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Abstract 

Previous work on the concept of a limiting conditional age distribution of a 
discrete-state continuous-time Markov process with one absorbing state is 
generalised. The generalisation allows this process to have a finite number of 
absorbing states and the associated return process to have an arbitrary initial 
distribution on the transient states of the absorbing process. If the return 
process is p-recurrent, possesses the strong ratio limit property and satisfies 
some further requirements then the limiting age distribution exists. The proof 
of this result requires a new representation of the p-invariant measure of the 
return process. 

The following examples are treated, (a) finite state space birth-death 
processes, (b) Markov branching processes and the linear death process, and 
(c) the linear birth and death process with killing. 

MARKOV PROCESS; LIMITING AGE; p-CLASSIFICATION; STRONG RATIO LIMIT PROP- 

ERTY; BIRTH AND DEATH PROCESSES; MARKOV BRANCHING PROCESSES; LIMIT 

THEOREMS 

1. Introduction 

Consider a Markov process 0& = {Y(t), t O0} with irreducible state space S 
= {0, 1, 2, ... } or Y = {0,, 1, . 

, N}, where NeN. Fix a E S and define the 
last-exit time from {a} by time t to be Ya,(t, o))=sup Sa(o) n[O0, t] where 

Sa(to)={t: Y(t, (o)= a} and sup 4 =0. We define the 'age' of the process by 
T(t, (o)= t- Ta(t, (o). Pakes (1979) gave conditions ensuring the existence of the 
(limiting) conditional age distribution 

ai(t) = lim P, (T(7)) _ 
t I Y(7) = j), 

Received 6 January 1981. 
* Postal address: Department of Mathematics, University of Western Australia, Nedlands, 

WA6009, Australia. 
** Present address: Department of Statistics, Colorado State University, Fort Collins, Colorado, 

80523, U.S.A. 

681 



682 A. G. PAKES AND S. TAVARE 

where 
Pi(.)= P(. 

I Y(O)= i). The required conditions are that ON is p-recurrent 
and that it possesses the strong ratio limit property. 

This result was applied to a return process O constructed from a regular 
minimal absorbing process X = {X(t), t 

_0} 
whose state space is 9 and {0} is 

absorbing and accessible from the irreducible transient set 3f = f\{0}. The 
return process is conservative, has the same generator on 3f as has X, and if {0} 
is hit then the next jump is into {1} after an almost surely positive sojurn in {0}. 
The state {1} has no special significance, and any other single state in Sf can 
take its place. 

Recently, Tavar6 (1980) has considered variants of this scheme. He allows 
an arbitrary initial distribution on 3f for the return process, and jumps from {0} 
to 3f following a given distribution. He also considered the case of an absorbing 
process for which 19' <oo, {0} and {N} are absorbing, and the corresponding 
return process allows jumps from {0} and {N} into 3 = f\{0, N}. He imposes 
the restriction that the return processes are positive recurrent. 

It is our intention here to give a unified treatment which combines the 
essence of the work of Pakes and Tavar6. We accomplish this by letting O be 
as in the first paragraph. Let H be a finite subset of ', 3f = $f\H, and {c1, i e 9} 
be the initial distribution of O. If SH(w) = {t: Y(t, o) e H}, then define 

YH(t, o) = sup SH(w) n [0, t], and T(t, o) = t - yH(t, o) to be the time from t to 

the previous exit from H. We seek conditions ensuring the existence of 

ai(t) = lim P(T(7)-5 t I Y(7) = j), jef, 

where 
P(.) 

corresponds to the fixed initial distribution {c1, i e }. It transpires 
that two ingredients are required for this. We shall require an extension of the 
strong ratio limit property which takes account of general starting conditions. 
This will follow from the discrete-time results of Orey (1971), p. 79. Secondly, 
we must extend Chung's work on last-exit times (Chung (1967), ?II 12), and 
use this to generalise the representation for the p-invariant measure obtained 
by Pakes (1979). This is carried out in Sections 2 and 3 and the results are 
applied to absorbing processes in Section 4. In Section 5 we discuss the 
last-hitting times of states in the transient set of an absorbing process. Finally 
in Section 6 we present some examples, viz. (a) finite-state-space birth-death 
processes; (b) Markov branching processes and the linear death process, and (c) 
the linear birth and death process with killing. 

2. The strong ratio limit property 

Let pj(t) = P(Y(t) = j), and HPi(t)= Pi (Y(t)= , Y(s) H; 0 < s < t), so that if 
i or je H, then HPij(t)= 0. If je]J, then 

(2.1) a1(t, -) = 
P(T(i-)<- 

t I Y(-) = j) = 1- C" 
p,(r 

- t)Hp1i(t)/p1(Q). 
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Suppose that O is p-recurrent, with p-invariant measure {mj}, and function 

{xi}; cf. Kingman (1963). These are positive on 9S, unique up to multiplicative 
constants, and hence can be normalised by setting ma = xa = 1 for a fixed a e H. 
The strong ratio limit property asserts that for i, j, k, 1 e $, t 

e•R, 

(2.2) lim pqi(t + 7)/Pklr(7) = e-pximj/xkml, 

and it is valid iff there exists e > 0 such that 

lim sup Poo(t + 7)/Poo(7) e-pt, 05 t < e. T--*•o 

The strong ratio limit property suggests that for j, k, 1 e S, t eI 

(2.3) Pi(t + 7)/Pkl(7T) -- e-Ptcmi/xkmI, 

where c = cix,. This is clearly true if {c,} has finite support, and if c = 0, 
then (2.3) follows from (2.2) and Fatou's lemma. When c <oo, the following is 
true. 

Lemma 1. Suppose that I is p-recurrent, c = L cix. <oo, and that O has 
the strong ratio limit property (2.2). Then (2.3) holds for a given j, k, les 
iff there is a finite positive constant M such that for all i e i and sufficiently 
large 7 

(2.4) Pj (t + 7)/pkl((7) ? M(XIIxkx))e -'t. 

Remarks. The proof does not require that {c)} be concentrated on 9. If p = 0 
then x, 1, and hence c <oo. 

Proof. Let qi(t)= ePtpij(t)xi/x,. Then (2.2) is equivalent to 

(2.5) qij(t + 7)/qkl(7) --- x>mi/xlm1; i, j, k, 1 e&, t IR. 
Notice that {xm, } is an invariant measure for [qii(t)]. The left-hand side of (2.3) 
becomes 

ce "'t(x1xkxi)(qi (t + 7)/qkl (7)), 
where qj(7)= = Laq,4i(7), and ai = cxI/c, which defines a distribution on Y. 
Finally, Condition (2.4) is equivalent to 

(2.6) qj(t + 7)/qk(7) -5 M, i 
e• , T70-o>0. 

Thus if (2.6) holds, then dominated convergence and (2.5) show that 

(2.7) qs (t + 7)/qkl(7) -- x-m,//xim1, 

and (2.3) follows. Conversely, if (2.6), and hence (2.4), is not valid, it is easy to 
modify Orey's ((1971), p. 79) argument to show that (2.3) fails. 

Nummelin (1979) has recently given conditions ensuring that Markov chains 
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with general state spaces possess the strong ratio limit property. In the next 
lemma, we adapt his idea of small measures to give a condition which ensures 
that the assertion of Lemma 1 is true. This condition is stronger than the 
assumptions of Lemma 1, but does not involve ratios as in (2.4) above. 

Lemma 2. Suppose that V is p-recurrent and has the strong ratio limit 
property. Suppose also that there exists T> 0, a finite set A c $Y and 8 > 0 such 
that for all sufficiently large i, 

JoT 

, 
e'ps(s)ds?=,Sq. Then c <oo, and (2.3) holds. 

Proof. Since eP • Ep,i(s)x, = x,, it is clear that c <oo. The proof can be 
completed simply by showing that 

(2.8) lim lim Y cip,(t+ 7)/Pkl(7) = 0. 
J-..o 7-00 i>J 

But the sum is dominated by 

- X me (p,i(s + t+T)- X 
p,(s)pI(t +7I)/Pkl(T)) ds 

-3 (m1/IxkxIS)e-pt M, mr e Y Pri (s)x ds (t -- 00) 
reA i gj 

where we have used the Chapman-Kolmogorov equation to obtain the first line 
and then the strong ratio limit property and dominated convergence. Now let 
J- -+0, and use monotone convergence to obtain (2.8). 

Theorem 1. Suppose that V is p-recurrent and has the strong ratio limit 
property. If the additional assumptions in either Lemma 1 or Lemma 2 are 
satisfied then limrn,,. a1(t, 7) exists, and is given by 

ai 
(t).= 

1-Y (m./mi)e'tHpi(t). 
iG" 

Proof. This is similar to that in Pakes (1979), p. 283, but extends a simplifi- 
cation due to Tavar6 (1980). The hypotheses show that 

lim pi(7 - t)/pi(7) = eP'mI/mi, i, j E Y, t 
-0. 

Equation (2.1) and Fatou's lemma yield 

lim inf (1 - ai(t, 7)) ? 
eP'(m~/mi)Hp,(t). 
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The Chapman-Kolmogorov equations yield 

a,(t, T)= [pi (T)- 1 
p,i(T'--t)Hpii(t)]pi(T) 

=I p(r-t)p(t)+ Y ,p(rT-t)[pq(t)-HPij(t)]1/pj(r). 
ieH iE" 

Since the summands are non-negative, Fatou's lemma is applicable, yielding 

lim inf ai(t, 7) ?T eP'(mj/mi)pi(t) - 1 eP'(mj/m)HPjj(t) .-iiE3 

= 1- e 
et'(m~Imj)Hp,(t), 

by p-invariance of {m)}. The proof is now complete. 

If ' is p-positive, then [qi(t)] is a positive recurrent matrix and (2.6), 
whence (2.4), is automatically satisfied. If also c, = O(m~) then c <oo. 

3. The calculation of ai(t) 

We begin by reviewing some preliminary material. Remember that {a} is a 
fixed state in H. For j # a, let 

Oaj(6; s)= 6-1 , pak(8)aPkj(S). k 

Chung (1967), p. 201, shows that as 86 0 aji(8; s) converges to a measurable 
bounded function gai(s) and 

t 

(3.1) Pai(t) = Pa.(t - s)g(s) ds 
(j-# 

a). 

It was shown by Pakes (1979) that the sequence {mi} defined by m, = 1, 
mi =S eP"g-i(s) ds (j=# a) is a p-invariant measure for ON. It was then shown 
that if H = {a}, than aj(t)= mr IJ ePs•g,(s) ds (j# a). 

Now define 
4)•)(s; s)= S-1 C 

Pik(S)HPki(S), (iEH, jEf). 

The details of the proofs of Theorems 2 and 3 of Chung (1967), ?II.12, can be 
modified to prove the following result. 

Proposition. If ie H, je•V then 

=m-oo =l k eH L2 
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and for each m, the equality may be replaced by 2_ 
without the limit. As 8 •10, 

4")(8; s) converges to a bounded measurable function gaf)(s), and 

(3.2) p1(t) = 1 pm (t- s)g~'(s) ds (i e H, j Er). 

Theorem 2. The conditional age distribution function ai(t) has the form 

(3.3) a(t)= mi k1H mkgkj(s)e" ds, j&T, 
keH 

and it is non-defective. 

Proof. Let TH be the hitting time of H, and for i c, jeH let Fij(t)= 
P,(TH 5 t, Y(TH) = j). Let Ai(0) = 5 e-'Fji(dt), and (0) = J S,(t)e-o' dt for any 
function 4J: [0, o) - [0, oo), provided this transform exists. Thus (3.2) yields 

(3.4) ,i(0) = 
A 

,(0)((0), i H, j . 
k eH 

If ie9I, then 

pj(t) 
= HPi(t) + pki (t- 

s)Fi• 

(ds), je , 

whence from (3.4) and the last relation 

(3.5) = 
( m)0()- 

X mE, (0,() X 
i,(()•'(o) 

The Laplace transform of the invariant equations for {mi)} yield >e mfi i(0)= 
(p + 0)-1mi, whence from (3.5) and then (3.4) 

EHiie eH = (p + o5)-l m - ) m,0(0)•( 
. 

H ieleH 



Comments on the age distribution of Markov processes 687 

Inverting this transform equation shows that 

e"P't m 
Hpi(t) 

= 
mi - e-' m ig~'(s)ds, 

and (3.3) follows. 
By letting i= a in (3.2), and equating this with (3.1) we obtain for j3 

A,,(0) 
A ( X)= • Y k(O)gkj'()(). 

keH 

Now it is shown in Pakes (1979) that Aak(0), Ai(0) exist for 0>-p 
(k E Y, j: a), that mi = aj(- p) (j# a) and mk= liml4_, ak()/lkaa(0). It follows 
that 

mi= mk e gk' (t) dt, jE 9, 

and hence that ai(-) is non-defective. 

4. Return processes 

Suppose now that T = {X(t), t > 0} is a Markov process with state space ', H 
is a finite set of absorbing states, 9 = 9'\H is irreducible and transient, and H is 
accessible from 93. We shall assume that X is a regular minimal process 
corresponding to the generator [uKi] and let [ri(t), t >0] denote its transition 
semigroup. We construct a return process V as follows. For each i EH, let 

qi e (0, oo) be given, and a distribution {pi, j e 9} be given. Define the generator 
Q = [qi] by qj = ui (ie 9) and if ieH then 4q1 = -q, qij 

• 
qipii (je 9). Let 031 be 

the minimal process constructed from Q; it is unique and regular. Thus if 
Y(t) e 9, 9 evolves according to the construction of T until it next hits a state 
i H. It sojourns there for a time which has an exponential distribution with 
parameter q1, and then jumps to {j} e 9 with probability p~i, and then evolves as 
before. 

If k, j e 9, then HPkj(t) = rki(t), and hence 

S)8(6;s Y)=,6- i( pk(6)rkj(S), iEH, je9. 

If ieH, k e then 

Pik() = 
qie-q,(8-U)Pilrlk(u) 

du, 

whence 

S = 81(1-e1*) 1 
Prlitu 

+A s)d 

= 6-1(1- e-4i") 
X 

p,,r,(u[+ 
s) 
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where 0< u < 8, and we have used an integral mean-value theorem. Domi- 
nated convergence shows that 

g•/q)(s)= Yqilrli(s), i 
c. 

H, 
c=.9, 

and hence 

(4.1) ai(t) = miy' i miqik ePsrki(s) ds. 
ieH keT 

Suppose that W/ is p-recurrent and satisfies (2.3). Then (3.3) holds. Let 
0 = {Y(t), t i 0} be the reversed process whose transition semi-group is defined 
by 

ij (t) = eP'mipi,(t)/mi. 

Let TH be the hitting time of H by 0/, 
and Fi(t)= Pi(TH( t). 

Theorem 3. Suppose that O is a return process as defined earlier. Then 

ai(t)= F(t), t>O, je9f. 

Proof. Let • 
= {,(t), t -0} be the process obtained from 0/ by stopping at 

TH, 
and let [iii(t), t> 0] be the transition semi-group of *. Then HAi(t) = 

By its construction, R is the regular minimal process corresponding to its 
generator, which is Ci4s = mjqij/m, (ie T, i j), ii, = qii + p (ie T), ti- = 0 (i E H). 
If i, jE , the backward and forward systems for R are 

(4.2) Ffj(t) 
= X kkiki(t) and 

f(t) 
= Y ,Fk(t)iki, 

respectively. Let aii(t)= 
eP'mirrj(t)/mi, 

i, j e . Then ai(0+) = Sip, aii(t) satisfies 
the systems (4.2), since they transform into the forward and backward systems 
for T, respectively. 

If ie 9, j e H, the backward and forward systems for R are 

(4.3) Fit(t)= C 
f.kki(t)+ 

zj, 

and 

(4.4) i (t)= vk(t)Uk1. 

Equation (4.4) suggests the definitions aii(t)= ZkES o a(ik(S) dsiiki, i E, JE H, 
and aii(t) = 6 (ie H). Then a (0))= &i, and the aii() satisfy the forward 
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system for R. Using (4.2), a little algebra shows that aii(t) also satisfies (4.3), 
with the same initial condition. It follows that aii(t) = Fii(t), i, j E f. 

Hence 

Fi(t)= 1- C - 

i,(t)=1- 

= 
iii(t) 

(4.5) 

= 1- m ' i e-'mirij(t) = ai(t) 

by Theorem 1, and the proof is completed. 

The theorem has the intuitively appealing consequence that the limiting 
conditional age distribution is just the hitting time distribution of the reversed 
process I. If OW is reversible, that is pii(t) = ii(t) then the limiting conditional 

age distribution of V is the same as its hitting distribution. A necessary 
condition for this is p = 0, for if p >0 then the pi(t) decay exponentially fast, 
whereas the Pii(t) do not. 

The representation of ai(t) in terms of a hitting time can be used to compute 
the moments of the age distribution. Define 

Gi,(p) 
= 

IeP'ri 
(t) dt, 

i, 
j 9, 

and G7+'")(p) = Eke, Gn)(p)Gki(p). Then (4.5) leads eventually to 

(4.6) 1jn) = n tn-1(1 - ai(t)) dt = n! 
• 

m 1 
mi 

qik, 
+) 

n = 0, 1, 
? 

The same result can be derived by the method of Pakes (1979). Let U= 

[u i, i, j E E ] be given by u-i = qii (i : j), = q, + p (i = j). Then it follows from 
(4.2) that G = [G(p), i, je 3] is the minimal non-negative right (and left) 
inverse of - U. 

Finally, define b = Pi(1(H) = 1), j e , I e H. Then it is straightforward to 
show that 

(4.7) 6i = mm= I q1 qlplkGk(p) je , l e H. 

bil is interpreted as the (limiting) conditional probability that H was last visited 
at 1; cf. (6.1). 

5. Last-hit distributions 

Consider the absorbing process ' defined in the last section. For je T, let 
Li= sup {t:X(t)= j}, a possibly defective random variable. Let 3 = {3i, j E ?} be 
the initial distribution of M. 
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Theorem 4. Aj(t) = P(L- 5 t 
l•L <o) = A-1 iJ(3 ftio rii(s) ds where A = 

Li3 piGii, and Gii = o rii(t) dt. 

Proof. Let 
p•i 

be the probability of hitting {j} from {i}. Then 

P(t<I < t+dt) = " 1 Y 

krki(t)ui(1-pi,) 
dt+o(dt), 

ieS' keg- 

since the ith summand is the probability that X has reached {j} by time t, then 
jumps to {i} during (t, t + dt) and never again returns to {j}. The sum is given by 

S3krki1(t u1i 
+ 1 

u,(1- 
pi) dt + o(dt) 

(5.1) 

S0kki(t)O 
u- 

t- uY,p dt+o(dt), 

since YieH U i = 
-Le•i• 

i 
The backward equation r y(t) = i,, u?ri(t) can be immediately integrated to 

give 

-1= 
u, G,, 

whence, since 
p00 

= GiiG-1 (i # j), 
(5.2) - ui - C 

upi 
= G-1 

iEj 

Combining (5.1) and (5.2) gives 

P(t <L <t+dt) = G-1 X 
Y0krk(t) dt+o(dt). 

Finally, 

P(L1 <oo)= P({} 
ever visited) = Pi X+ 

kPJki 
= G X1 

P3kGki, keg9 keg9 
k~j 

and the assertion follows. 

We shall now establish a connection between the age distribution and the 
last-exit distribution as follows. Let X be as defined at the start of this section, 
and let 91 be the corresponding return process, assumed to possess the 
properties above. Let / be the dual process whose transition semi-group is 
given by 

(5.3) pi (t) = 
et'p•i(t)xi/xt, 
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and cf be obtained by stopping O when it hits H. The generator of * is qixi/x/ 
(i # j), and qii + p if i = j, and hence that of f is 

uKix./u, 
(i j), and u + p if i = j. 

If the transition semi-group of c is [Rii(t), t >0, i, i E ] then it follows as in the 
proof of Theorem 3 that 

,ii(t)= 
e"'rii(t)x/x, i, e ?" 

and 

fii= (t) = 
(xI/x,) ePsrik(s)ukj ds, ie T, jeH. 

Let L1 be the last-exit time from {j} for f. Then its distribution function is 
given by 

Ai(t) = A-' i 
(/3x,/) esrii(s) ds 

where A = Zi. (3i/xy)Gii(p) < oo, and {f3, i E ?} is the initial distribution for T. 
Now choose {fi} so that Pi = Bx ikeH mkqki (ie f), where B is chosen so 

that 
i•39 

i = 1 = B r=9 xi ikEH qkimk. The invariance equation for {xJ} shows 

that 
,ir 

qk-X = -pXk -•~iH qkiXk (cf. Tweedie (1974), Proposition 2), and by 
construction of ? we have qki = -Skiq (i, k e H), whence 

(5.4) B-1= Y mkxk(qk -p)>O, 
keH 

and the required {fo} can indeed be chosen. With this choice of {fi} it follows 
that a (t) = A1(t), and hence we have the following result. 

Theorem 5. If the dual absorbing process T has the initial distribution 
defined by Pi = B CkEH mkqki.X, where B is given in (5.4), then the last exit 
distribution of c is just the conditional age distribution given in the statement 
of Theorem 1. 

Remarks. If p = 0, then x , 1, DT, and the initial distribution of X pre- 
scribed by Theorem 5 is 

A = Y, 
Mkqkpki/ Mkqk3, 

iE. 
keH "keH 

An important special case is that in which the return distribution sends ON to a 
fixed state {a} e , no matter where O/ hits H. If p = 0 this covers the situation 
in Pakes (1979) where H = {0}, a = 1. In this case the last exit distribution of ', 

when started at {a} coincides with the conditional age distribution. For a 
similar property in the context of diffusion processes, see Nagasawa and 
Maruyama (1979). 
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6. Examples 

(a) Finite birth-death processes. For a variety of genetic models, we can take 
Y = {0, 1, ... * * , N}, H = {0, N} and p = 0. It is perhaps worth highlighting some 
of the previous results for this case. Let X = {X(t), t 

-0} 
describe the evolution 

of the number of A-alleles in a population of size N at time t. The probabilities 
bpl of (4.7) can be used to determine the probability that the A-allele is the 
oldest. The restarting distribution is given by pot = 1, Pok =0 (k # 1) and 
PN,N-1 = 1, pN = 0 (k 5 N- 1). Then the (limiting) probability that allele A is 
the oldest is given by 

biN = mNmi 
qN0GN-1,j 

(6.1) = mNqNG N-1xa/{mNqNGN-1, + mOqOGlj} 

= b1NGN-1,j/{b1NGN-1.+ bN-1,oGGrl 

where bil = PJ(X(TH)= 1), 1 E H, j e3T and Gij = Gii(0). If the return process & 
is reversible then biN= bN. An alternative approach to the discrete-time 
version of (6.1) can be found in Levikson (1977). 

Finally, to complete the connection between the age distribution and the 
last-exit time described by Theorem 5, we note that the initial distribution 

{0•, 
ie f} specified there is given by 01 = moq0/{moqo+ mNqy} and 

3N_-1= mNqN/{moqo+ mNqN}; these can be simplified to 1 = 
bN_-,0o{bN-_o+ bIN}, 

ON-1 = bN/{bN-toblNlN}. If bo = 1 jN-1 = 1- biN, then 1x = 
ON- =, . 

In these applications it is often the case that O is a birth-death process and 
then the return process is a birth-death process iff pot = PN,N-1= 1. If this is the 
case, 

ml/qomo= 
A (j = 1, , N) 

where 
Ax," " 

, X > 0 are the birth parameters of T and o0, , LN-1 > 0 are 
its death parameters. 

More generally if pot = Sra, PNj = 8bj where, 0 < a, b < N and a : b, we have 

af(t) = (moqoraj (t) + mNqNrb (t))/m1 

and if cri = 1/ILi and o-i = (Ai .. Ai-x)/(Wk ..' Ri), i< j, then, when for example 
a < b, 

mi/moqo = 
i, 

(1:5 j: a), 
(6.2) 

mi/moqo = 
r, 

(a < 
j- 

b), 

a N-1 

(6.3) mi/mogo= 
, uir-(mqls/mo0qo) 

C oy (b<j]N-1) 
i=1 i=b+1 
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and 

SN-1 ]-1 
(6.4) mNq/mog= N-1 (Ti,N--1 1+AN-1 

CUi,N-1 i=1 i=b+l 

The expressions are derived in the usual way, viz., by successively adding the 
equations Z mq, = 0 and iteratively solving the resulting difference equations. 
A similar procedure may be adopted if b < a. 

If a = b then 

a, (t) = ((moqo + mNqN)/mi)raj(t) = 
G-~iraij(t) 

and the mi are given by Equations (6.2)-(6.4) above with a = b. This density 
function is similar to that of the limiting age distribution for a process with a 
single absorbing state. Indeed if the two absorbing states of O/ are amalga- 
mated and returns to {a} occur with rate q0 + qN, then the two return processes 
have the same limiting conditional age distribution. This follows since the 
limiting age distribution is specified by [ui]. 

As a specific example consider the continuous-time version of Moran's 
model for the number of A -alleles in a population of alleles at a single diallelic 
locus in a haploid population of fixed size N; see Karlin and McGregor (1962). 
This is a finite birth and death process for which 

i (N- i) i(N- i) 
hi = • a2, EL, = • 

1 (O ~i 
=N) N N 

where a1, a2 are positive constants which reflect selective differences between 
the alleles. For simplicity we shall let al = a2 = a-there are no selective 
differences. Our formulation differs from that of Karlin and McGregor because 
we assume that the rate of birth-death events is proportional to the population 
size, whereas they assume this rate is independent of N. 

It is not difficult to show that 

Gij=(N-i)/a(N-j) 
(1<_j<_i), 

=i/af 
(i<-- -N-1), 

(see Tavar6 (1980)) and if a = 1, b = N-1 then 

mj/mo0= qoN/aj(N-j) (1 
j-5=N- 

1), mN/mo = qo/4N. 

Referring to (6.1), we find that bin = j/N. The spectral expansions developed by 
Karlin and McGregor (1962) may be used to write down expressions for ai(t). 
These are uninformative in themselves and so we shall omit them. However, see 
Watterson (1976) for the discrete-time analogue. Substituting the quantities 
above into (4.6) and using a little algebra shows that 

= N-1k 
N-1 

k =j+1 k=N-ji 
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Asymptotic expressions may be derived for large populations by allowing 
N -- oo and j to behave in various ways. Thus if j = o(N) as N -- oo then 

pL-i = C x) -(j/a) log N, 

but if j-ON, 0<0<1, then 

1p)~ - (N/a)(6 log 0-1 +(1- 0) log (1- 0)-1). 

The expression on the right is just that obtained for the diffusion approxima- 
tion of the hitting distribution of H for the absorbing process. 

If a = b we obtain 

N- a a-1 k N-1 N- k 
I +j-a+ (a < j) a k= N-k N-i k= k 

N-j-1 k a N-l N-k 
F. +a + 1 1+ (a iij) t 
k=,N-k 

N-ak=ak 

and if a -Np, j- NO as N-- oo where O < p, 0 < 1 then 

-N log+ 1 + (1 -p) log (1- p) (p < 0) 

p log p (1-a)log (1-a (<)) -NI 1-p + 1+ (0 < p). 

This expression for the case p <0 was derived by Kimura and Ohta (1973), 
Equation (11), as the mean age of the approximating diffusion process. 

(b) Markov branching process. Let {X(t)} be the Markov branching process 
whose generator is ui = vip-i +1 (i j) and ui = - ki Uik where v > 0, pi ?0, 
Zito Pi = 1, 0< po <1 and pt =0; see Athreya and Ney ((1972), Chapter 3). As 
is well known X(t) represents the size of a population of individuals whose 
lifetimes are independent and exponentially distributed with mean v-1, and at 
the end of its lifetime an individual produces j progeny with probability pi. All 
individuals reproduce independently. Clearly 3F = N is irreducible and H = {0} is 
accessible from 3 since Po> 0. Let f(s) = i~ pis'. Regularity of {X(t)} is 

equivalent to the condition Jf_1 dsl(f(s) - s) = oo for each e in (0, 1- q) where q 
is the probability of eventual extinction when X(0) = 1 and is the least positive 
root of f(s) = s. We always assume this condition. Let m = f'(1 -). 

We define a return process {Y(t)} by setting A = qo, hi = Poi (je 9) and 

Z h1= 1. The return process is just the Markov branching process with a 
state-dependent immigration component as defined by Stewart (1976) and 
Yamazato (1975). Pakes (1979) considered the age distribution for the special 
case h = 1. 

When m 1 Stewart (1976) and Yamazato (1975) have shown that the 
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return process is recurrent and hence if it possesses the strong ratio limit 
property and property (2.4) then the limiting age distribution exists for any 
initial distribution and 

a,(t) = 
• rij(u) du)/( G 

hGj). 

When m <1 the condition 
h. 

log <oo is necessary and sufficient for the 
positive recurrence of /&, whence the strong ratio limit property. The following 
lemma gives a sufficient condition for the null recurrent case. 

Lemma 3. Let m < 1 and / h. log j = oo. The return process has the strong 
ratio limit property if 

G(x) = 1 - h(1 - e-) = 1/x8L(x) 

where < 8<-51 and L is slowly varying at oo. 

Proof. Let Foo(t) be the distribution function of inf {t: Y(t)= 0, t > A0o} where 
Ao is the hitting time of N from {0}. Clearly 

Foo(t) = A h~ro(t- u)e-Xu du 

= h(rlo(t - u))e-Xu du 

where h(s) = h1si. Moreover, 

poo(t)= e-X(t-u)oo(du) 

where goo is the renewal function generated by Foo. 
Now 

1 -Foo(t)= e- "G[ - log (1- rio(t 
- u))] du + e-Xt 

and 1- 
rlo(t) 

-const. e-v'-m')t. It is easy to show from these that 1-Foo(t)- 
(const.)/(t8L(t)) (see Pakes (1979), p. 287) and Erickson's (1970) key renewal 
theorem shows that lim,,, m(t)poo(t) exists and is positive, where m(t) = 

f~ (1- Foo(u)) du. In particular poo(t) is regularly varying at infinity, whence 
Poo(t + 7)/Poo(7) 1, which is equivalent to the strong ratio limit property. 

When m = 1 the condition 

f1 1- h(s) 

ds 
ds < 

o f)f( - s 
is necessary and sufficient for positive recurrence of q?. The following lemma is 
analogous to that above and extends the treatment given by Pakes (1979). 
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Lemma 4. Suppose m = 1, 

f(s) - s = (1 - s)l+sL((1 - s)-l1), 1 - h(s) = (1 - s)vM((1 - s)-1) 

where 0 - v 
_ 

8 - 1, 8 > 0 and L, M are slowly varying at co. The return process 
has the strong ratio limit property if v > 8/2. 

Remark. O is positive recurrent if v > 8. 

Proof. The integrated backward equation for , 5~fo(t) du/a(u)= t, where 
a(s) = v(f(s) - s), can be written as V((1 - rlo(t))-l) = vt where 

V(t) = jdx/xl -8L(x). 

It follows that 1-rio(t)= 1/tl18(t) where A is slowly varying at co. Thus 

t""/(1-Foo(t)) is slowly varying at infinity and now the proof proceeds as 
before. 

As an aside we mention that the recurrence-time distribution of {0} for the 
return process constructed from the Bienaym6-Galton-Watson process is given 
by fo~ = h(fn-1)- h(fn-2), where 

fn 
is the nth iterate of f evaluated at 0; see 

Pakes (1971). It is quite easy to place conditions on h which ensure that 

pon+ol/PO 
- 1 (Garsia (1963)) and hence obtain the strong ratio limit property 

under fewer restrictions than we have been able to achieve for the continuous- 
time case. These discrete-time conditions cannot be taken over to the present 
case since the discrete skeletons of ON are not chains of the form considered by 
Pakes (1971). This may be contrasted to the situation for the Markov branch- 

ing process with unrestricted immigration: its discrete skeletons are the simple 
branching processes allowing immigration (Pakes (1975)). 

It is obvious that (2.4) is satisfied when I& is positive recurrent. We shall not 
address this question in other cases and assume, say, that {c)} has a finite 

support. 
When m > 1, Stewart (1976) has shown that the function 

g(0) 
= 

01--X 
Ie-'t(1- h(ro(t)) dt] 

exists and is strictly increasing for 0 > d = max (- A(1- h(q)), a'(q)) and there 
exists p e (0, -d) such that g(-p)= 0. He also shows that O/ is p-positive and 
hence the limiting conditional age distribution always exists if m > 1. 

When hi = 1, Pakes (1979) made use of local limit theorems for the rli(t) to 
obtain limit theorems for the limiting age distribution as j - co. His result for 
m = 1 extends in a fairly straightforward manner, as we shall now demonstrate. 

Theorem 6. Let m=l, pij2log+j<oo, or=vf"(1-)/2 and 
3=•1•hi<<o. 
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Then 

lim P(A (j) ft) = exp (- 1/at) (t > 0). 
i j-3oo00 

Remark. The same distribution has been obtained by Watterson (1977) from 
a hitting distribution of a diffusion approximation for critical branching proces- 
ses. Presumably the critical branching process with state dependent immigra- 
tion has a recurrent diffusion approximation. Since this diffusion is reversible, it 
follows that the limiting conditional age distribution, when j is large, will 
behave like that of the extinction time of the corresponding critical branching 
process having a large number of initial ancestors. It is obvious that extreme 
value distributions are the appropriate weak limits of the extinction time. 

Proof. First observe that the conditions of Lemma 4 are satisfied under the 
conditions of the theorem. Pakes (1979) proved that 

vjGj = vj+ + " + v(-,)+ (i, j - 1) 

where {v1} is the renewal sequence corresponding to the 'lifetime' distribution 
whose generating function is (1- f(s))/(1 - s). In particular vi - a-1 (j-- oo), 
where a = f"(1 -)/2. The representation given above for the Green's functions 

yields 

i=l i>i 

The second term on the right - 0 as j - oo and the key renewal theorem shows 
that the first - 39/a. Thus j C hGGii -/3la. 

Now consider 

j . rqi(u) du = h.j2r'i(jy) dy. 

A result of Kesten, Ney and Spitzer ((1966), (4.22)) enables us to infer that as 

j 
--- 

)00, 

j2riL(jy) = i[j(1 - rlo(jy))/oy][rlo(jy)]'-le-1/c'y 
+ y-le(jy) min (i/y, j) + O{(j/y)[1 - (rio(jy))' - i(rlo(jy))'-(1- rlo(jy))]} 

for all i 
i_1 

and y e [t, oo), t >0, and where e(t)-- 0 as t- oo. 
Given 8 > 0, then for all j sufficiently large, 

. 4 y-e(jy) min (ily, j) dy - 8 
• y-1 min (i/y, j) dy 

--8t3jy 
dy 

(j--00), 
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by monotone convergence. It follows that, as j - 0o, 

j i(u) du = h'(r1o(jy))j(1 - 
ro(jy))(oy)-_e-1" dy 

+ j[1 - h(rlo(jy)) -(1- 
rlo(jy))h'(rlo(jy))] 

dy/ly + o(1). 

Since j(1 - rlo(jy)) 1/loy, it is now clear that 

j h, rr.(u)du 
- e-1/y(y)-2dy 

= (P3/)(1 - 
e-1/•t 

and the theorem now follows. 
When m : 1 and hi = 1, Pakes (1979) used the local limit theorem for the 

supercritical Markov branching process to obtain limit theorems for the limit- 
ing age, A(j), as j - oo. The limit distributions which arose involved the density 
of the strong limit of a supercritical Markov branching process, that is, it is a 
function of the detailed structure of the offspring distribution {p }. The follow- 

ing simple examples indicate that when we use a general return distribution, 
the limit distributions of A(j) also depend on the structure of {hi}. 

We shall consider the degenerate case where X is the linear death process; 
po = 1. Then, if 

i>= 
1, 

riq(t)= ()e-vi(1-e-v')'-i 
(j i), =0 (j>i) 

and 

Goi = 1/vj (j i), =0 (j> i). 

The limiting age distribution function is 

ai(t) 
= 

{vjiZ 
h e() (l -vi(1 

e-•Y)idy}/ 

h 

(6.5)i 
(i 

Sh(i) M(-exp(-vt)) 

= 
(1- x/j)j-1(x/j)'-i dx 

/ 
4. 

Suppose first that the return distribution has a Poisson tail: 

hi - const. 85/j! (j -- oo), 

and without loss of generality we can take the constant as unity. In this case 

•i i h I- 8 J/j! and some computation shows that 

a1(t)~J- (1- y/j)'-le8" dy (j -~o), 
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whence 

ai (t/j) 
- e-' dy = 1 - e-t. 

Equation (6.5) can be written as 

i -exp(-vt)) 
(6.6) a,(t) = i(1-x/j)j-1h )(x/j) dx 

j/i! hi. 

If we suppose that the hi are eventually proportional to the negative binomial 
probabilities 

N+j-1) 

then it is not hard to show that 

ai(t) --F(j +1)j- (1- x/j)-(1- x/j)-N-i dx 

whence 

(6.7) a,(t/j) 1- e-U1-- (* 00). 
Some insight into these results can be obtained from the following considera- 

tions. Since both return distributions have rapidly decreasing tails, an observa- 
tion at a large state {j} means that the last return from {0} is likely to be to a 
state close to {j}. For the Poisson-type distribution, h1+k = o(hi), as j - 0, and 
k 

_ 
1 hence we expect that 

P(A(j) 
- 

t) = P(Ti _ t) = 1 -exp (- vjt) 

where Ti is the sojourn time of the death process in {j}, and this is indeed 
consistent with the limit theorem we obtained. The negative-binomial prob- 
abilities satisfy h1+k - hik as (j oo) and k ?1. It follows that the conditional 

age distribution is close to a geometric mixture of the distribution functions of 
the first-passage time from {i} to {j -1}: 

E(e-OAU)) 

_-(1-() . 

(' 
vk 

i=0 k=i vk +o 

and this leads to (6.7). 
These observations lead us to expect rather different limiting behaviour of 

A(j) for long-tailed return distributions. Suppose for example that {hi} is 
defined by h(a)(s) = c(1-s)-1 for some a {2, 3, - }, c>0. Thus hi -cj-" 
(j - oo). It is easily shown that 

ai(t) = [(a- 1)ja-i(j- a)!/(j- 1)!] (1- x/j)"-2 dx 

1 - e-•"- 1)t 
(] ---- 0). 
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We now consider the special case of a returned pure death process defined 

by setting hN = 1 where N> 1. Equation (4) yields 

af(t)= vj 
(N)e-vit'(1- e-vt)N-j 

This is just the density of V(N-i+l) where V(1) ~-... V(N~ denotes the order 
statistics of N independent random variables having the exponential distribu- 
tion with parameter v. This observation allows us to list a number of limit 
theorems for A(j) as N ---oo and with j satisfying a number of growth 
conditions. 

Theorem 7. In the following assertions, N - oo, A, has the standard gamma 
density ti-le-'/(j- 1)! (t 

-0) 
and N(0, 1) has the standard normal distribution. 

(a) vA(j)-log N log AT1. 
(b) vNA (N- j) 2- 

Ai. (c) If 0 < a < 1, then 

aI N [vA([aN])+log a] N(O, 1). 1-a 

(d) If j - oo but j/N - 0 then 

vj?A (j) -log (N/j) - N(O, 1). 

(e) Suppose there exists Me E+ satisfying 

jI(j/N)M o but j4(jIN)M+~ y 

for some 0!y <oo. Then 

fi (vN/j)A(N-j) - ( 
(1+/)-1 

y + N(0, 1). 
1=0 

Assertions (a) and (b) are direct consequences of long established limit 
theorems on extreme order statistics (Galambos (1978), p. 102) and (c) is a 

special case of Mosteller's limit theorem; see David (1970), p. 201. By using 
the well-known representation of order statistics of exponentially distributed 
samples (Feller (1971), p. 19) we can write 

N 

(6.8) A(j) 
= 

/ Vi i=j 

where the Vi are independent and have density ve-v'l(t ?0). Assertion (b) 
follows by inspection. Assertion (d) was suggested by Hall's (1979) Theorem 3, 
but our special assumptions permit the use of a simpler centering and norming. 
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Both (d) and (e) are easy to prove directly from (7) by using moment 

generating function techniques. 

(c) A linear birth-death process with killing. Let 0 be a linear birth-death 

process on 9 = N. U {A} where A is a fictitious state into which the process can 
be absorbed from any state of 3 = ~. The generator of ?W is ui- = -(A + [ + y)i, 

u,i.+l= i, u,i-1 = pi, UiA = yi (ie c) and u, =0 for all other i, j $1. The 

process can simply vanish from RN and is then regarded as having being 
absorbed into {A}. Processes of this type occur as approximations to certain 
Markov chain models in population genetics, see Karlin and Tavar6 (1980). 

Let 

a(s) = Xs2- (X + f + y)s + j (s > 0). 

The generating function Fjr(s, t) = XEo rij(t)s' satisfies the forward equation 

aF, aF, -= a(s) rd F,(s, O)= s' (iE ), at as 

whose solution is 

F (/(s. X/h)(1-e-' )-s(so- se-')' (s, t) = - soe-8 - s (1 - e-) 

where 0 < so < 1 < sl are the roots of a(s) = 0 and 8 = X(sl - so)> 0. The Green 
functions are given by 

G, 
(sj)-1s(s 

'-sxj) 

(j= 1, 2, 

' " 

, i) 
(8j)-ISj(S -- S) (j -- i) 

Interest in the genetic problem focuses attention on the return process for 
which Pox = 

Pal 
= 1. In this case 

a1(t)= Glij r1x(y) dy 

which can be explicitly computed by using the expressions above. 
It is of some interest to observe here that the return process is not reversible, 

thus the expected hitting time TH of {0, A}, given by 

E1(TH) = 1 Gk 8-1 (s -s1) log (1-s-1)+ k-l[sj-k _j-k], 
k=l k=l 

differs from 

E(A())= -81j((si/so) -1) log (1-s sos)+ kL[1(so/s1)k-j. [ Jk=1 
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The case of interest to Karlin and Tavar6 (1980) was a model describing the 
time to formation of a particular genotype in a population undergoing selfing. 
In their case, A =1, = 1 and y =1 giving so=0-7142, s,= 2-7808 and 8 = 
1-0308. Thus 

EI(TH) 
= 0891, whereas the mean age is E(A(1)) = 0833. 

It is quite straightforward to show that 

lim P(SA(j) -log j - t) = exp (- (1 - so/sl)e-'). 
i---oo 

Comparing this result with that for the subcritical linear birth-death process 
(Pakes (1979), ?6.4) shows that with respect to the age distribution, the killed 
process behaves like the ordinary subcritical linear birth-death process. 

References 

ATHREYA, K. B. AND NEY, P. E. (1972) Branching Processes. Springer-Verlag, Berlin. 
CHUNG, K. L. (1967) Markov Chains with Stationary Transition Probabilities, 2nd edn. Springer- 

Verlag, Berlin. 
DAVID, H. A. (1970) Order Statistics, Wiley, New York. 
ERICKSON, K. B. (1970) Strong renewal theorems with infinite mean. Trans. Amer. Math. Soc. 

151, 263-291. 
FELLER, W. (1971) An Introduction to Probability Theory and its Applications, Vol. 2, 2nd edn. 

Wiley, New York. 
GALAMBOS, J. (1978) The Asymptotic Theory of Extreme Order Statistics. Wiley, New York. 
GARSIA, A. M. (1963) Some Tauberian theorems and the asymptotic behaviour of probabilities 

of recurrent events. J. Math. Anal. Appl. 7, 146-162. 
HALL, P. (1979) On the relative stability of large order statistics. Math. Proc. Camb. Phil. Soc. 

86, 467-475. 
KARLN, S. AND McGREGOR, J. (1962) On a genetics model of Moran. Prob. Camb. Phil. Soc. 

58, 299-311. 
KARLIN, S. AND 

TAVARE, 
S. (1980) Non-random mating and its effect on the time to production 

at particular genotypes in finite populations. In preparation. 
KESTEN, H., NEY, P. AND SPrTZER, F. (1966) The Galton-Watson process with mean one and 

finite variance. Theory Prob. Appl. 11, 513-540. 
KIMURA, M. AND OHTA, T. (1973) The age of a neutral mutant persisting in a finite population. 

Genetics 75, 199-212. 
KINGMAN, J. F. C. (1963) The exponential decay of Markov transition probabilities. Proc. Lond. 

Math. Soc. (3) 13, 337-358. 
LEVIKSON, B. (1977) The age distribution of Markov processes. J. Appl. Prob. 14, 492-506. 
NAGASAWA, M. AND MARUYAMA, T. (1979) An application of time reversal of Markov 

processes to a problem of population genetics. Adv. Appl. Prob. 11, 457-478. 
NUMMELN, E. (1979) Strong ratio limit theorems for 4-recurrent Markov chains. Ann. Prob. 7, 

639-650. 
OREY, S. (1971) Lecture Notes on Limit Theorems for Markov Chain Probabilities. Van 

Nostrand-Reinhold Mathematical Studies No. 34, London. 
PAKES, A. G. (1971) A branching process with a state dependent immigration component. Adv. 

Appl. Prob. 3, 301-314. 
PAKES, A. G. (1975) On Markov branching processes with immigration. Sankhy& A 37, 

129-138. 
PAKES, A. G. (1979) The age of a Markov process. Stoch. Proc. Appl. 8, 277-303. 



Comments on the age distribution of Markov processes 703 

STEWART, D. B. (1976) Branching Processes with State-dependent Immigration. Unpublished 
Ph.D. thesis, Monash University. 

TAVARE, S. (1979) Some Results for Markov Processes with Application to Genetic Models. 
Unpublished Ph.D. thesis, University of Sheffield. 

TAVARE, S. (1980) Time reversal and age distributions I. Discrete Markov chains. J. Appl. Prob. 
17, 33-46. 

TWEEDIE, R. L. (1974) Some ergodic properties of the Feller minimal process. Quart. J. Math. 
Oxford. 25, 485-495. 

WATTERSON, G. A. (1976) Reversibility and the age of an allele. I. Moran's infinitely many 
neutral alleles model. Theoret. Popn Biol. 10, 139-253. 

WAITERSON, G. A. (1977) Reversibility and the age of an allele II. Two-allele models, with 
selection and mutation. Theoret. Popn Biol. 12, 179-196. 

YAMAZATO, M. (1975) Some results on continuous time branching process with state- 
dependent immigration. J. Math. Soc. Japan. 17, 479-496. 


	Article Contents
	p. 681
	p. 682
	p. 683
	p. 684
	p. 685
	p. 686
	p. 687
	p. 688
	p. 689
	p. 690
	p. 691
	p. 692
	p. 693
	p. 694
	p. 695
	p. 696
	p. 697
	p. 698
	p. 699
	p. 700
	p. 701
	p. 702
	p. 703

	Issue Table of Contents
	Advances in Applied Probability, Vol. 13, No. 4 (Dec., 1981), pp. 631-862
	Volume Information [pp. 860-862]
	Front Matter
	Application of the Galton-Watson Process to the Kin Number Problem [pp. 631-649]
	Limit Theorems for Point Processes Generated in a General Branching Process [pp. 650-668]
	Competing Risks and Independent Minima: A Marked Point Process Approach [pp. 669-680]
	Comments on the Age Distribution of Markov Processes [pp. 681-703]
	The Lifetimes of Configuration States in Statistical Physics [pp. 704-719]
	Insensitive Average Residence Times in Generalized Semi-Markov Processes [pp. 720-735]
	Brownian Motion and a Sharply Curved Boundary [pp. 736-750]
	The Convex Hull of a Spherically Symmetric Sample [pp. 751-763]
	Risk-Sensitive Linear/Quadratic/Gaussian Control [pp. 764-777]
	Gradient Approach for Recursive Estimation and Control in Finite Markov Chains [pp. 778-803]
	Estimation of the Parameters of a Semi-Markov Process from Censored Records [pp. 804-825]
	A New Autoregressive Time Series Model in Exponential Variables (NEAR(1)) [pp. 826-845]
	Insensitivity in Queueing Systems [pp. 846-859]
	Back Matter





