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Summary. For many complex probability models, computation of likelihoods is
either impossible or very time consuming. In this article, we discuss methods for
simulating observations from posterior distributions without the use of likelihoods.
A rejection approach is illustrated using an example concerning inference in the
fossil record. A novel Markov chain Monte Carlo approach is also described, and
illustrated with an example from population genetics.

1 Introduction

This paper concerns methods for simulating observations from a posterior
distribution when likelihoods are hard or impossible to compute. This problem
arises frequently in the context of complex probability models. Discrete data
D are generated from a model M determined by parameters θ, whose prior
we denote by π(θ). The posterior distribution of interest is given by

f(θ | D) = P(D | θ)π(θ)/P(D),

where P(D) =
∫
P(D | θ)π(θ) dθ is the normalizing constant. The simplest

method for generating observations from f(θ | D) uses rejection:

1. Generate θ from π(·)
2. Accept θ with probability h = P(D | θ), and return to 1.

Accepted observations do indeed have the distribution f(θ | D), as shown for
example in (11).

There are many variations on this theme. Of particular relevance here is
the case in which the likelihood P(D | θ) cannot be computed explicitly. One
variation is the following:
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1. Generate θ from π(·)
2. Simulate D′ from model M with parameter θ
3. Accept θ if D′ = D, and return to 1.

Notice that no likelihoods are required in this case. The success of this ap-
proach depends on the fact that the underlying stochastic process M is easy
to simulate for a given set of parameters. We note that this approach is also
useful when computation of the likelihood is possible, but time consuming.

The practicality of algorithms like these depends crucially on the size of
P(D), because the probability of accepting an observation is just P(D). In
cases where the acceptance rate is too small, one might resort to approximate
methods such as the following:

1. Generate θ from π(·)
2. Simulate D′ from model M with parameter θ
3. Calculate a measure of distance ρ(D,D′) between D′ and D
4. Accept θ if ρ ≤ ε, and return to 1.

This approach requires selection of a suitable metric ρ as well as a choice
of ε. As ε → ∞, accepted observations come from the prior, and as ε → 0
accepted observations come from the required density f(θ | D). The choice
of ε reflects the interplay between computability and accuracy. For a given ρ
and ε accepted observations are independent and identically distributed from
f(θ | ρ(D,D′) ≤ ε).

2 Inference in the Fossil Record

To illustrate the last approach, we describe a Bayesian approach to inference
in the primate fossil record. The problem concerns estimation of the time to
the most recent common ancestor of a group of species, using data from a
sampling of the fossil record. For more background to this problem, see (13).
Estimates of the divergence time of primates (more accurately, the time of the
haplorhine-strepsirrhine split) based on molecular sequence data give a time
of about 90 million years. A literal interpretation of the fossil record suggests
a divergence time of about 60 million years. One reason for the present studies
is to reconcile these two estimates.

2.1 The Problem

In Table 1 the number of primate species found as fossils in a series of strati-
graphic intervals is given. In (14), a statistical method for estimating the
temporal gap between the base of the stratigraphic interval in which the old-
est fossil was found and the initial point of divergence of the species in the
sample is given. The bias in the estimators and approximate confidence inter-
vals for the parameters were found by using a parametric bootstrap approach.
Here we contrast these results with those from a new Bayesian approach.
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Table 1. Data for the primate fossil record. References can be found in the supple-
mental material in (14).

Epoch Bin k Time Tk Observed number
of species (Dk)

Late Pleistocene 1 0.15 19
Middle Pleistocene 2 0.9 28
Early Pleistocene 3 1.8 22
Late Pliocene 4 3.6 47
Early Pliocene 5 5.3 11
Late Miocene 6 11.2 38
Middle Miocene 7 16.4 46
Early Miocene 8 23.8 36
Late Oligocene 9 28.5 4
Early Oligocene 10 33.7 20
Late Eocene 11 37.0 32
Middle Eocene 12 49.0 103
Early Eocene 13 54.8 68
Pre-Eocene 14 0

2.2 A Model for Speciation and Sampling

We adopt the same framework as in (14). We model speciation with a non-
homogeneous Markov birth-and-death process. To model evolution from the
last common ancestor of all living and fossil species included in the analysis,
we start with two species at time 0. Species go extinct at rate λ, and so have
exponential lifetimes with mean 1/λ, time being measured in millions of years.
A species that goes extinct at time u is replaced by an average of m(u) new
species. We denote by Zt the number of species alive at time t. The expected
number of species extant at time t is given by

EZt = 2 exp
{

λ

∫ t

0

(m(u)− 1)du

}
; (1)

cf. (4), Chapter 5.
We divide time into k stratigraphic intervals, as shown in Table 1 and

Figure 1. The base of the first (youngest) stratigraphic interval is at T1 million
years ago (mya) and the base of the kth is at Tk mya. The earliest known fossil
is found in this interval. The founding species originate at time T := Tk + τ
mya, and we define a (k + 1)st stratigraphic interval that has its base at
T = Tk+1 mya and ends Tk mya. Note that no fossils have been found in
this interval. The aim is to approximate the posterior distribution of the time
τ and other parameters of the model, using as data the number of different
species found in the fossil record in the first, second, . . . , kth intervals. We
model the number of species alive u mya by the value ZT−u of the Markov
branching process described earlier.
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Fig. 1. An illustration of the stochastic model of fossil finds. Bases of 5 stratigraphic
intervals at T1, , . . . , T5 mya are shown along the x-axis. The temporal gap between
the base of the final interval and the point at which the two founding species originate
is denoted by τ . Thick lines indicate species found in the fossil record. Time 0 is the
present day.

We assume that, conditional on the number of distinct species Nj that lived
in the jth stratigraphic interval, the number of species Dj actually found in
the fossil record in this interval is a binomial random variable with parameters
Nj and αj , j = 1, 2, . . . , k + 1. Furthermore, the Dj are assumed to be con-
ditionally independent given the Nj . The parameter αj gives the probability
of sampling a species in the jth stratigraphic interval.

2.3 A Rejection Approach

We write D = (D1, . . . , Dk+1) for the counts observed in the k+1 stratigraphic
intervals, and we write θ for the vector of parameters of the process, one of
which is τ , the temporal gap. While the likelihood is difficult to compute, the
stochastic process itself can be simulated easily. Once the Nj are simulated,
the D′

j are binomial samples with parameters Nj and αj .
The counts D1, . . . , Dk+1 can be represented as the total number of fossils

found,
D+ = D1 + · · ·+ Dk+1,

and a vector of proportions

(Q1, . . . , Qk+1) :=
(

D1

D+
, . . . ,

Dk+1

D+

)
.
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We can therefore measure the distance between D and a simulated data set
D′ by

ρ(D,D′) =
∣∣∣∣
D′

+

D+
− 1

∣∣∣∣ +
1
2

k+1∑

j=1

|Qj −Q′j |. (2)

The first term measures the relative error in the total number of fossils found
in a simulated data set and the actual number, while the second term is the
total variation distance between the two vectors of proportions.

2.4 Results

Original Approach

In (14), the mean diversification was modelled via the logistic function, for
which

EZt = 2/{γ + (1− γ)e−ρt}. (3)

This form is quite flexible; for example, γ = 0 corresponds to exponential
growth. They equated the expected number of species known at the present
time with the observed number (235), and also specified the time at which
the mean diversification reached 90% of its current value. These two equations
serve to determine the form of the speciation curve, and give ρ = 0.2995, γ =
0.0085; we assume these values are known in what follows. They also assumed
a mean species lifetime of 2.5 my, and they modelled the sampling fractions
αj in the form

αj = αpj , j = 1, 2, . . . , k + 1, (4)

where the pj are known proportions, and α is a scale parameter to be estimated
from the data. The particular values of the pj they used are given in Table 2.
The average value is p̄ =

∑k+1
j=1 pj/(k + 1) = 0.73.

Table 2. Sampling proportions pj

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14
pj 1.0 1.0 1.0 1.0 0.5 0.5 1.0 0.5 0.1 0.5 1.0 1.0 1.0 0.1

Using the data from Table 1, they estimated a temporal gap of 26.7 my.
As the oldest known fossil primate is 54.8 my old, this is equivalent to an age
of 81.5 my for the last common ancestor of living primates. The approximate
95% confidence interval is (17.2, 34.8) mya; this corresponds to an interval of
(71.0, 89.6) mya for the time of divergence. The average sampling fraction ᾱ,
defined as

ᾱ = αp̄ (5)

was estimated to be 5.7% with an upper 95% confidence limit of 7.4%.
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Bayesian Approach

The parameter θ is given by θ = (τ, α), and uninformative prior distributions
were chosen as τ ∼ U(0, 100) and α ∼ U(0, 0.3), the notation U(a, b) denoting
the uniform density on (a, b). From 2000 accepted observations with ε = 0.1,
we obtain the summaries in Figure 2 and Table 3. A median value of 26.3
my for the posterior value of the temporal gap τ is very close to the estimate
found in (14) and is equivalent to an age of 81.1 mya for the last common
ancestor of living primates. The 2.5% and 97.5% points of the posterior of
τ are estimated to be 14.3 my and 61.0 my respectively, corresponding to a
95% credible interval of (69.1, 115.8) mya for the time of divergence. The 95%
point of the posterior for ᾱ is 17.8%. These values are all broadly consistent
with the previous analysis, although the Bayesian credible intervals are wider.

The approximate Bayesian methods have a good deal of flexibility, in that
they are often easier to extend to more complex models. See (17) for an
analysis of different species diversity curves and sampling schemes.
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Fig. 2. Left panel: posterior for τ . Right panel: posterior for ᾱ. Horizontal lines
show prior density.

Table 3. Summary statistics for τ , ᾱ.

τ ᾱ(%)

1st quartile 20.8 4.1
mean 29.3 7.8
median 26.3 6.4
3rd quartile 34.6 10.3
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2.5 A Markov Chain Monte Carlo Approach

The results for the model described above can, in this case, be compared
to a full Markov chain Monte Carlo approach that generates observations
from the true posterior. The Metropolis-Hastings algorithm (9; 5) generates
observations from a Markov chain of θ-values as follows.

1. Suppose the chain is now at θ. Propose a move to θ′ according to a tran-
sition kernel q(θ → θ′)

2. Calculate

h = min
(

1,
P(D | θ′)π(θ′)q(θ′ → θ)
P(D | θ)π(θ)q(θ → θ′)

)

3. Move to θ′ with probability h, else stay at θ; go to 1.

If q is carefully chosen, the limiting and stationary distribution of the chain is
f(θ | D); see for example (3). In the next section, we implement this approach
to find the posterior distribution of the temporal gap.

2.6 Updating the Birth-Death Process

Our algorithm proposes changes to trajectories of the underlying birth-and-
death process illustrated in Figure 1. In what follows, ω denotes a realization
of the process, including the parameters α and τ .

The Death/Birth Move

The idea of this move is very simple. We pick a node at random in the tree,
kill the branch generated from this node and generate a new one. In this case
the Hastings ratio becomes:

h(ω, ω′) =
P(D | ω′)N(ω)
P(D | ω)N(ω′)

where N(ω) is the number of nodes of ω.
In practice this move is too small because most of the nodes are at the

bottom of the tree and modifying them does not influence what is happening
in the vicinity of the root. A way to deal with this is to choose the node
uniformly among the nodes whose times are smaller than a given time. By
doing so, we pick only the ones which will actually influence the shape of the
tree. In the likelihood ratio computation the total number of nodes must then
be replaced by the number of nodes before the chosen time.

The Strip Move

We pick at random two times, a starting point and an ending point. These
define a region, a strip, of the branching process. Then we erase this part, and
we regenerate it. To do this, we have to simulate the law of the branching
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process given the number of species living at the beginning and at the end of
the process. This is done by letting the process run a large number of times,
from the starting to the ending point, with the right number of individuals
at the start, until we reach the ending point with the correct number of
individuals. This move is relatively time consuming. We note that this step
could exploit analytical results for the distribution of a non-homogeneous
birth-death process (4), we have not attempted that here.

This description leaves a lot of freedom in the way one chooses the starting
and ending point of the strip. This choice allows us to modulate the impact of
the move. A small strip will lead to small changes and a Hastings ratio close
to 1. A larger strip will lead to major changes, and a Hastings ratio that is
much smaller. The ratio becomes in that case

h(ω, ω′) =
P(D | ω′)
P(D | ω)

.

In our algorithm we used a U(2, 8) distribution for the width of the strip.
The starting point of the strip is chosen uniformly between 0 and the total
duration of the process.

The Scale Move

We look at the time intervals between two consecutive birth/death events.
These times are exponentially distributed, with mean 1/(kλ), where λ is the
death rate and k is the number of existing species at that time. We update
these times, according to the prior distribution for example or by adding a
Gaussian random variable. If the birth and death process is homogenous and
if we use an exponential random variable with correct mean to update the
process, the Hastings ratio would be

h(ω, ω′) =
P(D | ω′)
P(D | ω)

.

However for an inhomogeneous birth and death process the situation is slightly
more complicated. The new Hastings ratio becomes in that case

h(ω, ω′) =
P(D | ω′) ∏

i Pt(k′i)
P(D | ω)

∏
i Pt(ki)

,

where the product is taken over all the nodes of the process. ki is the number
of offspring at node i and Pt(ki) is the probability that the process has such a
number of offspring at time t. Of course, if this probability does not depend on
t, both terms cancel and give the previous formula for the ratio. It is interesting
to notice that this move is the only one which modifies the parameter τ whose
law has to be described.

In practice, to make the Hastings ratio not too small it is good to update
only a fraction (chosen at random) of the times between each pair of consec-
utive events. The key parameter is then the probability for each time to be
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updated. That parameter will determine how big the change will be in the
tree. It is clear that this move updates the total duration of the process which
is important because this is what we try to estimate.

Which Move to Choose?

Now that we have three moves for the tree, an important decision is which
move to choose at each step. This is chosen at random, and the three prob-
abilities are chosen empirically; the values .4, .3, .3 seemed to work well in
practice.

Updating the Other Parameters

We also have some other parameters to estimate, for example the sampling
probability α. For example one can add to each of those parameters a random
variable, uniform or Gaussian. In the case of the sampling probability α here
is a useful trick: we update this parameter after each death/birth move. We
look at the variation of the total number of species at the end. If this number
increases, the random variable we add to α has a positive mean, if it decreases
the mean is negative and if it is stable the mean is 0. Then the big moves are
much more likely to be accepted and it dramatically speeds up the process.

Results

In Table 4 the summary statistics for 1200 observations (taken every 250 steps
from 300,000 output values) are given. The 95% credible interval for τ is (12.3,
44.3) my, corresponding to a divergence time interval of (68.1, 99.1) my. We
note that the plausible intervals are broader in the Bayesian analysis than
those found in (14), and we would argue that they better reflect the variation
in the estimates than the earlier approach. The upper 95% plausible value for
ᾱ = 11.6%, again somewhat larger than found in the original analysis.

Table 4. Summary statistics for τ , ᾱ from MCMC

τ ᾱ(%)

25th percentile 20.8 4.2
median 25.6 5.3
mean 26.6 6.1
75th percentile 31.3 7.2

In Figure 3 the estimated posterior densities for the temporal gap τ and
the average sampling fraction ᾱ are compared with the corresponding results
for the rejection method. The main distinction is that the MCMC results
have shorter right tails than the rejection results. The major differences occur
in the estimated posteriors for ᾱ. As expected, the values of τ and ᾱ are
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negatively correlated (the shorter the tree the higher must be the average
sampling fraction to match the data). This correlation is much stronger in the
MCMC output (ρ = −0.50) than in the rejection method (ρ = −0.17). This
disparity suggests that alternative metrics be tried in (2), perhaps ensuring
that both terms on the right of (2) are small, as opposed to just their sum.
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Fig. 3. Posterior densities of τ (left panel) and ᾱ (right panel). Dashed line is from
MCMC, solid line from rejection method.

3 Using Summary Statistics

In cases where the data D are complicated, it is not usually feasible to use
the approach we adopted for the fossil data. Instead we can capture the
information in D using a number of marginal statistics, denoted here by
S = (S1, . . . , Sp) and compare data sets via a comparison of these summary
statistics. This approach also lends itself naturally to application in cases
where D has continuous components.

3.1 Approximate Rejection

The rejection algorithm becomes:

1. Generate θ from π(·)
2. Simulate D′ from model M with parameter θ, and compute the corre-

sponding statistics S′

3. Calculate the distance ρ(S, S′) between S and S′

4. Accept θ if ρ ≤ ε, and return to 1.

For examples of this approach in the population genetics literature, see (2;
16; 10; 15). In (1) a novel approach based on local non-linear regression is
described. The idea is to weight all the observations generated in steps 1 and
2 above using the corresponding values of ρ.
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For complex probability models sampling from the prior does not make
good use of accepted observations, so the rejection methods can be pro-
hibitively slow. In the next section we describe an MCMC approach to prob-
lems in which the likelihood cannot be readily computed.

3.2 Approximate MCMC

In (6) we present an MCMC approach that is the natural analog of the ap-
proach in the last section, in that no likelihoods are used in its implementation.
It is based on the following steps:

1. If at θ propose a move to θ′ according to a transition kernel q(θ → θ′)
2. Generate D′ using model M with parameters θ′

3. If ρ(S′, S) ≤ ε, go to 4, and otherwise stay at θ and return to 1,
4. Calculate

h = h(θ, θ′) = min
(

1,
π(θ′)q(θ′ → θ)
π(θ)q(θ → θ′)

)

5. Move to θ′ with probability h, else stay at θ; go to 1.

The stationary distribution of the chain is f(θ | ρ(S′, S) ≤ ε). In the following
section we illustrate this algorithm with an example from population genetics

4 Inference in Population Genetics

To illustrate these ideas, we have chosen an example of ancestral inference.
We use a data set of n = 42 Yakima sequences obtained in (12); see also (7),
p. 404. The observed base frequencies in the sequences are

(πA, πG, πC , πT ) = (0.328, 0.113, 0.342, 0.217),

there are H = 20 distinct sequences, and V = 31 of the 360 base positions
showed variation in the sample. These data have been discussed in a coalescent
framework in (7; 8), where the posterior distribution of the (rescaled) mutation
parameter θ and the height T of the coalescent tree of the sample (i.e. the time
to the most recent common ancestor (MRCA) of the sample) were found by
MCMC methods using the full sequence data. Further details of the coalescent
model, the mutation model and its parameters may be found there.

4.1 Results

Using the Rejection Method

First we discuss inference about θ and T using the summary statistic S = V .
This case can be analyzed using the rejection algorithm in Section 3.1, in
which we take
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ρ(V, V ′) = |V − V ′|, ε = 0.

We chose wide uniform priors for θ, and used a constant population size
coalescent to model T . The method involves simulation of the coalescent tree
(and therefore its height) followed by superposition of mutations on that tree
according to the given mutation model. Once the sequence data are simulated,
the value of V ′ is computed, and the pair (θ, T ) is accepted if V ′ = V = 31.
We use this approach to check the behavior of the MCMC algorithm.

Using the MCMC Method

To use the MCMC approach in Section 3.2, we use the following updating
strategy. For reasons of space the description is kept brief; further details
may be found in (6). We keep track of the topology of the coalescent tree,
the times between coalescence events in the tree, the number of mutations
between these events, and the location of those mutations on the genome.
The topology is updated according to the scheme described in (7). The new
mutation rate is equal to the previous one plus a uniform random variable.
The times between two levels are equal to the previous ones plus a Gaussian
random variable. The new time and the new mutation rate produces a new
intensity for the Poisson random variable which determines the number of
mutations in each interval on the tree. That number is updated using basic
properties of a Poisson random variable.

Results

In Table 5 we compare the output of the rejection method and the MCMC
method that does not use likelihoods. As is to be expected, the algorithms
produce very similar summary statistics, although the approaches differ some-
what in their acceptance rates.

Adding Further Summary Statistics

As noted in (1), the effects of using summary statistics instead of the full data
can be hard to guess. In the present case, however, a full analysis is available;
see Tables 1 and 2 of (7). In (7) the estimated mean of the posterior for θ
was 0.044, and for T was 0.72. The effect of using only the number of variable
sites is to leave the posterior height of the tree much closer to its prior, which
has mean 1.95. This suggests adding another summary statistic. We present
results for S = (V, H), adding the number of distinct sequences H to the
analysis.

A simulated data set D′ is accepted if the number of variable sites and
the number of distinct sequences match the observed numbers (31 and 20
respectively) exactly. In Table 6, a comparison of the rejection and MCMC
approaches is given. The addition of the extra summary statistics has moved
the approximate posterior closer to the posterior obtained using the full se-
quence data; the addition of H has (for example) reduced the posterior mean
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Table 5. Comparison of approaches using S = V, ε = 0

Rej.1 No like. 2

Acceptance rate 0.62% 3.9%

TMRCA T
1st quartile 1.07 1.09
mean 1.71 1.72
median 1.49 1.49
3rd quartile 2.11 2.15

Mutation rate θ
1st quartile 0.020 0.020
mean 0.026 0.025
median 0.024 0.024
3rd quartile 0.030 0.030

1 Rejection method. Based on 2000 observations
2 No likelihoods. Based on 1000 observations sampled every 30,000 steps.

of T from about 1.7 to 1.1, while the posterior mean for θ has increased from
0.026 to 0.030. This illustrates the importance of the choice of S.

Table 6. Comparison of approaches using S = (V, H), ε = 0

Rejection1 No likelihood 2

Acceptance rate 0.03% 0.46%

TMRCA T
1st quartile 0.73 0.74
mean 1.01 1.03
median 0.93 0.94
3rd quartile 1.22 1.24

Mutation rate θ
1st quartile 0.025 0.025
mean 0.031 0.031
median 0.030 0.030
3rd quartile 0.036 0.036

1 Based on 2000 accepted observations.
2 Based on 1000 observations sampled every 50,000 steps.



14 Vincent Plagnol and Simon Tavaré

5 Conclusions

This article has focussed on methods for approximating posterior distributions
when likelihoods are hard or impossible to calculate. We gave examples con-
cerning inference in the fossil record and population genetics. In both cases,
the true posterior was known, so we were able to assess the adequacy of the ap-
proximate methods. In the population genetics example, in which the full data
are complicated, we also summarized the data using readily computable statis-
tics from the full data. Once more, we were able to compare these summaries
with the true posterior. Typically we are not able to make such comparisons,
and it is then hard to know how well the approximate methods perform. As a
result, a systematic method for finding approximately sufficient statistics to
summarize a given probability model is urgently required. This done, there
is a chance of extending stochastic computation techniques to much more
complicated problems than can now be attacked.
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on ancestral inference in the coalescent. Genetics, 156:1427–1436, 2000b.

[9] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A.H. Teller, and
E. Teller. Equations of state calculations by fast computing machines. J.
Chem. Phys., 21:1087–1092, 1953.

[10] J. K. Pritchard, M. T. Seielstad, A. Perez-Lezaun, and M. W. Feldman.
Population growth of human Y chromosomes: A study of Y chromosome
microsatellites. Mol. Biol. Evol., 16:1791–1798, 1999.

[11] B. D. Ripley. Stochastic Simulation. Wiley, New York, 1987.
[12] G. F. Shields, A. M. Schmeichen, B. L. Frazier, A. Redd, M. I. Vovoeda,

J. K. Reed, and R. H. Ward. mtDNA sequences suggest a recent evolu-
tionary divergence for Beringian and Northern North American popula-
tions. Am. J. Hum. Genet., 53:549–562, 1993.



Approximate Bayesian Computation 15
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