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We report a novel resource (methylation profiles of DNA, or mPod) for human genome-wide tissue-specific DNA
methylation profiles. mPod consists of three fully integrated parts, genome-wide DNA methylation reference profiles
of 13 normal somatic tissues, placenta, sperm, and an immortalized cell line, a visualization tool that has been
integrated with the Ensembl genome browser and a new algorithm for the analysis of immunoprecipitation-based
DNA methylation profiles. We demonstrate the utility of our resource by identifying the first comprehensive
genome-wide set of tissue-specific differentially methylated regions (tDMRs) that may play a role in cellular identity
and the regulation of tissue-specific genome function. We also discuss the implications of our findings with respect to
the regulatory potential of regions with varied CpG density, gene expression, transcription factor motifs, gene
ontology, and correlation with other epigenetic marks such as histone modifications.

[Supplemental material is available online at www.genome.org. The array data from this study have been submitted

to ArrayExpress under accession no. E-TABM-445.]

DNA methylation is indispensable for genome function in mam-
mals. It is the only known epigenetic modification of mamma-
lian DNA and plays critical roles in transcriptional regulation,
chromosomal stability, genomic imprinting, and X-inactivation
(for review, see Bird 2002). Its importance is further underlined
by observations that various complex diseases such as cancer are
associated with perturbed DNA methylation profiles (Laird
2003). Surprisingly, the role of DNA methylation in regulating
normal tissue-specific genome function is still poorly under-
stood, even though this is one of the functions originally
postulated for this epigenetic modification (Bird 2002). Several
recent genome-wide studies show that DNA methylation pro-
files in mammals are tissue specific (Rakyan et al. 2004; Eckhardt
et al. 2006; Khulan et al. 2006; Kitamura et al. 2007; Illingworth
et al. 2008). However, our understanding of the role of tissue-
specific DNA methylation is still limited, and many questions
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remain open, including the genomic distribution of tissue-
specific DNA methylation profiles, the relative impact of tissue-
specific methylation at CpG-island versus non-CpG-island pro-
moters, and the role of tissue-specific methylation in nonpro-
moter regions, including nonpromoter CpG islands.
Comprehensive genome-wide profiles would signficantly im-
prove our ability to address these questions and to better under-
stand the role DNA methylation plays in tissue-specific genome
function.

As a resource for the scientific community, we have per-
formed the most comprehensive genome-wide study of human
tissue-specific differentially methylated regions (tDMRs), repre-
senting the largest available data set for DNA methylation in any
organism. Using a combination of methylated DNA immunopre-
cipitation (MeDIP) (Weber et al. 2005; Keshet et al. 2006), custom
high-density microarrays, and novel bioinformatic analytical
tools, we have generated reference human genome-wide DNA
methylation profiles for 13 normal somatic tissues, placenta,
sperm, and the GM06990 immortalized cell line that was used in
the ENCODE pilot study (The ENCODE Project Consortium
2007). This work represents a valuable resource for researchers
seeking to understand the role of mammalian tissue-specific DNA
methylation. Using a newly developed visualization tool, all of
our data have been integrated into the Ensembl genome browser
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(Flicek et al. 2008), and are the first genome-wide DNA methyl-
ation data to be included in any genome browser. The final part
of our integrated system consists of a novel bioinformatic algo-
rithm we have recently developed, Bayesian tool for methylation
analysis (Batman), that enables the estimation of absolute meth-
ylation levels from immunoprecipitation-based DNA methyla-
tion profiles (Down et al. 2008). Bioinformatic analyses of our
data confirm some conclusions from previous smaller studies and
also suggest several novel roles for DNA methylation. A negative
correlation between DNA methylation and gene expression is
observed at high-, medium-, and contrary to previous notions, at
even some low-CpG density promoters. On the other hand, gene-
body methylation positively correlates with gene expression. Fur-
thermore, in addition to the study by Illingworth et al. (2008),
our study represents one of the first systematic genome-wide ef-
forts to characterize nonpromoter CpG islands, and we propose
that only a fraction of these are likely to be functional regulatory
elements. Overall, this work represents an important contribu-
tion to current efforts in understanding the epigenetic code, and
its role in tissue-specific genome function in mammals.

Results

Genome-wide mapping of human tissue-specific DNA
methylation profiles

We based our DNA methylation profiling strategy on a recently
developed technique—methylated DNA immunoprecipitation
(MeDIP)—which utilizes a monoclonal antibody against 5-meth-
ylcytosine to enrich for the methylated fraction of a genomic
DNA sample (Weber et al. 2005; Keshet et al. 2006). MeDIP com-
bined with microarrays is a powerful approach for DNA methyl-
ation profiling (Weber et al. 2005, 2007; Keshet et al. 2006;
Zhang et al. 2006; Zilberman et al. 2006). We designed a custom
high-density oligonucleotide array that encompassed all known
promoters and CpG islands (both promoter- and nonpromoter-
CpG islands) in the human genome based on the Ensembl ge-
nome browser (Homo sapiens release 45.36g based on NCBI_36).
To cover these regions, we chose regions of interest (ROIs) that
were 500 bp in length, typically containing 5 X 50-mer probes.

Table 1. Description of the genomic regions represented on the arrays

Most promoters/CpG islands were represented by multiple
ROIs. Repetitive elements were not represented on the array. The
final array design included ROIs that overlapped 82% of all
known autosomal transcriptional start sites (TSSs) in Ensemb],
which we used as a proxy for promoters, 72% of autosomal
nonpromoter CpG islands (for additional information about the
ROIs and array design, see Table 1 and Methods), and also
some randomly selected CpG-poor nonpromoter regions. For
technical reasons, probes could not be designed against the re-
maining TSSs and nonpromoter CpG islands. Data were obtained
for several biological and technical replicates (dye-swaps) for
each of 13 different normal human somatic tissues, placenta,
sperm, and the GM06990 EBV-transformed lymphoblastoid
cell line, resulting in 51 genome-wide DNA methylation profiles
(Fig. 1; Supplemental Figs. 1, 2; Supplemental Table 1). The sperm
data are from a recent study that we published (Down et al. 2008).

Quantitation of DNA methylation levels and integration
into the Ensembl genome browser

Until now, it has not been possible to transform MeDIP enrich-
ment ratios into absolute methylation values. This is because
MeDIP enrichment depends on the density of methylated cy-
tosines (Weber et al. 2005; Keshet et al. 2006), which varies
greatly within the human genome (DNA methylation in mam-
mals occurs almost exclusively at CpG dinucleotides). Any at-
tempt to correct for this CpG density effect at the level of the
array design or with experimental constraints dramatically low-
ers the amount of the genome that can be assessed. To overcome
this constraint, we used a novel algorithm that we recently de-
veloped—Bayesian tool for methylation analysis (Batman)—
based on a Bayesian deconvolution strategy similar to joint bind-
ing deconvolution (Qi et al. 2006) to assign MeDIP signal to CpG
dinucleotides in the sequence (Down et al. 2008; schematically
shown in Fig. 1A). Briefly, Batman corrects for the observation
that methylated sequences with higher CpG densities will have
stronger MeDIP enrichment, thereby allowing estimation of ab-
solute methylation levels. Comparison of Batman-called meth-
ylation values with bisulfite-PCR sequencing data from the Hu-
man Epigenome Project (Eckhardt et al. 2006) and 29 random
regions represented on the array used here demonstrates that the

No. of No. of genes No. of CpG islands Modal CpG,,, Modal CpG,,,.

Genomic category? Description® ROIs represented® represented? in this study® in genome

Promoter ROI located within 1.5 kb upstream of or 44,337 17,271 11,202 Bimodal, Bimodal,
downstream from the TSS of a protein- 0.2 and 0.8 0.2 and 0.8
coding gene’

Exon >50% of the ROI overlaps any exon 7,104 3,705 1,831 0.55 0.2
except 1st or last exons

Intron >50% of the ROI overlaps intron 5,132 2,457 1,089 0.65 0.15
except 1st or last introns

Pseudogene ROI located within 1.5 kb upstream of or 3,033 2,143 406 0.2 0.15
downstream from a pseudogene

Intergenic ROI not classified in any of the 9,904 NA 3,028 0.75 0.15

above categories

#Categories are mutually exclusive.

RO, region of interest. Each ROl was 500 bp, typically containing 5 X 50-mer probes.

“Most genes were represented by multiple ROIs. All genome annotations were from Ensembl genome browser (Homo sapiens release 45.36g based on
NCBI 36). Pseudogene annotations were obtained from www.pseudogene.org.

9ROIs in nonpromoter categories were biased toward CpG islands annotated in the Ensembl genome browser.

°CpG,,. was calculated as (no. of CpGs X sequence length)/(no. of Cs X no. of Gs).

'94% of promoter-ROlIs are located within 800 bp of the annotated TSS.
NA, Not available.
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Figure 1. (A) Schematic description of Batman. The left panel shows five hypothetical genomic regions of varying CpG densities and number of
methylated CpG sites (filled and empty circles represent methylated and unmethylated CpG sites, respectively). As MeDIP enrichment is proportional
to the number of methylated CpG sites, the normalized enrichment ratios of these five hypothetical regions, shown in the second panel, will not
accurately reflect the absolute methylation levels at the genomic region of interest (ROI). Batman is based on the observation that the log-ratio MeDIP
signal of methylated DNA scales linearly with the number of methylated CpG sites in a sequence. We use a Bayesian deconvolution strategy, taking into
account the estimated distribution of DNA fragment lengths, to find the most likely configurations of methylated and unmethylated CpGs in a sequence
that explains the observed MeDIP signals. This allows estimation of absolute methylation levels at the ROI. Yellow, green, and blue represent unmeth-
ylated, intermediately methylated, and methylated regions, respectively. Batman is described in detail in Down et al. (2008). (B) Integration of
Batman-called methylation values into the Ensembl genome browser—screenshot of the data integrated into the Ensembl genome browser (www.
ensembl.org). The web display uses a color gradient to show the Batman methylation score for each of the probes in the ROI. The color represents the
value of the probe on a sliding scale from 20 (bright yellow) to 80 (dark blue). Probes with Batman values of less than 20 or greater than 80 are colored
with the maximum and minimum shades to increase the contrast in the display. Each tissue-type is configured as a dedicated DAS source, allowing the
user to select any possible subset of tissues for viewing. Users clicking on a probe will see a small pop-up window, which displays the exact chromosome
position of the probe and the Batman score.

1520 Genome Research
Www.genome.org


http://genome.cshlp.org
http://www.cshlpress.com

Downloaded from genome.cshlp.org on September 12, 2008 - Published by Cold Spring Harbor Laboratory Press

Human tDMRs

two methods correlate very well (Supplemental Fig. 3; R = 0.84 in
Down et al. 2008).

All of the Batman-analyzed data from this study can be vi-
sualized as a set of extra tracks within the Ensembl genome
browser (Flicek et al. 2008) (Fig 1B). The web display uses a color
gradient to show the Batman methylation score for each of the
probes in the ROI. These data represent the first genome-wide
DNA methylation data to be included in any genome browser,
providing a valuable resource for the scientific community. Fur-
thermore, we have set up another browser (http://td-
blade.gurdon.cam.ac.uk/hepscape/) to allow direct comparison
between the MeDIP-array data from this study and the Human
Epigenome Project (Eckhardt et al. 2006).

Canonical somatic DNA methylation profiles
of human promoters

Consistent with previous findings, we see a bimodal distribution
of observed/expected CpG densities (CpG,,.) in promoter regions
(Fig. 2A) (Takai and Jones 2002; Saxonov et al. 2006; Weber et al.
2007). The CpG-dense population (modal CpG,,. ~ 0.8) corre-
sponds to CpG islands (CGIs)—regions where the CpG, . greatly
exceeds the genome average of ~0.2. CGIs are considered to be
important regulatory elements, as they are generally unmethyl-
ated and ~60% of all known human genes contain CGIs at their
5'-end. Several methods have been proposed for classifying CGIs,

varying in their use of cut-offs for length, GC%, and CpG density
(Bird et al. 1985; Gardiner-Garden and Frommer 1987; Takai and
Jones 2002; Saxonov et al. 2006; Glass et al. 2007). We used the
CGI definition of the Ensembl genome browser, (length > 400
bases and CpG,,. > 0.6), which results in the exclusion of most
small, CpG-rich repetitive sequences in the human genome. As
expected, in a typical somatic tissue ~90% of CGI-associated “re-
gions of interest” (ROIs, defined in Table 1) within the promoter
category display low levels of methylation (<40% methylation)
and hereafter are operationally termed “unmethylated”. Valida-
tion by bisulfite sequencing confirmed that use of this threshold
minimizes false positives (Down et al. 2008). In fact, significant
numbers of unmethylated ROIs (Table 2) were observed across
the entire range of CpG,,., raising the possibility that mainte-
nance of an unmethylated state is also important for the activity
of non-CGI promoters. This is somewhat in contrast to the recent
study by Weber et al. (2007), who concluded that most low CpG
density promoters (LCPs) were methylated. Comparison of our
data with genome-wide expression profiles from a public data-
base (Su et al. 2004) revealed a small but significant negative
correlation between promoter DNA methylation and gene ex-
pression across a broad range of CpG,,. (P< 10~°) (Fig. 2B). We
tested this for eight tissues where suitable data were available from
the GNF expression database, and observed a significant negative
correlation between methylation and expression (P < 0.05)
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Figure 2. Analysis of somatic DNA methylation profiles. (A) Distribution of data with respect to CpG,,, for the different genome feature categories.
The data were operationally categorized into unmethylated (<40%), intermediate (40%-60%), and methylated (>60%). Within the nonpromoter
categories, we focused predominantly on CpG islands as annotated in the Ensembl genome browser (NCBI_36). Therefore, the average CpG,,, within
the nonpromoter categories in our data set was higher than the genome average (refer to Table 1). However, because probes could not be chosen for
all nonpromoter CpG islands, we also randomly selected some CpG-poor nonpromoter regions, and hence, a bimodality of CpG,,. is also observed in
some of the nonpromoter categories. Methylation data used in these plots are from whole blood. (B) Comparison of promoter DNA methylation with
gene expression across a range of promoter CpG,,,.. Whole-blood DNA methylation data (only ROIs overlapping the TSS were used) was correlated with
whole-blood genome-wide expression profiles obtained from the GNF SymAtlas database (Su et al. 2004). There were insufficient data for intermediately
methylated promoters in the CpG,,. = 1.2 category, and methylated promoters in the CpG,,. = 1 categories. The color code is the same as in A, and
error bars represent 95% confidence intervals. (C) Gene expression levels for ICAM3 were obtained from a public database (Su et al. 2004). Expression
values represent average difference values computed by Affymetrix software. These values are proportional to mRNA content in the sample. (D)
Correlation of DNA methlyation with H3K4me3, H2A.Z, RNA Polll, and CTCF enrichment. DNA methylation data (500 bp ROIs) from our study were
correlated with genome-wide enrichment profiles for 20 histone lysine and arginine methylations, H2A.Z, RNA Polll, and CTCF generated by Barski et
al. (2007) using lllumina 1G sequencing technology. The remaining 19 comparisons are presented in the Supplementary section. The X-axes represent
CpG,,. (there were insufficient data to stratify by CpG,, in the nonpromoter categories), the Y-axes DNA methylation levels, and the grayscale
represents the average tag count for the histone modification or protein indicated. The exon and intron categories were combined into a single “genic”
category. Hatched regions indicate that insufficient data were available.
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Table 2. Number of unmethylated ROIs in each CpG,_ . category
CpGo/e

ROIs with <40% methylation

0.0-0.2 1,030 (19.2%)
0.2-0.4 1,139 (16.0%)
0.4-0.6 2,415 (42.9%)
0.6-0.8 9,358 (77.7%)
0.8-1.0 11,639 (84.1%)
1.0-1.0 17,29 (96.8%)

for every bin between 0.2 and 1.0 CpG,,., that is, even for CpG-
poor promoter ROIs (CpG,,. < 0.4), which corresponds to a pre-
viously defined “low-CpG” promoter category (Saxonov et al.
2006; Weber et al. 2007). For example, the ROI associated with
the ICAM3 TSS has a CpG,,. of 0.29 and is hypomethylated only
in the tissues in which this gene is expressed (Figs. 1, 2C; Supple-
mental Fig. 4). Additional examples are shown in Supplemental
Figure 5. However, our data also suggest that many promoters
can be silent, irrespective of the DNA methylation status.

Repression of CGIl-promoters by DNA methylation is well
documented (Eckhardt et al. 2006; Khulan et al. 2006; Estecio et
al. 2007; Jones and Baylin 2007; Weber et al. 2007). Indeed, we
found 5%-10% of CpG island promoters to be predominantly
methylated in any given tissue, consistent with emerging evi-
dence that methylation of CpG islands in normal cell function is
more common than previously appreciated (Eckhardt et al. 2006;
Shen et al. 2007; Weber et al. 2007; Illingworth et al. 2008). With
regard to CpG-poor promoters, the recent study by Weber et al.
(2007) shows a rather complex correlation between CpG-poor
promoter methylation and gene expression—certain promoters
with few CpGs were shown to be active and methylated, whereas
other promoters of that group can be unmethylated when active.
Overall, our data suggest that DNA methylation is involved in
regulating the activity of a small but significant number of pro-
moters over a broad range of CpG,,., including CpG-poor pro-
moters. Further studies will be required to determine the exact
number of such promoters, establish causality, and understand
why some promoters use DNA methylation for regulating their
activity, whereas many other promoters do not seem to require
DNA methylation to be silenced.

DNA methylation profiles of nonpromoter CpG islands

There are 8449 autosomal nonpromoter CGIs annotated in the
Ensembl genome browser, but their function remains poorly un-
derstood. In addition to the recent report by Illingworth et al.
(2008), our study represents one of first systematic genome-wide
effort to characterize nonpromoter CGIs. We observed that the
populations of unmethylated nonpromoter CGIs (CpG,,. > 0.6)
in the various nonpromoter categories have a strikingly similar
“bell-shaped” distribution to the unmethylated CGI-promoter
population (modal CpG,,. = 0.8 in all categories) (Fig. 2A). How-
ever, the unmethylated nonpromoter CGIs represent only a
small proportion of currently annotated nonpromoter CGIs: in a
typical somatic tissue, 20% of exonic CGls, 39% of intronic CGIs,
48% of intergenic CGls, and 23% of pseudogenic CGIs are un-
methylated. Only 29% of nonpromoter CGIs were found to be
unmethylated in all 16 tissues tested, compared with 67% of
promoter-CGls that are constitutively unmethylated. Compari-
son of DNA methylation data (from CD4* cells) of promoter- and
nonpromoter-CGIs with RNA polymerase II binding profiles,
generated by Barski et al. (2007), for human CD4" T-cells using

the Illumina 1G sequencing (formerly known as Solexa sequenc-
ing technology), revealed RNA polymerase II levels at unmethyl-
ated nonpromoter CGIs to be approximately half of those ob-
served at promoter-CGIs. (Supplemental Fig. 6). Consequently,
we propose that approximately only half of nonpromoter CGIs
(as classified in the Ensembl Genome Browser) are likely to be
functional in the sense that promoter CGIs are thought to be. A
number of definitions for CGIs—based on CpG density and local
GC%—have been proposed over the last 20 yr (Bird et al. 1985;
Gardiner-Garden and Frommer 1987; Takai and Jones 2002; Sax-
onov et al. 2006; Glass et al. 2007). The incorporation of experi-
mental data, such as those presented here, will greatly assist in
refining CGI definition and thereby help in understanding their
function in the context of both promoter and nonpromoter re-
gions of mammalian genomes.

Association between DNA methylation and chromatin
signatures

It is known that active regulatory elements bear distinctive chro-
matin “signatures” (The ENCODE Project Consortium 2007) and
that DNA methylation interacts with the chromatin regulatory
machinery (Bird 2002). To better understand the regulatory
potential of the regions analyzed in our study, we compared our
DNA methylation data from CD4* T-cells with genome-wide pro-
files for 20 histone lysine and arginine methylations, histone
variant H2A.Z, RNA polymerase II, and the insulator binding
protein CTCF (Barski et al. 2007). These profiles were generated
for human CD4"* T-cells using the Illumina 1G sequencing. We
found that unmethylated promoter-ROIs are strongly associated
(P < 107>, nonparametric empirical test; refer to the Methods
section) with signatures of active chromatin such as H3K4me3,
H2A.Z, and RNA polymerase II (Fig. 2D; Supplemental Fig. 3).
Although these associations were more pronounced at high
CpGy/e, there was clear enrichment across the entire range of
CpGy/e, including CpG-poor promoter-ROIs. Hypermethylated
promoter-ROIs, across a range of CpG densities, did not show
clear associations with either H3K27me3 or H3K9me3, two well-
established “repressive” histone modifications (Supplemental
Fig. 7). However, even in the original study by Barski et al. (2007)
these modifications showed only a modest correlation with in-
active promoters.

Enrichment for H3K4me3, H2A.Z, and RNA polymerase II
was also observed at unmethylated nonpromoter regions (which
are mostly CpG-rich as a result of our array design), albeit at
relatively lower levels compared with promoter regions (Fig. 2C).
This would suggest that at least a subset of nonpromoter CGIs are
unannotated TSSs, consistent with recent evidence suggesting
that there are many more TSSs in the human genome than has
previously been appreciated (The ENCODE Project Consortium
2007). Alternatively, these unmethylated regions could function
as other types of regulatory elements such as insulators that re-
strict transcriptional enhancers from activating unrelated pro-
moters, i.e., “enhancer blockers” (West and Fraser 2005). All
known vertebrate enhancer blockers interact with the CTCF pro-
tein, and it has been shown that CTCF preferentially binds to
unmethylated sites (Mukhopadhyay et al. 2004). Indeed, we ob-
served a strong correlation (P < 10~ ®) between unmethylated do-
mains (over a range of CpG,,.) and CTCF binding at promoter
and nonpromoter regions. Overall, this analysis reinforces the
idea that a significant proportion of unmethylated nonpromoter
CGls identified in our study are functional regulatory elements.
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Tissue-specific differentially methylated regions (tDMRs)

DNA methylation profiles are known to be tissue specific, but the
role of this epigenetic modification in controlling tissue-specific
transcriptional programs remains controversial (Walsh and Be-
stor 1999; Weber et al. 2007). Approximately 18% of the genomic
regions in our study were classified as tissue-specific differentially
methylated regions (tDMRs) (Khulan et al. 2006), i.e., regions of
the genome that display significant differences in DNA methyl-
ation levels among the 16 tissues analyzed (see Methods, for a
detailed description of the tDMR calling strategy). Comparison
with data from the Human Epigenome Project (Eckhardt et al.
2006) revealed that our tDMR classification approach had a posi-
tive predictive value of 78% and sensitivity of 61%. tDMRs were
found across a range of CpG densities in all genomic feature
categories, although in the promoter category, tDMRs were rela-
tively more common at low-to intermediate CpG-density pro-
moters (Fig. 3A). Consistent with results from the Human Epige-
nome Project (Eckhardt et al. 2006), mature sperm, the product
of the male germ line, was significantly hypomethylated relative
to all other tissues in all the genomic categories; in fact, 27% of
all tDMRs are sperm specific (Supplemental Table 3). DNA meth-
ylation patterns for the GM06990 EBV-transformed lymphoblas-
toid cell line were substantially divergent (both hypo- and hy-
permethylated loci) from all the other tissues (Supplemental
Table 3). Although we profiled only a single cell line (three bio-
logical replicates), our results further support the idea that epi-
genetic profiles obtained from transformed cells are not repre-
sentative of primary tissues (Liu et al. 2005), and future studies
aiming to elucidate disease-specific epigenetic variants should
take this into account.

Correlation of promoter tDMRs with gene expression

To investigate the role of DNA methylation in tissue-specific
transcriptional programs, we compared tissue-specific promoter
methylation and gene expression profiles (Fig. 3B, left). The im-
portant aspect of this analysis, compared with that described
above in the section “Comparison of genome-wide DNA meth-
ylation and gene expression profiles” is that, here, we are com-
paring the expression of the same gene in different tissues. A
significant negative correlation (P < 10~ °) was observed between
tissue-specific promoter methylation and gene expression across
a broad range of CpG,,., including CpG-poor promoter-tDMRs.
This is in contrast to the recent proposal by Weber et al. (2007)
that DNA methylation is unlikely to play a significant role in
regulating CpG-poor promoters. They defined low-CpG promot-
ers (LCPs) as being a region that spans 900 bp upstream to 400 bp
downstream relative to the TSS and does not contain any 500-bp
windows with CpG,,. > 0.48. We reanalyzed our data using this
promoter classification system, but using an even bigger pro-
moter region (e.g., LCP was defined as a 2400-bp region, centered
on the TSS, that does not contain any 500-bp windows with a
CpG,/e > 0.48), and again observed a statistically significant
negative correlation (P < 10~ %) across the entire range of CpG,e
(Supplemental Fig. 8). Overall, our analysis suggests that some
promoter-tDMRs, including CpG-poor promoter-tDMRs, are in-
volved in regulating tissue-specific gene expression. There are a
number of possible reasons for the difference between our results
and those of Weber et al. (2007): (1) we analyzed more tissues
and, hence, have increased the power to detect such differences,
and (2) they used RNA Pol II binding as a proxy for gene expres-
sion. However, it has been shown recently that significant RNA

Pol I binding is observed even at promoters associated with non-
expressed genes (Guenther et al. 2007). It is therefore worth con-
sidering the possibility that DNA methylation actually influences
the binding of proteins involved in elongation of transcription,
and not necessarily RNA polymerase II binding.

Correlation of gene-body tDMRs with gene expression

Surprisingly, gene-body tDMRs showed a small, but significant,
positive correlation between DNA methylation and gene expres-
sion (P =0.024; Fig. 3B, right panel). This is reminiscent of a
recent report of hypomethylation at gene promoters and hyper-
methylation of gene bodies on the active X chromosome in hu-
mans (Hellman and Chess 2007). This type of phenomenon is
exemplified by the ICAM3 gene, which displays promoter hypo-
methylation and gene-body hypermethylation in the tissues in
which it is expressed (Fig. 2C). The functional relevance of tissue-
specific gene-body methylation is unclear. It may be associated
with expression potentiality or act to suppress spurious transcrip-
tional initiation within actively transcribed genes (Zilberman et
al. 2006; Hellman and Chess 2007; Suzuki et al. 2007). Elucidat-
ing the role of gene-body methylation represents an important
area of investigation for the future.

Motif analysis of promoter tDMRs

To further explore the tissue-specific regulatory potential of
tDMRs we used the JASPAR database (http://jaspar.genereg.net;
Vlieghe et al. 2006) to search for over-represented transcription
factor binding sites in tDMRs. Promoter-tDMRs were enriched for
motifs associated with various tissue-specific transcription factors
(Supplemental Fig. 9). Motifs for SP1 and Kriippel-like factor 4
(KLF4) were significantly over-represented in tDMRs associated
with multiple tissues (Fig. 3C). There is extensive evidence that
DNA methylation can modulate SP1 binding, and, consequently,
tissue-specific gene expression (Li et al. 2004). KLF4 is known to
regulate numerous biological processes including differentiation
and development, and recently it has been shown that combined
ectopic expression of KLF4, POUSF1 (formerly known as OCT4),
SOX2, and MYC can induce fibroblasts to revert to a pluripotent
state in vitro (Takahashi and Yamanaka 2006) with concomitant
reprogramming of DNA methylation, gene expression, and chro-
matin states (Wernig et al. 2007). Furthermore, since KLF4 and
SP1 can act synergistically to regulate gene expression (Sze et al.
2007), it is possible that these two transcription factors are re-
quired for tDMR-promoter function in multiple tissues. We saw
much less evidence for over-representation of transcription fac-
tor binding motifs from the JASPAR database in intergenic tDMRs
(data not shown), suggesting that such tDMRs are subject to a
different set of tissue-specific DNA—protein interactions. This is
consistent with observations from the ENCODE pilot project
(The ENCODE Project Consortium 2007) that many sequence-
specific factors show differential occupancy at TSSs compared
with distal DNase I hypersensitivity sites (that are assumed to
contain regulatory information). Motif analysis was not per-
formed for gene-body tDMRs due to the confounding effect of
sequence constraints associated with protein-coding regions.

Gene Ontology analysis of genes associated
with promoter-tDMRs

The functional relevance of promoter-tDMRs was also investi-
gated by an analysis of Gene Ontology (GO) terms (http://
www.geneontology.org/) (Table 3). Previous analyses by others
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Table 3. Comparison of Gene Ontology (GO) terms
(http://www.geneontology.org/) associated with tDMR
and non-tDMR promoters analyzed in this study

Low CpG High CpG
Constitutively Serine-type endopeptidase
methylated activity
Membrane

Somatic tDMR  Olfactory receptor activity =~ Multicellular organismal
development

Sensor perception of smell  Nucleus

Response to stimulus

G-protein coupled receptor
protein signaling pathway

Receptor activity

Signal transduction

Immune response

Integral to membrane

Extracellular region

Inflammatory response

Nucleus
Transcription
RNA binding
Nucleotide binding
Protein binding
RNA splicing
DNA binding
mRNA processing
Regulation of
transcription,
DNA-dependent
ATP binding

Constitutively Intracellular
unmethylated Mitochondrion
Nucleic acid binding

Promoters were defined as 500 bp upstream of the annotated TSS in the
Ensembl genome browser. Only signficant over-representations
(P<107°) are shown.

(Saxonov et al. 2006) have shown that CGI-promoters are
strongly associated with “house-keeping” genes, and CpG-poor
promoters with tissue-specific genes. Our analysis shows that
constitutively unmethylated CGI-promoters (unmethylated in
all tissues including sperm) can be distinguished from tDMR
CGI-promoters, as the latter show a relative enrichment for tis-
sue-specific functions, in particular, neural processes. CpG-poor
promoters that are either constitutively methylated or associated
with tDMRs were found to be strongly associated with tissue-
specific functions. However, constitutively unmethylated CpG-
poor promoters, although rare (599), are associated with house-
keeping genes. Therefore, promoter-tDMRs, across a broad range
of CpG densities, are associated with genes that are thought to
function in a tissue-specific manner. Furthermore, this analysis
shows that it is constitutively unmethylated promoters, and not
CGl-promoters per se, that are associated with housekeeping
genes.

DNA methylation profiles of mature spermatozoa

Mammalian genomes undergo genome-wide epigenetic repro-
gramming during gametogenesis (Bird 2002), presumably to re-
store totipotency. Consistent with the recent study by Weber et
al. (2007), we found that within the promoter category, 94% of
CGl-associated ROIs and 62% of intermediate CpG-density ROIs
(CpGge = 0.4-0.6) are unmethylated in sperm, with the latter
more likely to undergo de novo methylation in one or more
somatic tissues (Fig. 3A). (Note: we first reported our data for
sperm in Down et al. 2008.) Among the CpG-poor ROIs, 13% are
unmethylated in sperm and undergo de novo methylation in

somatic tissues, and 9% are methylated in sperm and undergo de
novo demethylation in one or more somatic tissues. The various
nonpromoter CGI categories also displayed hypomethylation in
sperm (Fig. 3A). However, the major difference in DNA methyl-
ation dynamics between promoter and nonpromoter CGIs is that
the latter are more likely to undergo soma-wide de novo meth-
ylation in somatic tissues.

Discussion

Here we report a novel integrated resource (methylation profiles
of DNA, or mPod) for genome-wide human tissue-specific DNA
methylation profiles. Firstly, the tissue-specific genome-wide
DNA methylation profiles of 16 different human tissues repre-
sent the largest and most comprehensive available data set for
this epigenetic modification. Second, all of our data are displayed
via a novel visualization tool within the Ensembl genome
browser, making the data accessible to the wider scientific com-
munity. Finally, the development of the Batman algorithm al-
lowed us to estimate absolute methylation levels from MeDIP, a
technique that is readily applied to genome-wide DNA methyl-
ation profiling. Batman can also be used to analyze genome-wide
MeDIP data generated from other array platforms and next-
generation sequencing technologies such as the Illumina Ge-
nome Analyzer (Down et al. 2008).

Our study—which includes a range of comparative analyses
with independent genome-wide data-sets of gene expression, his-
tone modifications and other regulatory proteins, transcription
factor binding preferences, and gene-ontology terms—suggests
DNA methylation is involved in regulating at least some promot-
ers over a wide range of CpG densities in the context of cell- and
tissue-specific transcriptional programs. Furthermore, we pro-
pose that only a fraction of the nonpromoter CGIs predicted by
previous bioinformatic approaches are likely to be regulatory el-
ements in the same sense that promoter-CGlIs are thought to be.

Obviously, many questions regarding the role of DNA meth-
ylation remain to be answered, including how tDMRs are estab-
lished, maintained, and function. Although it is easy to postulate
how tissue-specific methylation at promoters could influence
gene expression, the role of gene-body tDMRs is less clear. Un-
derstanding the role of tissue-specific differential methylation in
the context of nongenic regions, including repetitive sequences
that we did not study, will also be critical, especially in light of
recent genome-wide association studies of complex diseases that
have revealed many putative causative variants to be located
within nongenic regions. Future studies, such as the recently pro-
posed International Human Epigenome Project (Jones and Mar-
tienssen 2005) will undoubtedly address many of these impor-
tant questions concerning the role of DNA methylation in ge-
nome function.

Methods

Samples

Sixteen different tissue types were analyzed: B-cells, CD8 T-cells,
CD4 T-cells, cervix, colon, liver, lung, rectum, pancreas, prostate,
placenta, skeletal muscle, sperm, uterus, whole blood, and the
EBV-transformed GMO06690 cell line. Individual sample infor-
mation is listed in Supplemental Table 1. Tissue samples were
obtained from AMS Biotechnology or Analytical Biological Ser-
vices. The GM06990 cell line was a gift from Dr Ian Dunham
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(Wellcome Trust Sanger Institute). (Note: we first reported our
data for sperm in Down et al. 2008).

Immunoprecipitation of methylated DNA

Methylated DNA Immunoprecipitation (MeDIP) was based on a
previously published protocol, but we also included a ligatin-
mediated PCR (LM-PCR) step (Oberley et al. 2004) to amplify the
material. Array hybridizations performed before and after LM-
PCR showed that the LM-PCR did not introduce significant am-
plification bias (Down et al. 2008). A total of 2.5 pug of genomic
DNA was sheared to a size range of from 300 to 800 bp. The
resulting fragments were blunt-ended by incubation for 20 min
at 12°C in a 120-pL reaction containing the DNA sample, 1X
Buffer 2 (NEB), 10X BSA (NEB), 100 pM dNTP mix, and T4 DNA
polymerase (NEB). The reaction was purified using a Zymo-5 kit
(Genetix) according to the manufacturer’s instructions, but the
final elution was done in 30 pL of TE buffer (pH 8.5). Ligation of
the adaptors was performed by incubating overnight at 16°C in a
final volume of 100 pL containing the DNA sample, 40 pL adap-
tors, T4 DNA ligase 10 X buffer, 5 pL of T4 DNA ligase (NEB). The
reactions were purified using a Zymo-5 kit as described above. To
fill in the overhangs, the sample DNA was incubated at 72°C for
10 min in a reaction containing the DNA, 100 uM dNTPs, 1 X
AmpliTaq Gold PCR buffer (Applied Biosystems), 1.5 mM MgCl,,
5 U AmpliTaq Polymerase. The DNA was purified using a Zymo-5
kit as described above. A total of 50 ng of the ligated sample was
set aside as the input fraction; 1.2 pg of the ligated DNA sample
was subjected to MeDIP as described previously, after scaling
down the reaction accordingly. The immunoprecipitated (IP)
sample was purified using Zymo-5 kit (using 700 pL of binding
buffer) according to the manufacturer’s instructions. Ten nano-
grams of each IP and input fraction for each sample were sub-
jected to PCR (20 cycles) using the Advantage-GC genomic PCR
kit (Clontech). PCR cycling conditions are available upon re-
quest. After the LM-PCR, the duplicate reactions were combined,
purified using a Qiagen PCR-clean up kit (Qiagen), and eluted
with 50 pL of water. The MeDIP and input fractions were sent to
Nimblegen for hybridization.

Array design

Our microarray consists of 382,178 50-bp probes. Although we
aimed to target all annotated TSSs and nonpromoter CGIs, we
were unable to design enough suitable unique probes for 18% of
the TSSs and 28% of nonpromoter CGIs, largely due to the pres-
ence of repeat elements. In addition to the regions described in
Table 1, the array contained 50-bp probes tiled at ~100 bp density
across the entire human Major Histocompatibility Complex, and
promoters and nonpromoter CpG islands on the X and Y chro-
mosomes. Analyses of these regions will be presented elsewhere.
The array was originally designed using the NCBI build 35 ver-
sion of the human genome assembly, but then mapped to NCBI
build 36 using Exonerate (Slater and Birney 2005). To be mapped,
probes were required to align full-length and without gaps or
mismatches. Probes that aligned more than once to the NCBI36
sequence were removed from the analysis. Tiled regions were
defined by clustering uniquely mapped probes within 200 bp of
one another. Singleton probes were discarded. The tiled regions
were then divided into 500-bp ROIs. Following hybridization,
arrays were LOESS normalized using custom R-scripts prior to
Batman analysis of the resulting log, ratios.

Bayesian tool for methylation analysis (Batman)

We model the MeDIP-array experiment by assuming that the
observed array signal is proportional to the density of methylated

CpG dinucleotides. We can then use Bayesian inference to deter-
mine the actual methylation state of CpGs. Batman consists of a
suite of Java programs that implement this inference process us-
ing the Nested Sampling strategy (http://www.inference.phy.
cam.ac.uk/bayesys/). Refer to Down et al. (2008) for a detailed
description of Batman.

Bioinformatic analyses

Methylation data were compared with genomic features ob-
tained from Ensembl genome browser (Homo sapiens release
45.36g based on NCBI_36). Pseudogene annotation is from
http://www.pseudogene.org/. All analyses were performed using
a series of custom Java, Perl, and R scripts, which are available
upon request. All analyses were performed at the level of ROIs
(500-bp intervals) unless otherwise stated.

For the expression analyses, Affymetrix expression data were
downloaded from the Gene Expression Omnibus (accession no.
GSE1133). Assignments of Affymetrix probe-sets to Ensembl
transcripts were extracted from the Ensembl core database ver-
sion homo_sapiens_core_44_36f. When more than one probe-set
was mapped to a given transcript, we used the median expression
score for all available probe-sets. For the expression plots, we used
means of log-expression-scores, or log-expression-ratios for the
tissue-specific expression analyses. The 95% confidence intervals
were calculated by bootstrapped difference-of-means tests.

Data localizing histone modifications, CTCF binding sites,
histone variant H2A.Z, and RNA polymerase II was obtained in
the form of sequencing read alignments from http://
dir.nhlbi.nih.gov/papers/lmi/epigenomes/hgtcell.html, and
originally generated by Barski et al. (2007) For each ROI, the
number of overlapping reads was determined using a custom Perl
script. The over-representation tests were bootstrapped differ-
ence-of-means tests.

Associations of GO terms to Ensembl gene IDs were ex-
tracted from the Ensembl core database version homo_sapiens_
core_44_36f. Core promoter regions for all Ensembl transcripts
were defined as the region 500 bp upstream of the annotated
transcript start site. All promoters with available methylation
data were then classified according to CpG density and
methylation state across this 500-bp window. For each of the five
promoter classes shown in Table 2, we performed a hyper-
geometric test to check for over-representation of each term in
the GO vocabulary for genes with promoters of that class com-
pared with the complete set of genes with available promoter
methylation data. We report significant over-representations
(P<1079%).

Tissue-specific differentially methylated regions (tDMRs)
were called in 500-bp ROIs. To identify hypermethylated tDMRs
in a given tissue, we looked for ROIs with a mean methylation of
>60% in the target tissues and <40% in at least three somatic
tissues (i.e., not sperm, placenta, or the cell line). Although the
40% and 60% cut-offs are arbitrary, they were chosen in an in-
formed manner after looking at the distribution of scores round
different features. More stringent thresholds did not materially
affect our conclusions (data not shown). To identify hypometh-
ylated tDMRs, we looked for ROIs with methylation <40% in the
target tissue and >60% in at least three somatic tissues. There are
six tissues in common between our study and the Human Epi-
genome Project (HEP): CD4 T-cells, CD8 T-cells, liver, placenta,
skeletal muscle, and sperm, and 850 genomic regions in common
between the two data sets. We called tDMRs in the HEP data set
using the same strategy as for the MeDIP-array data. Only those
genomic regions for which DNA methylation data were available
for all six tissues in both data sets were used to calculate the

Genome Research 1527

www.genome.org


http://genome.cshlp.org
http://www.cshlpress.com

Downloaded from genome.cshlp.org on September 12, 2008 - Published by Cold Spring Harbor Laboratory Press

Rakyan et al.

positive predictive values (PPV, i.e., true positives/[true
positives + false positives]) and sensitivity of the tDMR calls for
the MeDIP-array data. The PPV is the fraction of MeDIP-array
tDMRs that were also called as tDMRs in the HEP study—78%.
Sensitivity (true positives/[true positives + false negatives], or the
fraction of HEP tDMRs that are also classified as tDMRs in the
MeDIP-array data), was 61%.

Statistics

All credible intervals were estimated by bootstrapping unless oth-
erwise stated. Statistical testing for the GO analysis was per-
formed with hypergeometric tests. P-values for significant asso-
ciation between methylation state and gene expression or ChIP
data were all calculated using a nonparametric empirical test:
briefly, the data were divided into bins (typically high and low
methylation) and the mean expression was calculated for each
bin. The data were then repeatedly resampled, and an empirical
P-value was calculated by counting the number of times an equal
or greater difference of means was seen in the resampled data
compared with the original data. A similar empirical test was
used for the motif analysis, except that the area under an ROC
curve was used as the test statistic.
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Supplementary information for “An integrated resource for genome-wide identification and
analysis of human tissue-specific differentially methylated regions (tDMRs)” — Rakyan et al.,

. Biological Ethnic . .
No. Tissue replicate Age (y) Ancestory array_id cy3 cys Baseline Response Notes
1 B-cells 1 45 African 76459 1P Input  -0.65 17.88
2 B-cells 2 40 European 69117 1P Input  -0.48 25.55
3 CD4 T-cells 1 22 European 66065 IP Input  -0.36 24.90
4 CD4 T-cells 2 31 European 82857 IP Input  -0.23 49.24
5 CD8 T-cells 1 41 European 62860 IP Input  -0.58 24.55
6 CD8 T-cells 1 41 European 78480 IP Input  -0.32 40.01 Technical replicate of sample 5
7 CDS8 T-cells 2 27 African 82312 IP Input  -0.76 19.66
8 CDS8 T-cells 2 27 African 76460 IP Input  -0.62 23.75 Technical replicate of sample 7
9 Colon 1 37 European 61257 IP Input  -0.45 25.30
10 Colon 2 38 European 61664 1P Input  -0.49 19.76
11 Cervix 1 44 European 62870 Input [P -0.53 33.87
12 Cervix 2 50 European 75698 Input 1P -0.47 26.92
13 Cervix 2 50 European 72307 1P Input  -0.49 24.38 Technical replicate of sample 12
14 Cervix 3 25 East Asian 76454 1P Input  -0.40 44.04
15 GM06990 1 41 European 86005 P Input  -0.67 15.28
16 GMO06990 2 41 European 86134 IP Input  -0.62 24.08
17 GMO06990 3 41 European 86136 IP Input  -0.52 25.70
18 Lung 1 41 European 59181 IP Input  -0.63 20.15
19 Lung 3 36 East Asian 79060 IP Input  -0.50 19.77
20 Liver 1 37 European 82843 IP Input  -0.42 23.97
21 Liver 1 37 European 74196 Input 1P -0.68 18.28 Technical replicate of sample 20
22 Liver 2 37 European 71622 1P Input -0.37 34.38
23 Liver 2 37 European 74212 Input [P -0.52 29.16 Technical replicate of sample 22
24 Liver 3 26 East Asian 59504 1P Input  -0.53 22.68
25 Placenta 1 29 (mother) European 83032 1P Input -0.34 42.38
26 Placenta 2 31 (mother) European 79812 Input  IP -0.32 47.85
27 Placenta 2 31 (mother) European 81192 1P Input  -0.24 49.11 Technical replicate of sample 26
28 Placenta 3 unknown East Asian 83895 1P Input -0.34 37.51
29 Prostate 1 51 European 71742 1P Input  -0.47 28.31
30 Prostate 2 46 European 77241 Input 1P -0.41 35.40
31 Prostate 2 46 European 71738 1P Input  -0.28 39.02 Technical replicate of sample 30
32 Pancreas 1 37 European 79036 IP Input  -0.44 24.25
33 Pancreas 2 37 European 76450 Input IP -0.53 16.89
34 Pancreas 2 37 European 82148 IP Input  -0.39 25.68 Technical replicate of sample 33
35 Pancreas 3 33 East Asian 83896 IP Input  -0.27 40.00
36 Rectum 1 43 European 61631 IP Input  -0.52 35.50
37 Rectum 2 37 European 61622 IP Input  -0.57 21.14
38 Skeletal Muscle 1 37 European 74213 Input 1P -0.67 25.88
39 Skeletal Muscle 2 41 European 72308 1P Input -0.51 31.77
40 Skeletal Muscle 3 26 East Asian 83891 1P Input  -0.41 37.22
41 Sperm 1 20-49 European 61246 1P Input  -0.58 24.64
42 Sperm 2 20-49 European 78923 1P Input  -0.39 23.20
43 Sperm 3 20-49 European 83890 IP Input  -0.21 41.53
44 Sperm 4 20-49 European 98489 Input IP -0.34 28.53
45 Uterus 1 38 European 71619 IP Input  -0.34 35.11
46 Uterus 1 38 European 76451 Input TP -0.35 26.79 Technical replicate of sample 45
47 Uterus 2 41 European 82533 IP Input  -0.24 14.56
48 Uterus 2 41 European 76452 Input TP -0.41 25.27 Technical replicate of sample 47
49 Uterus 3 39 East Asian 82058 IP Input  -0.58 19.91
50 ‘Whole Blood 1 26 European 76457 1P Input -0.61 25.59
51 Whole Blood 3 44 East Asian 98131 Input 1P -0.57 23.84

Supplementary Table 1. Tissue samples used in the study. The "Baseline" and "Response"
parameters refer, respectively, to the intercept and inverse slope of a linear model fitted to the low-
CpG portion of each array's data (refer to description of Batman). The "Response" parameter can
be interpreted as the number of methylated cytosines in a region required to increase the observed
array signal by one unit. Since the noise level of the arrays appears to be fairly uniform, this can be
interpreted as a measure of the signal/noise ratio of the complete MeDIP-chip experiment. Data for
the sperm samples have been previously described in Down et al., (in press).
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Supplementary Figure 1. MeDIP-array data plotted against a measure of CpG density in the
neighbourhood of the probe. Probes were sub-divided into three equal-sized sets according to probe
melting temperatures calculated using Nimblegen’s method (www.nimblegen.com). The red line
shows the Batman calibration used for the complete dataset. As expected, most of the high Tm
probes are in high-CpG regions. However, in regions of lower CpG density, the three populations of
probes are similar, and in particular the linear model seems to fit all three populations reasonably
well.
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Supplementary Figure 2. Correlation coefficients between the 51 MeDIP-chip microarrays used in
this study. Each array was analysed individually using the Batman method. Area of squares
reflects the correlation coefficient (r) with an empty square indicating r <= 0.65 and a full square
indicating r = 1.0. The overall correlation between arrays is high (with the great majority of
pairwise comparisons showing r > 0.65), indicating a strong methylation pattern in common
between most tissues. Some arrays show lower overall correlation than others: we believe that this
reflects a slightly lower signal to noise ratio from these arrays, and note that it often corresponds
with a relatively high Response parameter (see Sup. Table 1 and Sup. methods).
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Supplementary Figure 3. Bisulfite-PCR validation of the Batman calls. Initially, 36 regions were
chosen for bisulfite-PCR validation, spanning a range of CpG densitites, genomic locations, tDMRs
and non-tDMRs (see Supplementary Table 2). However, PCR products could be obtained for only
29. The validation was performed for each of the same tissue samples analyzed on the arrays,
resulting in >1,000 individual bisulfite-PCR sequences. For the sake of clarity, only 5 tissues are
shown here. The bilsufite-PCR was performed as described previously', and then averaged across
100 bp tiles. DNA methylation data for the biological replicates for each tissue type were averaged.
We classified both the bisulfite-PCR and Batman-called array data as unmethylated (< 40%) or
methylated (> 60%). Based on this classification, only ROIs 5981 and 6142, are discordant between

the bisulfite and array datasets.
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Supplementary Table 2. Regions analyzed in Supplementary Figure 1.

Bisulfite-PCR Amplicon Amplicon Array
no. amplicon ID Chr start end GC% CpG% ROIid ROI start ROI end
1 4979 22 29,938,315 29,938,715 67 6.2 27086 29,938,018 29,938,968
2 5105 22 17,545,712 17,546,102 77 11.8 26738 17,545,145 17,547,059
3 5224 22 20,130,777 20,131,135 64 6.7 26831 20,130,463 20,131,012
4 5981 22 38,296,618 38,297,072 67 3.5 27317 38,296,495 38,297,444
5 6135 22 35,970,069 35,970,424 67 4.5 27195 35,970,040 35,970,489
6 6142 22 35,938,425 35,938,903 67 3.8 27194 35,938,422 35,938,871
7 6158 22 49,216,499 49,216,926 61 4.9 27675 49,216,545 49,216,794
8 6313 22 18,510,668 18,511,158 70 8.4 26780 18,510,402 18,511,251
9 6575 22 49,334,595 49,335,038 67 7.4 27696 49,333,374 49,335,023
10 6587 22 29,281,454 29,281,947 63 8.3 27059 29,280,934 29,282,083
11 6696 22 41,419,027 41,419,524 66 8.2 27422 41,418,869 41,419,618
12 6705 22 45,453,093 45,453,592 59 5.6 27559 45,453,377 45,453,526
13 6763 22 39,964,476 39,964,879 70 6.4 27354 39,963,565 39,964,753
14 8828 6 101,018,918 101,019,406 64 6.5 34354 101,018,058 101,020,107
15 9054 6 139,136,417 139,136,888 60 53 34696 139,136,090 139,137,339
16 9098 6 46,811,222 46,811,720 51 3.8 34024 46,810,546 46,811,795
17 9106 6 53,322,056 53,322,372 42 2.5 34096 53,320,630 53,322,579
18 9181 6 150,963,434 150,963,699 64 9.8 34785 150,962,740 150,963,841
19 9232 6 28,475,339 28,475,830 59 6.3 33702 28,475,166 28,475,915
20 9253 6 126,111,195 126,111,673 53 4.8 34567 126,110,449 126,113,315
21 9254 6 153,346,203 153,346,693 70 8.0 34814 153,345,105 153,346,654
22 9368 6 170,735,558 170,735,982 51 3.4 35053 170,735,258 170,736,107
23 9480 6 33,787,387 33,787,734 63 8.9 33720 33,787,126 33,787,975
24 9482 6 54,281,191 54,281,533 41 1.2 34106 54,280,991 54,282,009
25 9502 6 154,872,494 154,872,915 67 6.9 34823 154,872,350 154,873,838
26 9520 6 76,368,619 76,368,942 74 13.0 34204 76,367,741 76,369,717
27 9725 6 37,774,253 37,774,700 68 8.3 33827 37,774,107 37,775,056
28 11747 20 2,801,490 2,801,889 57 4.3 24947 2,800,957 2,802,966
29 13405 22 35,777,451 35,777,920 73 10.6 27183 35,777,329 35,778,352

All co-ordinates are based on the NCBI36 version of the human genome
Primer sequences are available upon request
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Supplementary Figure 4. DNA methylation status of the ICAM3 gene in a panel of tissues.
Promoter methylation bars are based on a 500bp region upstream of the transcription start site (as
annotated in Ensembl), while gene body bars show the mean of all available exonic and intronic
data from the second exon onwards.
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Supplementary Figure 5. Promoter DNA methylation and expression patterns for two tissue-

specific genes. Gene expression data was plotted as in figure 2c. Expression data are from Su et al.,
(2004).
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Supplementary Figure 6. DNA methylation data for promoter and non-promoter CpG islands from
our study was correlated with genome-wide enrichment profiles RNA Polll generated by Barski et
al., 2007 (ref. 2) using Solexa 1G sequencing technology. The y-axis DNA represents the average
tag count for RNA Polll. Yellow is < 40% methylation and blue is >60% methylation.
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Supplementary Figure 7. DNA methylation data from our study was correlated with genome-wide
enrichment profiles for 20 histone lysine and arginine methylations, H2A.Z, RNA Polll, and CTCF
generated by Barski et al., 2007 (ref. 2) using Solexa 1G sequencing technology. The x-axes
represent CpGy/e (there were insufficient data to stratify by CpGy/e in the non-promoter categories),
the y-axes DNA methylation levels, and the grey-scale represents the average tag count for the
histone modification or protein indicated. The exon and intron categories were combined into a
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Supplementary Table 3. Tissue-specific differentially methylated regions (tDMRs) were called in
500bp ROIs. To identify hypermethylated tDMRs in a given tissue, we looked for ROIs with a
mean methylation of > 60% in the target tissues and < 40% in at least three somatic tissues (not
including sperm, placenta, or cell line). Similarly, to identify hypomethylated tDMRs, we looked
for ROIs with methylation <40% in the target tissue and > 60% in at least 3 somatic tissues.

hypo- hyper-
methylated methylated
tDMRs tDMRs

B-cells 613 531
CD4 T-cells 725 328
CDS8 T-cells 555 908
Colon 579 392
cervix 473 593
GMO06990 cells 1278 1667
Lung 439 472
Liver 520 670
Placenta 731 1192
Prostate 522 512
Pancreas 922 576
Rectum 676 554
Skeletal Muscle 625 1236
Sperm 4348 1030
Uterues 1822 1094
Whole Blood 739 861
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Supplementary Figure 8. Comparison of tissue-specific DNA methylation and gene expression
using a promoter classification similar to that previously used by Schubeler and colleagues®.
‘Promoters’ were defined as a 2,400 bp region centered on the TSS annotated in the Ensembl
genome browser. High CpG density promoters (HCP) were defined as having at least one 500 bp
window with CpGye > 0.75 and GC% > 55%. Low CpG density promoters (LCP) were defined as
having no 500 bp windows with CpGye > 0.48 and GC% > 55%. All other promoters were
classified as intermediate CpG density promoters (ICP). The figure shows a comparison of
promoter-tDMR (located anywhere within 1.2 kb of the TSS) DNA methylation and gene expresson
between whole blood and uterus. Gene expression data are from GNF SymAtlas database’. Yellow
bars represent promoter-tDMRs that display <40% methylation in whole blood and > 60%
methylation in uterus. Blue bars represent promoter-tDMRs that display > 60% methylation in
whole blood and < 40% methylation in uterus. 95% confidence intervals for the mean log ratios
were calculated by bootstraping.
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Significance
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0.00068

0.0008

0.0002
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0.00031

0.00001

0.00086
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0.00078
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Supplementary Figure 9 (previous page). Complete list of motifs from the JASPAR CORE
database which are significantly over-represented in promoter tDMRs (p <= 0.001, simulations
indicate a false discovery rate <10% at this threshold). We compared hyper- and hypo-methylated
promoter tDMRs from each tissue in this study with equal-sized sets of non-tDMR promoters with
matching distributions of CpG dinucleotide frequencies. For each promoter, we scanned each of the
JASPAR motifs using the nmscan algorithm from NestedMICA 0.8.0, and recorded the highest
score for each motif in each promoter. For each motif, we then compared each tDMR set with its
corresponding non-tDMR set, looking for significant differences in the distribution of motif scores.
Significance was assessed empirically by randomly resampling promoters into the tDMR and non-
tDMR categories.
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