene to identify the
driver gene affected by SVs.

We have further identified regions in the genome with a high
recurrence or density of SVs that were likely to undergo selection.
The analysis recapitulated driver genes identified previously in
OAC and pan-cancer studies1,4,14. Several drivers including
AKAP9, CDK12, RARA, CCR7 were associated in co-
amplification of regions that were part of BFB and ecDNA
while MYB was identified in breast and OAC to be affected by
amplification in coding regions. BCL3 has been previously iden-
tified as a transcriptional activator in leukaemias and has recently
been shown to activate an array of pathways including WNT and
NFKB47. RUNX1 was mainly affected by CN loss and
rearrangements.

Our analysis of RUNX1 rearrangements suggests that the most
frequent events in OAC either result in promoter loss or remove
or duplicate internal exons, so that a RUNX1 protein would still
be encoded but with the RUNT domain disabled—the domain
that mediates DNA binding and heterodimerisation with other
transcription factors35. Although RUNX1 mutations and rear-
rangements have been described in OAC39,48,49 and other
carcinomas35,50,51 to our knowledge this consequence of muta-
tion has not been noted before, except in a single example of an
in-frame deletion of genomic exon 6 in the breast cancer cell line
HCC193750. Our data suggest that mutations of RUNX1 in OAC,
and perhaps in other carcinomas, are change-of-function, rather
than simple gain or loss-of-function. There are, however, tumours
that appear to have simply lost RUNX1 activity, so RUNX1 may
be altered in a variety of ways, reflecting RUNX1’s role as a
master regulator of cell fate, with ability to interact with various
other transcription factors and chromatin modifiers35,36.

Our analysis provide evidence for the processes leading to
heavily rearranged genomes which are a hallmark of OAC. In
addition, these rearrangements confer varying degrees of selective
advantage and different evolutionary trajectories. By under-
standing the mechanisms underlying the formation of SVs, it is
hoped that in the future we can identify patients that have a better
prognosis and develop therapy regimes that exploit the same
tumorigenic processes.

Methods
Study design, cohort selection and sequencing. Endoscopic biopsies and
resection specimens were collected prospectively from 383 oesophageal adeno-
carcinoma patients, including 83 cases previously included in the ICGC pan-cancer
(PCAWG) studies3. Patients were predominantly male (n= 329, 86%), with a
median age at diagnosis of 66.8 years (IQR: 59–73.6), and presented at an advanced
stage (T3N2= 56.15%, T3N1= 47.12%). All cases had an estimated tumour purity
of >70%, following expert pathological review and underwent whole genome
sequencing by Illumina using 100-150 bp paired end reads with 50-fold coverage
for the tumour and 30-fold coverage for the matched germline control. Reads were
mapped to the GRCh37/hg19 reference assembly using BWA-mem52 (v0.7.17).
Paired end RNA-Seq with 75-bp read length was performed for a subset of 214
tumours that had sufficient material14. The RNA-Seq data were aligned using
STAR53 (v2.6.1d) and reads mapped to each gene was counted using the
GenomicAlignments54 (v1.20.1) R package using Ensembl release 87 annotation.
Transcript per million values (TPM) were calculated and used in logistic regression
modelling. Transcript isoform and exon expression quantification were carried
using Kallisto55 (0.46.1) and subread56 (v 2.0.3) and normalized using the lengths
of transcript and exon, respectively.

Structural variation calling and validation. SVs were called, after alignment with
bwa-mem to GRCh37/hg19 (1000 Genomes Project human_g1k_v37 with decoy
sequences hs37d5), using MANTA v0.2757, as junctions that resembled deletions
(DEL), inter-chromosomal junctions (BND), duplications (DUP), or inversions
(INV). We discarded SVs that had any supporting reads in the matched normal;

SVs found in a pool of 50 unmatched normals from peripheral blood and
15 samples from distant oesophageal mucosa.

The filtered Manta SV calls were compared to calls made by the ICGC Pan
cancer project1,3 which used four other pipelines: dRanger and Snowman (Broad
Institute), DELLY (DKFZ), and BRASS (Wellcome Sanger Institute), for the 100 of
our oesophageal adenocarcinomas included in the PCAWG project. We identified
equivalent calls with mergevcf allowing a 300 base pair difference in coordinates,
and each individual pipeline was compared to a consensus sets which included
variants called by at least two of the ICGC pipelines. Our Manta pipeline gave a
median precision of 0.92, a median sensitivity of 0.89, and a median similarity of
0.82. Alternative sets of equivalent calls were also identified allowing base pair
differences of 100 and 500; the F1 score for our Manta pipeline was the highest of
all of the five pipelines at all three base pair windows sizes.

We also selected a representative tumour sample and PCR verified 73/91 (80%)
randomly selected SVs identified by our pipeline (Supplementary Data 15).
Additionally, we verified the breakpoints in the coding sequence of two recurrently
rearranged genes and confirmed the rearrangement in 79% (15/19) and 74% (20/
27) of the cases respectively (Supplementary Data 15). For an overview of the
analyses and software, see Supplementary Fig. S6.

Mobile element calling. To identify mobile element (ME) insertions indepen-
dently of SV calling we used TraFiC-mem v1.1.0 (https://gitlab.com/
mobilegenomes/TraFiC)11,13 with the MEIBA (https://github.com/brguez/MEIBA/
tree/master/src/python) module to give base-pair resolution, and discarding inserts
that lacked the expected poly-A tail. These inserts were used to annotate BNDs as
ME insertions if either breakend directly overlapped with insert regions. In addi-
tion, breakpoints in sequences known to be transduced by LINE-1 mobile
elements12,13 were marked as likely mobile element insertions.

Classification of SV footprints and rearrangement signature analysis. We
classified SVs into footprints by identifying clusters as described1 using the Clus-
terSV R package (https://github.com/cancerit/ClusterSV). In addition, clusters of
ME transductions were defined as clusters containing BNDs with at one breakpoint
overlapping with ME insertions. We then set aside with ME footprints and clas-
sified the remaining SVs as simple or complex rearrangements after excluding
centromere and telomere regions.

Rearrangement signatures (RS) were extracted using the Palimpsest 1.0.0 R
package23, Palimpsest was run for 1000 iterations for from 2 to 10 signatures, and
six signatures were selected based on cophenetic and silhouette scores. We matched
the extracted signatures to reference rearrangement signatures24 from Signal
(https://signal.mutationalsignatures.com/, Supplementary Fig S1A, B). We
clustered patients based on the exposures of the extracted SV signatures using the
ConsensusClusterPlus58 (v1.46.0) R package. The final number of clusters (K) was
chosen using the calcICI function with the K= 6 selected, based on the highest
mean consensus score.

Chromothripsis, extrachromosomal amplicons and break–fusion-bridge
events. Chromothripsis was identified as complex SV events with oscillating copy
number changes, using ShatterSeek v0.421, and classified as high confidence
(≥7 segments with oscillating copy number) or low confidence (4–6 segments) as
recommended.

Regions resembling extrachromosomal amplifications or breakage–fusion-
bridge cycles were identified using AmpliconArchitect v1.215: amplifications of size
50 kb, copy number > 4.5 were reconstructed using CNVKit29 v0.9.8 called copy
number segments. Amplified segments were refined with the amplified_intervals.py
script. AmpliconArchitect was run using the clustered mode to identify
extrachromosomal regions with driver gene amplifications and fold-back events
associated with breakage–fusion-bridge cycles.

Rearrangement signature features and regression. To identify features asso-
ciated to each RS, we carried out logistic regression using the glm function in R
(stats R package) based on the presence of each RS as response and predictors
including: number of ME insertions, chromothripsis events, complex SV clusters,
mutations attributed to SNV signatures extracted using SigProfilerExtractor
v1.1.059 listed by the COSMIC database60, mutational signature subtypes10, total
BFB or ecDNA events and gene expression of known driver genes (Supplementary
Data 3).

We log transformed and scaled the counts from the predictors. For each RS,
predictors from the univariate analysis with p < 0.05 were used to build a
multivariate model, refined with stepAIC (MASS R package, version 7.3-51.1) and
FDR correction was done on the final model. In addition, we carried out a hold-out
validation of 10 replicates each using 80–20, 60–40 and 40–60 split of the cases
with each signature and observed that positive associations between RS4-ME
events, RS9-DDR subtype, RS6+ 12-BFB, RS7−SBS17a and negative associations
between RS1-ec_CDK6, RS7-ME events were robust throughout each hold-out
validation (Supplementary Data 16). A separate logistic regression model was built
using the RNA-Seq gene expression profiles in SV driver genes (Supplementary
Data 4, 11).
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In addition, we carried out a correlation matrix analysis on the response and
predictors using the rcorr function (Hmisc R package, version 4.2-0) and carried
out FDR correction on the final p-values. All associations except for RS9-DDR,
RS9-Mutagenic, RS9-CCNE1 and RS2-KIF5B were validated using the correlation
matrix analysis (Supplementary Data 4).

Estimating the contributions of SV in known drivers. To estimate the con-
tributions of SV in recurrent drivers, we defined regions between two SV break-
point called by MANTA and identified SVs with regions that overlapped exons in
known driver genes from Frankell 2019 and Campbell 2020. To identify gene
isoforms that are likely affected, we used annotations (vcf2maf tool, iso-
form_overrides_uniprot) from TCGA to select for overlaps in exons present in
canonical transcripts of each gene. The predominant isoforms for RUNX1 were
obtained from the GTEx database using the oesophagus mucosa and stomach
tissue types.

In addition, GISTIC 2.061 was used to identify gains, amplifications, loss or deep
deletions in genes in addition to SNVs, INDELS and SV.

Identifying regions of frequent SVs. We divided the genome into 1 Mb bins with
500 kb overlap and calculated breakpoint recurrence, i.e. the number of patients
with at least one breakpoint in the bin, and breakpoint density, the average number
of breakpoints in each bin across all samples (Fig. 3a).

To estimate the background SV rate19,32, we modelled breakpoint recurrence in
each bin as a negative binomial linear regression, adjusted for the genomic context
of each bin: fragile sites, copy number aberrations, GC content, replication
timing62, histone methylation marks (H3K36me3 and H3K27ac), DNAseq
hypersensitivity, and ALU sequences19. Bins were identified as being significantly
recurrently altered if the residuals were ≥2 standard deviations from the mean
(Supplementary Data 10).

In order to further characterize bins that may reflect hotspots for SV activity we
filtered bins that reflect known fragile sites and high-density regions (434/5597
bins). We then apply three methods to identify focal hotspots and select bins found
by at least two methods: (1) model the per-bin SV counts genome-wide under a
negative binomial distribution identifying the residual outliers as significant bins,
(2) model the per-bin SV counts per-chromosome to account for chromosomal
context, and (3) a rank-sum approach where counts are ranked per-patient and
summed across each bin and significant bins identified via k-means clustering.

To identify driver genes enriched in tumours with RS4 compared to tumours
devoid of MEs (RS7 enriched tumours), we calculated the frequency of tumours
with SVs in 1Mb bins in RS4 and RS7 tumours (93 and 76, respectively) and
identified those with a frequency difference of ≥15% between groups. We excluded
fragile sites for this analysis.

Statistics and reproducibility. Statistical tests were carried out using R 3.5.3, with
the wilcox.test function for the Wilcoxon rank sum test to associate biological
features and each RS (n= RS9:261, RS1:180, RS7:266, RS4:283, RS2:335, RS6a+
12:264) and between RS patient groups (n= RS2:119, RS7+ 9:106, RS6a+ 12:74,
RS4:42, RS1:42). All reported Wilcoxon rank sum tests p-values are two tailed.

Permutation tests for the enrichment of H3K27AC enhancer elements in
ecDNA regions were carried out using the regioneR30 package and
overlapPermTest function with 5000 permutations. Two proportions z-test to
compare recurrence of driver genes (n= 383) was carried out using the prop.test
function with the alternative= ‘greater’ parameter, followed by multiple testing
correction using p.adjust(method= ‘fdr’).

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this paper.

Data availability
The sequencing data included in this study have been submitted to European Genome-
phenome Archive (EGA; https://ega-archive.org/) under the accession numbers
EGAD00001007808 (WGS) and EGAD00001007809 (RNAseq), respectively.

Code availability
R scripts used in the analyses are available on GitHub (https://github.com/fitzgerald-lab/
Rearrangements-in-OAC).
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