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SPARSE PARTITIONING: NONLINEAR REGRESSION WITH
BINARY OR TERTIARY PREDICTORS, WITH APPLICATION TO

ASSOCIATION STUDIES

BY DOUG SPEED1 AND SIMON TAVARÉ2

University of Cambridge

This paper presents Sparse Partitioning, a Bayesian method for identify-
ing predictors that either individually or in combination with others affect a
response variable. The method is designed for regression problems involving
binary or tertiary predictors and allows the number of predictors to exceed the
size of the sample, two properties which make it well suited for association
studies.

Sparse Partitioning differs from other regression methods by placing no
restrictions on how the predictors may influence the response. To compensate
for this generality, Sparse Partitioning implements a novel way of exploring
the model space. It searches for high posterior probability partitions of the
predictor set, where each partition defines groups of predictors that jointly
influence the response.

The result is a robust method that requires no prior knowledge of the true
predictor–response relationship. Testing on simulated data suggests Sparse
Partitioning will typically match the performance of an existing method on a
data set which obeys the existing method’s model assumptions. When these
assumptions are violated, Sparse Partitioning will generally offer superior
performance.

Introduction. In recent years association studies have surged in popularity,
driven by the ability to interrogate the genome in ever-increasing detail [McCarthy
et al. (2008)]. The common aim of these studies is to detect genomic variants that
are linked with a particular phenotype. It is hoped that detecting such variants will
bring us closer to understanding the biological processes at work.

So far these studies have had mixed results. While variants with strong ef-
fects are picked up fairly readily [e.g., The Wellcome Trust Case Control Consor-
tium (2007)], there is speculation that more subtle associations are being missed
[Cordell (2009)]. This suggests the need to develop more sophisticated tools that
are able to explore beyond the obvious [Stephens and Balding (2009)].

Formally, an association study can be viewed as a regression problem consist-
ing of n data points (the samples) and N predictors (the variants). In this paper
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we consider the case when each predictor takes either two or three unique val-
ues. This is common in association studies. For example, a predictor might record
presence or absence of a mutation, or whether a variant is in a neutral, amplified or
deleted state. We also allow for “large p, small n problems” in which the number
of predictors exceeds the sample size. Again, this is often the case with association
studies, owing to the abundance of genetic variants available to examine.

Currently available regression tools can be characterized by how they permit
predictors to influence the response. For example, many fit an additive model,
which overlooks the possibility that interactions between predictors might affect
the response. The methods which permit interactions will generally specify the
type of interactions they allow. A key factor affecting performance is whether the
data set being examined conforms to the restrictions the method imposes. Sparse
Partitioning tries to avoid placing restrictions on the underlying model relation-
ship. This should enable it to maintain power in scenarios where other methods
might fail.

Section 1 describes some of the existing methods suitable for processing high-
dimensional data. Sections 2 and 3 briefly outline the Sparse Partitioning method-
ology. Sections 4 and 5 test the performance of Sparse Partitioning compared to
existing methods, while Section 6 concludes the paper. Additional details are pro-
vided in the Appendix and supplementary material.

1. Existing methods. The task of a regression method is to infer how the
predictors influence the response. Let the vector Y (size n×1) contain the response
values and the matrix X (size n×N ) contain the predictors. For the ith data point,
Yi denotes its response, while Xi,1, . . . ,Xi,g, . . . ,Xi,N denote its predictor values.
If we write the regression model as l(E(Y)) = f (X), where l is a specified link
function, the aim is to deduce properties of f (X), the “underlying relationship.”
In particular, we wish to identify the subset of predictors that contribute toward
f (X).

Consider writing the underlying relationship as

f (X) = f1(XG1,1, . . . ,XG1,s1
) + · · · + fK(XGK,1, . . . ,XGK,sK

).

Under this representation, f (X) is influenced by additive contributions from
groups of interacting predictors. fk describes the contribution of predictors
Gk,1, . . . ,Gk,j , . . . ,Gk,sk to f (X). In this paper, additivity is not considered an
interaction. Therefore, the predictors in each group are said to interact with each
other, but not to interact with a predictor in a different group. For the most general
relationship, all predictors feature in one group. In practice, however, we suspect
f (X) is far simpler.

We have distinguished existing methods based on two features of their underly-
ing relationships: whether they permit more than one group of predictors to con-
tribute to f (X) and whether they permit interactions between contributing predic-
tors. Figure 1 demonstrates the four possibilities, using the case when the predic-
tors are binary and the response is continuous.
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ONE GROUP MULTIPLE GROUPS
OF PREDICTORS OF PREDICTORS

NO

INTERACTIONS

Y = α + βXg

e.g., Single

Y = α + ∑N
1 βgXg

e.g., SSS

INTERACTIONS
Y = f (XG1 , . . . ,XGs )

e.g., Pairs, CART, RF

Y = f1(XG1,1 , . . . ,XG1,s1
) + · · ·+

fK(XGK,1 , . . . ,XGK,sK
)

e.g., Logic, MARS, Sparse Partitioning

FIG. 1. Regression methods can be categorized according to two features of their underlying rela-
tionship. This table shows the four possibilities, for the case of binary predictors and a continuous
response. Explanations of the existing methods, Single, Pairs, CART, RF, SSS, Logic and MARS, are
provided in the main text.

1.1. One group, maximum group size one.

f (X) = f1(XG1,1).

The simplest assumption supposes the response is influenced by only one predictor.
Most methods in this category are equivalent to performing a maximum likelihood
test comparing a null hypothesis, f (X) = constant, with an alternative, f (X) =
f1(Xg). Single is our implementation of such a method. Considering that these
methods can only detect an associated predictor by its marginal effect, they are
surprisingly successful. They are also extremely fast to run and therefore very
popular [e.g., Stranger et al. (2007)].

Bayesian alternatives are possible [e.g., Balding (2006)] and useful if certain
predictors are thought a priori more likely to be associated. Otherwise they will
generally produce the same results as classical methods.

1.2. One group, maximum group size greater than one.

f (X) = f1(XG1,1, . . . ,XG1,s1
).

Even for very high-dimensional problems (>500,000 predictors) it is possible to
test exhaustively all pairwise models [cf. Marchini, Donnelly and Cardon (2005)].
The method Pairs is our extension of Single, performing a maximum likelihood
test for each pair of predictors. While the method could be extended further to
consider three or four way interactions, this is often infeasible due to computation
time.

A second method in this category is CART [Classification and Regression Trees;
Breiman et al. (1984)]. CART differs from Pairs in not insisting on the full interac-
tion model for associated predictors. For example, a CART model containing two
associated predictors might have only 3 degrees of freedom, even though there
are 4 unique vector values present. Random Forest [Breiman (2004)] offers a sto-
chastic interpretation of this method, constructing a large number of trees in a
quasi-random fashion and summarizing their properties.
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1.3. More than one group, maximum group size one.

f (X) = f1(XG1,1) + · · · + fK(XGK,1).

This underlying relationship allows more than one predictor to be causal, but re-
stricts the causal predictors to contributing additively. When there are more pre-
dictors than samples, the standard multiple regression model will become over-
saturated and fail.

The classical solution, adopted by Variable Subset Selection, Lasso and Ridge
Regression [described in Hastie, Tibshirani and Friedman (2001)], is to introduce
a penalty term that limits the number of contributing predictors. However, this
penalty term can appear quite arbitrary. An alternative is offered by Bayesian meth-
ods [Wang et al. (2005); Zhang et al. (2005); Hoggart et al. (2008)]. These methods
allow our preference for sparse models to be reflected in the prior distribution. We
picked Shotgun Stochastic Search [Hans, Dobra and West (2007)] to represent this
category of methods in the simulation studies.

1.4. More than one group, maximum group size greater than one.

f (X) = f1(XG1,1, . . . ,XG1,s1
) + · · · + fK(XGK,1, . . . ,XGK,sK

).

Allowing both interactions and multiple groups of predictors to contribute to the
underlying relationship has the potential of most accurately describing the true
model. However, both decisions increase the size of the model space and so the
difficulty of identifying the true model.

Logic Regression [Ruczinski, Kooperberg and LeBlanc (2003)] and Multivari-
ate Adaptive Regression Splines are two of the few methods in this class. Both
methods place restrictions on the permitted functions which reduce the size of the
model space; Logic insists on Boolean operators, while MARS uses products of
hinge functions. Sparse Partitioning falls into this category, but places no restric-
tion on the types of functions allowed.

2. Formulating the regression as a partitioning. In order to describe Sparse
Partitioning’s methodology, it is convenient to formulate the regression problem
as a search for high scoring partitions. Consider how the underlying relationship
groups predictors:

f (X) = f1(XG1,1, . . . ,XG1,s1
) + · · · + fK(XGK,1, . . . ,XGK,sK

)

= f1(XG1) + · · · + fK(XGK
).

The disjoint sets G1,G2, . . . ,GK index groups of associated predictors. If we let
G0 index the “null group”—the group of predictors in no way associated with the
response—then G = {G0,G1,G2, . . . ,GK} defines a partitioning of {1,2, . . . ,N}.

In the representation above, predictors are not allowed to feature in more than
one nonnull group. To avoid this restriction, while at the same time maintaining



SPARSE PARTITIONING 877

I = (

G1︷︸︸︷
11

G0︷︸︸︷
00

G2︷︸︸︷
2 )

f (X) = f1(X1,X2) + f2(X5)

⇒
For binary predictors and a continuous response:

Y = α0 + α1,1X1(1 − X2) + α1,2(1 − X1)X2
+α1,3X1X2 + α2,1X5

FIG. 2. An example of a partitioning for a problem containing five binary predictors (each valued
0 or 1) and a continuous response.

a partitioning, the predictor set is expanded to contain C copies of each predictor
and N is increased accordingly. For the remainder of this paper, we describe the
method supposing C = 1, then explain the changes required when this is not the
case.

A partition can also be described by the vector I = (I1, I2, . . . , IN), where Ig

indicates to which group predictor g belongs. This notation will be useful later
on and also reminds us that the ordering within groups is not important. Figure 2
gives an example of a simple partitioning and the underlying relationship to which
it refers.

The focus of Sparse Partitioning is to determine properties of the partitioning
defined by the underlying relationship. Our main desire is to identify which predic-
tors are not in the null group. However, it is also useful to know whether predictors
feature in the same nonnull group, indicating interactions. The advantage of formu-
lating the problem in terms of partitions is that the model space is likely too vast
to hope to detect accurately the explicit underlying relationship (i.e., determine
f = {f1, f2, . . . , fK} as well as G). Fortunately, we are usually more interested in
detecting which predictors are involved, rather than exactly how they contribute
(the latter can be saved for follow-up analysis).

3. Sparse Partitioning methodology. Sparse Partitioning is a Bayesian
methodology, so it follows the usual steps of deciding a prior, calculating the like-
lihood, then computing the posterior distribution of models through use of Bayes
formula:

P(Model|Data) ∝ P(Model) × P(Data|Model).

Each model is defined by {G, f}, a partition and a corresponding set of functions.
However, f is considered a nuisance parameter, so we are interested in determining
the marginal posterior P(G|Data).

3.1. Prior.

P(Model) = P(G, f) = P(G) × P(f|G).

The prior for the partition is based on our belief in pg , the probability that predic-
tor g is associated with the response. Therefore, P(G) = P(I) is constructed such
that

∑
I:Ig �=0 P(I) = pg . Two partitions containing the same associations are given

equal weight. When multiple copies of each predictor are permitted, pg equals the
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probability that at least one copy of predictor g is associated. Sparse Partitioning
keeps fixed the values of pg , however, it is straightforward to allow them to vary
if more detailed prior information is available.

Given Gk , the relevant information of function fk can be described by the values
it assigns each node (unique vector value) of XGk

. For the example in Figure 2,
f can be described by α = (α0, α1,1, α1,2, α1,3, α2,1). Therefore, the prior on f is
equivalent to a prior on α, for which Sparse Partitioning uses a multivariate normal
distribution.

3.2. Likelihood. The likelihood is determined by the regression model. When
the response is continuous (e.g., a quantitative trait), Sparse Partitioning supposes
the residuals are normally distributed. When the response is binary (e.g., a case-
control experiment with affected and unaffected patients), Sparse Partitioning uses
a logit link function. The marginal likelihood is obtained by integrating across the
function parameters:

P(Data|G) =
∫

f
P(Data|f,G)P(f|G) df =

∫
α

P(Data|α,G)P(α|G) dα.

3.3. Posterior. Explicit calculation of P(G|Data) would require an exhaustive
search of the space of partitions, which is infeasible even for reasonably sized prob-
lems. Therefore, Sparse Partitioning uses Markov Chain Monte Carlo (MCMC)
techniques to estimate statistics of this posterior distribution. Within each MCMC
iteration, two sampling stages are used: the first proposes, in turn, a change to each
component of I; the second proposes a change to one element of G. The bulk of
Sparse Partitioning’s processing time is spent sampling from the posterior distri-
bution. Therefore, it is convenient that the two stages can be parallelized with an
almost linear speed-up.

Full details of the methodology are provided in Appendix and Sections 1, 2
and 3 of the Supplementary Material [Speed and Tavaré (2010)].

4. Simulation studies. In total, ten simulation studies were carried out, de-
signed to test various aspects of Sparse Partitioning’s performance and make com-
parisons with existing methods. This section presents results from the first study.
Further details of the methods used to simulate data and the results from the re-
maining nine studies are provided in Section 4 of the Supplementary Material
[Speed and Tavaré (2010)].

Typically, each simulated data set consisted of 100 samples, each of 1000 pre-
dictors, three of which were causal for the response. Each regression method was
asked to identify its top three associations and was then scored by how many causal
predictors it correctly identified. Empirical estimates were obtained by averaging
over 100 data sets.
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TABLE 1
The first simulation study considered three different underlying relationships

Model Underlying relationship

I Y = X1 + 1.5X2 − 2X3
II Y = 1.5X1 × X2 + X3

III Y = f (X1,X2) + X3;
f (0,0) = 0, f (1,0) = 1, f (0,1) = 2, f (1,1) = −1

The first study examined the case of (uncorrelated) binary predictors and a con-
tinuous response. Each scenario concentrated on a particular underlying relation-
ship (Models I, II or III) for a particular frequency of the causal predictors (0.05,
0.1, 0.2, 0.4 or random). The first model was designed so that each causal predictor
contributed additively, the second featured a multiplicative interaction, while the
third involved a “weird” interaction (see Table 1)

Figure 3 presents results from the first study. Each plot relates to a different
underlying relationship. Within each plot, the lines display the average number
of causal predictors correctly identified by each method for different frequencies
of the causal predictors. Figure 4 provides an alternative interpretation of these
results, reporting how often each method successfully detected 0, 1, 2 or 3 causal
predictors for each scenario.

Under Model I, SSS, Logic, MARS and Sparse Partitioning were the four best
performing methods across different frequencies, pulling clear of Single, Pairs and
RF as the causal predictor frequency increased. Under Model II, this order was
essentially maintained, with the exception of SSS, which dropped into the second
tier of performers. However, under Model III, Sparse Partitioning has emerged on
top, comprehensively beating six of its rivals, with only Pairs coming close.

Sparse Partitioning has performed best in this simulation study, proving itself
most robust across the different models. It has triumphed under Model III, when

FIG. 3. Each plot considers a different underlying relationship (described in the main text). Within
each plot, the lines report the average number of causal predictors correctly detected by each method
for different causal predictor frequencies (“?” denotes random).
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FIG. 4. Each group of eight vertical bars compares the methods for a particular underlying rela-
tionship and causal predictor frequency (“?” denotes random). Within each bar, the lengths of the
shaded sections (from top to bottom) indicate the proportion of time the method correctly detected 0,
1, 2 and 3 causal predictors. For example, the lengths of the darkest gray bars show how often each
method successfully identified all three causal predictors. For all scenarios, the ordering of methods
is the same (from left to right): Single, Pairs, CART, RF, SSS, Logic, MARS and Sparse Partitioning.

the underlying relationship assumptions of all other methods have been violated.
Note that its generality has not prevented it from at least matching the performance
of the existing methods under Models I and II.

5. Application to real data sets. We applied Sparse Partitioning to four pre-
viously analyzed association studies: the first looked at expression data for 109
individuals in the HapMap project (http://hapmap.ncbi.nlm.nih.gov); the second
and third examined data sets from the “2010 Project” (http://walnut.usc.edu/2010),
a large-scale study of the plant Arabidopsis thaliana; the fourth used data pro-
vided by the Flint laboratory at the University of Oxford (http://www.well.ox.ac.
uk/flint-2). Extended versions of all results are provided in Figures 12–16 of the
Supplementary Material [Speed and Tavaré (2010)].

5.1. HapMap data. Dr. Antigone Dimas kindly provided us with a sample
of 109 individuals, each typed for 1,186,075 Single Nucleotide Polymorphisms
(SNPs) and measured for expression levels of 2682 genes [Dimas (2009)]. We
applied Sparse Partitioning to the four genes for which Dr. Dimas found strongest
evidence for an interaction, copying her decision to consider only SNPs within one
million base pairs (1 Mbp) of each gene. Figure 5 presents the results for MTHFR,
the third of these genes, located approximately 11.8 Mbp along Chromosome 1.
For each SNP in the 2 Mbp region, the top plot displays the p-value obtained
by Single, while the bottom plot reports the posterior probability of association
from Sparse Partitioning (circles correspond to run one result, triangles to run
two). The solid vertical line marks the location of the gene, while the two dashed
vertical lines mark the locations of the SNPs declared interacting by Dr. Dimas.
The dashed horizontal lines provide estimates of the 5, 25 and 50% significance
thresholds for the top association of each method, calculated using permutation
tests.

http://hapmap.ncbi.nlm.nih.gov
http://walnut.usc.edu/2010
http://www.well.ox.ac.uk/flint-2
http://www.well.ox.ac.uk/flint-2
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FIG. 5. Analysis of expression levels of MTHFR using HapMap data. The top plot shows results
from Single, the bottom plot shows results from two runs of Sparse Partitioning. Full details are
provided in the main text.

Sparse Partitioning found three promising SNPs, rs2286139, rs2643888 and
rs2279703, with posterior probabilities of association 0.57, 0.96 and 0.96, respec-
tively. It is no coincidence that the second and third hits have matching probabili-
ties. Before analysis, Sparse Partitioning searches for highly correlated predictors,
as is often the case with fine-scale genetic data. SNP rs2643888 was found to be
highly correlated with SNP rs2279703, with matching values for 106 of the 109
individuals. Therefore, the former SNP was removed from analysis, and subse-
quently given the same posterior estimates as the latter. Sparse Partitioning re-
turned a posterior probability of interaction of 0.42 between SNPs rs2286139 and
rs2643888/rs2279703 (indicated by the horizontal arrows), offering some support
for Dr. Dimas’ findings of an interaction.

5.2. 2010 project: Pilot data. The project’s pilot data set looked at 95 ac-
cessions, genotyped for 5419 SNPs and measured for ten phenotypic traits. We
focused on the tenth phenotype, expression levels of the FRIGIDA gene. We de-
cided to remove eight accessions whose genotypes were either almost identical to
remaining accessions or were flagged as suspicious by principal component analy-
sis. Using methods similar to the original analysis [Zhao et al. (2007)], we first
adjusted the phenotype to correct for confounding due to population structure and
relatedness of accessions. By contrast, we chose not to impute missing values,
meaning approximately 10% of the genotypes were supplied to Sparse Partition-
ing as unobserved.

Figure 6 compares the p-values obtained from Single to the posterior probabil-
ities of association of Sparse Partitioning. Our method identified just one strong
association, coinciding with the third strongest hit of Single and suggesting that,



882 D. SPEED AND S. TAVARÉ

FIG. 6. Analysis of expression levels of FRIGIDA for Arabidopsis thaliana. The top plot shows
results from Single, the bottom plot shows results from two runs of Sparse Partitioning. Full details
are provided in the main text.

in this case, the simple underlying relationship of Single might be appropriate.
For both methods the strong associations lay very close to the FRIGIDA region,
marked by a solid vertical line, suggesting the results are accurate.

A possible concern is that Sparse Partitioning’s generality might lead to over-
fitting on occasions when simple models are more appropriate. Here that does not
appear to be the case, with Sparse Partitioning declaring only one strong associ-
ation. We repeated the analysis using imputed data, which allowed us to compare
the prediction accuracy of each method via leave-one-out cross-validation. The lin-
ear model containing only the top hit from Single explained 44% of the variance,
agreeing closely with Sparse Partitioning’s estimate of 42% variance explained.

5.3. 2010 project: Release 3.04. We examined how Sparse Partitioning would
deal with a problem encountered in the 2010 project’s most recent paper [Atwell
et al. (2010)]. The expression level of the FLC gene is known to be affected by
polymorphisms in the FRIGIDA region [Johanson et al. (2000); Shindo et al.
(2005)]. Atwell et al. performed a one-SNP-at-a-time association study using FLC
expression as the response. Its analysis produced results similar to our analysis by
Single, shown in the top plot of Figure 7. While some SNPs within the FRIGIDA
region (which is marked by a vertical line) achieved genome-wide significance,
two stronger groups of associations were detected approximately 200 kbp and
1 Mbp to the right. Prior knowledge would suggest these downstream associations
are spurious. When Atwell et al. repeated the analysis, but this time including in
the regression model two alleles of the FRIGIDA gene known to affect FLC, the
downstream associations vanished, increasing suspicion that they were false posi-
tives. For the rest of this section, we assume this to be the case.
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FIG. 7. Analysis of expression levels of FLC for Arabidopsis thaliana. The top plot shows results
from Single, the bottom plot, which has a truncated y-axis, shows results from two runs of Sparse
Partitioning. Full details are provided in the main text.

The project’s latest data release provides typing for 214,553 SNPs across five
chromosomes. We picked the 3509 SNPs located within the first 1.5 Mbp of Chro-
mosome 4. As this subset was a biased selection (e.g., it contained over two-thirds
of those SNPs with marginal p-values less than 10−4), it was necessary to reflect
this when choosing the prior probability of association for Sparse Partitioning. In
the event, we settled upon a prior probability of 1 in 3500.

We used imputed data for this analysis, as the increased SNP density allowed
missing values to be inferred more reliably. Similar to the analysis of Atwell et
al., we decided to correct only for relatedness, as discussions with members of
the Nordborg group convinced us that adjusting for population structure risked
removing too much true signal. The bottom plot of Figure 7 shows the results of
Sparse Partitioning. The dashed vertical lines indicate the three regions where our
method found most evidence of association. While two false positives remained,
Sparse Partitioning gave greatest recognition to the FRIGIDA region, identifying
a possible association approximately 60 kbp upstream of the gene.

In this example, we had knowledge of the true causal region, allowing us to
identify the false associations. The concern is that this example is one of many, and
that most times we will not know the correct answer. In these cases, the best we
can hope is that a method acknowledges the true and false positives, but recognizes
the uncertainty. This is what Sparse Partitioning has done here. Furthermore, our
method more precisely identified peaks than Single which should speed up the
verification process.

5.4. Mouse data. Jon Krohn, from Professor Jonathan Flint’s group at the
University of Oxford, kindly provided us with CD4 counts for 1274 “hetero-
geneous stock” mice [Solberg et al. (2006)], along with genotypic values for
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FIG. 8. Analysis of CD4 count in mice. The top plot shows results from Single, the bottom plot
shows results from two runs of Sparse Partitioning. Full details are provided in the main text.

770 SNPs covering the length of Chromosome 5. Krohn had previously ana-
lyzed this data set using Bagphenotype, software designed by Dr. William Val-
dar (http://www.unc.edu/~wvaldar/bagphenotype.html). The response values were
continuous, while the predictors were tertiary. Only a tiny proportion of genotypes
(0.1%) were missing, so we saw no need to impute values and instead left them as
unobserved. In addition, we were provided with the gender of each mouse, which
we coded as a binary variable and included in the set of predictors.

As the chromosomal region was a subsection of a genome-wide study, we de-
cided a prior probability of association of 1 in 10,000 was appropriate for each
SNP. There is overwhelming prior knowledge that CD4 counts are linked to gen-
der [e.g., Maini et al. (1996)], so we decided upon a prior probability of 0.5. We run
Sparse Partitioning allowing three copies of each predictor (C = 3). As Figure 8
demonstrates, the top hits from Single, SNPs CEL-5_106584673 and rs13478460,
which due to linkage disequilibrium are almost identical, persisted in Sparse Parti-
tioning. In addition, our method declares associated SNP rs13478156. As indicated
by the horizontal arrows, Sparse Partitioning found evidence of interactions be-
tween gender and the top SNPs. To test the effect of our prior choices, we repeated
the analysis with prior probabilities {10−4, 0.1}, {10−3, 0.5} and {10−3, 0.1}, and
obtained very similar results on each occasion (results not shown).

Maximum likelihood tests offer justification for why rs13478156 was found by
Sparse Partitioning, but largely overlooked by Single. The supplementary mater-
ial provides plots for two sets of tests. The first set compares, for each SNP, the
pairwise interaction with gender against a null model of no association. We find
that the top hits of Single remain the most significant hits here. However, these tests
provide only limited information about the strength of the interaction terms. There-
fore, the second set compares the pairwise interaction model against the additive

http://www.unc.edu/~wvaldar/bagphenotype.html
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model for that SNP and gender. We see that the interaction between rs13478156
and gender is highly significant. This supports Sparse Partitioning’s claim that this
SNP acts in a gender specific way, which also agrees with findings from Krohn’s
analysis.

This data set demonstrated the advantage of allowing multiple copies of each
predictor. When Sparse Partitioning is run without this option (results for C = 1
are shown in the supplementary material), the best fitting partition features three
associated predictors in a single nonnull group. The posterior estimates of pairwise
interactions cannot be trusted because the method is unable to distinguish between,
say, a single three-way interaction and a pair of two-way interactions. Allowing
multiple copies of predictors requires only a small increase in computation time,
so we recommend this option is used.

6. Discussion. It is fairly easy to design a regression method that is finely
tuned for a specific underlying relationship and then demonstrate its superior
power on data sets which obey this model. If one were presented only with the
results of the Model III simulations, it would be easy to think that Sparse Parti-
tioning is such a method. We have tried to show this is not case. We believe that
Sparse Partitioning offers a robust alternative to existing methods. It fares equally
well under simple models, but comes into its own as the model becomes more
complex.

6.1. Prospects for nonlinear regression. Nonlinear regression methods are
competing over a fairly small share of the market, bounded on the one side by
the performance of methods such as Single and on the other by the strength of sig-
nal present in the data. Despite these limitations, there remains a demand for such
methods. There are many examples where standard linear methods fail to explain a
satisfactory percent of the variation, so it is quite possible that nonadditive systems
are at work. Sparse Partitioning should not be viewed as a search for interactions,
but rather as a regression method which bears interactions in mind. Even for situa-
tions in which it cannot pinpoint an interaction with certainty, its detection power
should benefit for having considered their existence.

6.2. Generality. Sparse Partitioning’s strength derives from the generality of
its underlying relationship. Therefore, it is perhaps a surprise that the method does
not appear to suffer in situations where this relationship is overly complicated.
The results in Section 4 suggest there is no inherent disadvantage to using such
a general underlying relationship. While Sparse Partitioning will almost certainly
overfit the true model at some points in the MCMC sampling, its posterior esti-
mates are based on model averages, rather than the single highest scoring model
visited. For this reason, it should not matter if a nonassociated predictor is occa-
sionally declared associated, as these errors are likely to be spread thinly across
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the noncausal predictors. Additionally, as Sparse Partitioning seeks only to esti-
mate marginal posterior probabilities, using an underlying relationship too general
should not upset the Bayesian mechanics. The prior probability that a predictor is
associated remains constant (equal to pg) regardless of the size of the model space.
Even if excessive generality does affect some aspects of the posterior distribution,
the marginal posterior probabilities should remain correct.

6.3. Diagnosis. The only way to calculate the posterior distribution exactly
is through an exhaustive search of the space of partitions. Unfortunately, this is
feasible for only the smallest data sets, so instead Sparse Partitioning is forced to
explore the model space in a stepwise fashion. In this respect, Sparse Partitioning’s
search holds an advantage over deterministic algorithms. When deciding which
model in the neighborhood to visit next, Sparse Partitioning is not forced to move
to the highest scoring model. Instead it is able to try a lower scoring move, in the
hope that this is a gateway to a higher scoring region.

The drawback of this stochasticity is the variability it introduces into Sparse
Partitioning’s results. The analysis in Section 5 provides some tips for gauging
Sparse Partitioning’s performance. It is sensible to compare the results with those
of Single, as we would expect very strong associations to be found by both meth-
ods. Repeating the analysis with a new random seed will highlight obvious lack of
convergence, as should examination of trace plots. Additionally, if time permits,
repeating the analysis with the response values permuted will provide significance
thresholds under a model of no true associations.

6.4. Limitations. The processing time required for each iteration scales lin-
early with N . We speculate that the number of iterations required for convergence
scales approximately with the 1.5th power of N (based on the stepwise nature of
Sparse Partitioning’s search) and exponentially with the number of true associa-
tions (based on the growth of the model space).

As a rule of thumb, we consider Sparse Partitioning suitable for problems with
no more than 20,000 predictors, or cases where N/n < 100. This is not to say
that Sparse Partitioning cannot be applied on, say, a genome-wide scale, but it
may be necessary to filter the predictors first. We suggest picking, for example, the
highest 10% of hits from Single. Of course, this is not ideal. It is certainly possible
that true associations are concealed within the remaining 90% of predictors. But
considering standard practice involves picking, perhaps, the top 100 hits of Single
for further analysis, the ability to consider instead the top few thousand hits should
offer a significant advantage. As we experienced in Section 5, it is important to
realize when we have selected a biased subset of predictors and reflect this in
the prior probability of association. The easiest solution is to pick the priors as if
analyzing the complete set of predictors.

We have identified situations in which Sparse Partitioning will struggle. Exam-
ples were found in Simulation Studies Five and Ten (see Supplementary Mater-
ial). The latter was an almost unavoidable situation because the true relationship
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heavily contradicted our prior beliefs. The former demonstrated the drawback of
treating tertiary predictors as categorical variables, when in fact their values have
a natural ordering. We suspect that this problem can be overcome by application
of a Bayesian version of Projection Pursuit [described in Hastie, Tibshirani and
Friedman (2001)] that we are now developing.

Additionally, consider the case in which the response is influenced by an inter-
action of two predictors, but the inclusion of neither predictor on its own signifi-
cantly improves the model fit. For one of these predictors to have a realistic chance
of being included in a nonnull group, the improvement in fit must offset the penalty
of inclusion implied by P(G). Because of the single-step nature of Sparse Parti-
tioning’s search, it is unlikely that either predictor will appear in the current model,
which is required for the method to consider their interaction. For our method to
be successful in this case, it would have to permit two-step moves or resort to an
exhaustive search.

Sparse Partitioning can be used when the predictors are continuous, provided a
suitable transformation exists. For example, we have applied our method to copy
number values, by first reducing each continuous measurement to one of three
classes (neutral, increased or decreased). In the same way, we hope our method
can be applied to a whole range of problems.

APPENDIX: DETAILS OF BAYESIAN FRAMEWORK

The regression model is written as l(E(Y)) = f (X), where l is a specified link
function and f (X) is the “underlying relationship.” Without loss of generality,
the underlying relationship can be expressed as the sum of functions of groups of
associated predictors:

f (X) = f1(XG1) + f2(XG2) + · · · + fK(XGK
).

The disjoint sets G1, G2, . . . ,GK index groups of associated predictors. Let
G0, the “null group,” index the predictors not associated. Therefore, G =
{G0,G1,G2, . . . ,GK} partitions {1,2, . . . ,N}. Equivalently, the partition can be
described by the vector I = (I1, I2, . . . , IN), where Ig indicates to which group the
gth predictor belongs. Only unique partitions are considered, so the ordering of
elements within groups is irrelevant, as is the ordering of nonnull groups.

A single model will be {G, f}, a partition and a corresponding set of functions
{f1, f2, . . . , fK}. The model space will be all such permissible pairs. If we wish
to allow predictors to feature in more than one group of associations, the predictor
set is expanded to contain C copies of each predictor. An alternative approach
is to keep one copy of each predictor, but relax the condition on disjoint groups.
However, we felt this approach created a greater amount of duplication within the
space of underlying relationships, making it more challenging to define a prior.
The description of the method supposes C = 1, with the alternative case discussed
when necessary.
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We are interested in the posterior distribution of G and f, given the observed
values for X and Y. To be fully Bayesian, we must also consider the distribution
of the predictors, which can be written as P(X|ε), for some parameter vector ε:

P(G, f, ε|X,Y) ∝ P(G, f, |X,Y) × P(ε|G, f,X,Y).

If we assume ε is unaffected by G and f [Gelman et al. (2004)], its posterior can
be ignored in the calculation of P(G, f|X,Y). Similarly, as we only wish to esti-
mate properties of the posterior distribution of partitions, we treat the functions as
nuisance parameters:

P(G|X,Y) ∝ P(G|X) × P(Y|X,G)

= P(G|X) ×
∫

f
P(Y|f,X,G)P(f|X,G) df,

with P(G|X) reducing to P(G), as we suppose the prior distribution of G does not
depend on the observed values of the predictors.

A.1. Partition prior, P(G). The prior for the partition is constructed so the
probability that predictor g is associated equals pg . For partition I, we can define
the equivalence class [I] containing all partitions that declare the same predictors
associated. To ensure the marginal probability that predictor g is associated equals
pg , we desire

P([I]) = ∑
I′∈[I]

P(I′) = ∏
j :Ij=0

(1 − pj )
∏

j :Ij �=0

pj = ∏
j∈G0

(1 − pj )
∏

j /∈G0

pj ,

because then

P(Ig �= 0) = ∑
I:Ig �=0

P(I) = ∑
[I]:Ig �=0

( ∏
j :Ij=0

(1 − pj )
∏

j :Ij �=0

pj

)

= pg

∏
j �=g

[(1 − pj ) + pj ],

equaling pg , as required.
Assigning equal weighting to members of [I], we can calculate P(I) explicitly

by counting the size of each equivalence class. If I declares s = N − |G0| pre-
dictors associated, then the size of [I] will be the number of ways s elements can
be partitioned. Unrestricted, this would equal the sth Bell number. Instead, Sparse
Partitioning limits each partition to no more than K nonnull groups, each con-
taining at most S elements. These “truncated” Bell numbers, B(s,K,S), can be
calculated in a recursive fashion. Let aj denote the number of groups of size j for
j = 1,2, . . . , S. Then

B(s,K,S|a1, a2, . . . , aS−1, aS)

= B(s,K,S|a1 − 1, a2, . . . , aS−1, aS)
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+ B(s,K,S|a1 + 1, a2 − 1, . . . , aS−1, aS)(a1 + 1)

+ · · · + B(s,K,S|a1, a2, . . . , aS−1 + 1, aS − 1)(aS−1 + 1),

with boundary condition

B(0,K,S|a1, a2, . . . , aS−1, aS) =
{

1, if aj = 0 ∀j ,
0, otherwise.

Equally weighting each member of [I] places a high probability (1−|[I]|−1) on the
existence of interactions, even though few interactions have so far been found and
verified. It would be straightforward to alter the partition weightings. For example,
we could choose to favor partitions containing fewer interactions. However, the
lack of known interactions must largely be due to how hard they are to identify,
coupled with how rarely they are searched for. Therefore, we are satisfied that a
uniform weighting is a reasonable choice.

Sparse Partitioning requires that K and S are set in advance, to allow sufficient
memory to be allocated and pre-calculation of B(s,K,S). Theoretically, K and S

should be no smaller than N , to ensure the two most extreme underlying relation-
ships are possible (either N groups of size one or one group of size N ). In practice,
these values would require vast amounts of unnecessary computation. Therefore,
we suggest K and S are set to the smallest values possible, without impacting the
direction of the MCMC chain.

The calculation of P(Ig �= 0) assumes K × S ≥ N , as the last summation sup-
poses all 2N equivalence classes are achievable. When this condition does not
hold, the error involved can be calculated for the case that all prior probabilities
are equal:

P(Ig �= 0) = pg

KS−1∑
s=0

(
N − 1

s

)
ps

g(1 − pg)
N−1−s

/KS∑
s=0

(
N

s

)
ps

g(1 − pg)
N−s

= pgP
(
s ≤ KS − 1 | s ∼ B(pg,N − 1)

)
/P

(
s ≤ KS | s ∼ B(pg,N)

)
.

Using a normal approximation for each binomially distributed variable, we ob-
tain

P(Ig �= 0) = pg�

(
KS − 1/2 − (N − 1)pg√

pg(1 − pg)(N − 1)

)/
�

(
KS + 1/2 − Npg√

pg(1 − pg)N

)
,

where � is the cumulative probability function for a standard normal. For small
pg , the value of P(Ig �= 0) is affected most by the prior mean, Npg . We suggest
setting K = 4 and S = 4. Entering these values into the equation above, we find
that the actual prior probability of association used by Sparse Partitioning lies
within 1% of the desired value, pg , even when the prior mean is as high as 9.

When multiple copies of predictors are allowed (C > 1), the prior probability
of association for each copy of predictor g is set to 1 − C

√
(1 − pg). This ensures
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the probability that one or more copies of predictor g are associated remains equal
to pg . Allowing multiple copies of predictors creates an element of duplication
within the space of partitions. For example, a partition in which two copies of a
predictor feature in the same nonnull group effects the same underlying relation-
ship as the partition obtained when one of these copies is removed. As a result, the
prior weighting for this underlying relationship is increased. However, for small
values of pg this effect will be negligible. As with K and S, it is necessary to
specify C in advance. Its value has minimal effect on computation time, so we
recommend a conservative setting, such as C = 3.

A.2. Function prior, P(f|G). To ensure identifiability of the functions, one
value of XGk

is considered the base value and its mapping is absorbed into the
overall intercept (denoted by α0). Therefore, fk has degree of freedom one less
than dk , the number of unique values (nodes) of XGk

. Let Vk,1,Vk,2, . . . , Vk,dk−1
be dummy binary variables that distinguish the remaining dk − 1 nodes; these map
to αk,1, αk,2, . . . , αk,dk−1, respectively. The underlying relationship can be written
in standard regression form:

f (X) = α0 + (α1,1V1,1 + · · · + α1,d1−1V1,d1−1)

+ · · · + (αK,1VK,1 + · · · + αK,dK−1VK,dK−1).

All the relevant information of the functions is contained in the vector α =
{α0, α1,1, . . . , α1,d1−1, . . . , αK,1, . . . , αK,dK−1}, of size D = 1+∑

(dk −1). Sparse
Partitioning assigns independent normal priors with mean 0 to each element of α.
These can be viewed as a penalty on smoothness, but one which accepts that with
categorical predictors there is no ordering to the nodes. This agrees with a belief
in parsimony, which prefers simple functions to complicated ones.

In the continuous response case the variance of these normal priors is σ 2/r ; in
the binary response case the variance is 1/r . In both cases, the choice of r controls
the extent by which smoothness is applied. Typically we set r to 1.

A.3. Likelihood, P(Y|f,X,G). When the response is continuous, the link
function is the identity and the residuals are assumed to be independent draws
from a normal distribution with mean zero and variance σ 2:

P(Y|f,X,G) =
∫
σ 2

P(Y|σ 2, f,X,G)P(σ 2) dσ 2

=
∫
σ 2

(2πσ 2)−n/2 exp
{
− 1

2σ 2

(
Y − f (X)

)T (
Y − f (X)

)}
σ−2 dσ 2.

This integral incorporates a prior for σ 2 of the form σ−2, which reflects a pref-
erence for smaller variances. It does not matter that this prior is improper as it is
common to all models.
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When the response is binary, a logit link function is used, l(a) = log( a
1−a

):

P(Y|f,X,G) = ∏
i

[l−1f (Xi.)]Yi [1 − l−1f (Xi.)](1−Yi).

A.4. Marginal likelihood, P(Y|X,G).

P(Y|X,G) =
∫

f
P(Y|f,X,G)P(f|X,G) df

=
∫
α

P(Y|α,X,G)P(α|X,G) dα.

With a continuous response, P(Y|X,G) can be calculated explicitly. When the
response is binary, Sparse Partitioning uses a Laplace approximation. Let W(α) =
P(Y|α,X,G)P(α|X,G) and w(α) = log(W(α)):

w(α) ≈ w(α′) + (α − α′)T dw(α′)
dα

+ 1

2
(α − α′)T d2w(α′)

dα2 (α − α′).

If α̂ is the maximum likelihood estimate of w(α), then

W(α) ≈ W(α̂) exp
{
−1

2
(α − α̂)T

(
−d2w(α̂)

dα2

)
(α − α̂)

}
.

Therefore,

P(Y|X,G) ≈ P(Y|α̂,X,G)P(α̂|X,G)(2π)D/2
∣∣∣∣−d2w(α̂)

dα2

∣∣∣∣
−1/2

.

Alternatively, Sparse Partitioning allows the user to select a probit link function,
in which case a latent variable representation of the likelihood can be used [Albert
and Chib (1993)]. Essentially, each binary response is replaced by a continuous
“pseudo response.” The regression model is then treated as if it were linear, except
the new response values are resampled once per iteration.

When there are two or more functions present, the marginal likelihood will be
affected (very slightly) by which node is considered the base value for each func-
tion. For consistency, the node removed is chosen according to a defined rule (and
is the zero vector of XGk

if available). In addition, before analysis begins, con-
tinuous response values are transformed to have mean 0 and variance 1 to reduce
variability caused by the choice of base value.

Software. Sparse Partitioning has been implemented and is available at http:
//www.compbio.group.cam.ac.uk/software.html.
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SUPPLEMENTARY MATERIAL

Supplement: Extra material (DOI: 10.1214/10-AOAS411SUPP; .pdf). Pro-
vides additional details of Sparse Partitioning’s methodology, full explanation of
the simulation studies and extended results from applying the method to real data
sets.
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SUPPLEMENTARY MATERIAL

SPARSE PARTITIONING: NONLINEAR REGRESSION
WITH BINARY OR TERTIARY PREDICTORS,

WITH APPLICATION TO ASSOCIATION STUDIES

By Doug Speed and Simon Tavaré

Sections 1, 2 and 3 provide further details of Sparse Partitioning ’s MCMC sampling, while Sec-
tion 4 explains fully the simulation studies. Additionally, Figures 12, 13, 14, 15 and 16, located at
the end, contain plots relating to the real data set examples.

1. Details of MCMC Sampling. The aim of Markov Chain Monte Carlo sampling is to
create a Markov chain whose stationary distribution matches the posterior distribution. To effect
this, it is necessary to control the move probabilities. Metropolis-Hastings’ theory [Hastings (1970)]
allows us to propose a new model however we please, then provides us with a probability with which
to accept this proposal. If Q(G → G′) is the probability of proposing a move from model G to G′,
then it should be accepted with probability

min
(

1,
P(G′|X,Y )
P(G|X,Y )

Q(G′ → G)
Q(G→ G′)

)
.

Sparse Partitioning uses two sampling stages. First, in a random order, it samples new values for
each Ig. Second it resamples a component of G. In both cases, because the proposal distributions
match the conditional posterior distributions, the acceptance probabilities will always be one (Gibbs’
Sampling).

1.1. Sampling New Values of Ig. A new value for Ig is sampled from its conditional posterior
distribution P(Ig|I−g,X,Y ). This distribution is calculated explicitly by finding the posterior scores
for all partitions that differ from the current partition only in the value of Ig. The order that these
partitions are searched mimics the way the truncated Bell numbers are calculated. First predictor g
is removed from the current partition. Then it is added, in turn, to the null group, each non-empty
non-null group (if space) and then as a singleton non-null group (if space).

When C > 1, the number of samplings required increases by a factor of C. However, when no
copies of a predictor are associated, the conditional posterior distribution will be the same for each
copy of that predictor. As a result, for sparse problems increasing C will have minimal effect on
computation time.

1.2. Sampling a New Component of G. One of the elements of a non-null group, Gk,j , is picked
uniformly at random and its value resampled from P(Gk,j |G1, . . . ,Gk,-j , . . . ,GK ,X,Y ). This dis-
tribution is calculated by first removing predictor Gk,j from the current model, then scoring the
neighborhood of all partitions that differ only by their value of Gk,j .

The conditional posterior probability for Gk,j is the same for each copy of a predictor. Therefore,
as with the first sampling, increasing C has minimal effect on computation time.

It is possible to explore the entire space of partitions by repeatedly changing single elements of
I, so, at first glance the second sampling method is not required. However, suppose we wish to
replace an associated predictor with one that is not associated. To achieve this requires changes to
two values of I and so would take at least two steps if only using the first sampling method. This
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Fig 1. During the resampling of I, the master
processor sends each servant a predictor, g, and
instructs it to resample Ig. The expected num-
ber of valid samplings the master will receive af-
ter looping once through the servants depends on
p, the likelihood that a sampling will report a
changed value of Ig. The solid colored lines rep-
resent the theoretical speed-ups; the dashed col-
ored lines some speed-ups observed in practice.
For comparison, the black dashed line represents
a perfect linear speed-up.

will severely reduce the chance of such a move happening, especially if the move must pass through
a low scoring model. The second sampling method corrects this, as the move can be achieved by
changing just one element of G.

1.3. Obtaining Posterior Estimates. After a predetermined burn-in period, Sparse Partitioning
keeps count of how often each predictor features in a non-null group. This frequency provides the
posterior estimate that the predictor is associated. Sparse Partitioning also keeps track of pairs of
predictors that appear in the same non-null group. This information forms the posterior estimates
that pairs of predictors interact. For diagnostic use, the posterior score of each partition in the
Markov chain is recorded, as is the number of associations at each iteration.

In the case that two predictors are identical, one is removed before analysis and N adjusted
accordingly. At the end of the analysis this predictor is given the same posterior score as its duplicate.
Therefore, strictly speaking, this posterior score should be interpreted as the posterior probability
that one of these duplicate predictors is associated. Sparse Partitioning can be instructed to apply
a similar filtering to almost identical predictors. In the case of highly correlated predictors, this
option provides a trade-off between performance and speed. The greater the filtering, the faster the
method will converge, but the higher the chance that the true signal is overlooked.

1.4. Prior Probability of Association, pg. In Sparse Partitioning the value of pg is fixed through-
out. An alternative approach is to treat pg as a variable and resample its value at each iteration.
This would provide a sampling from P(pg|X,Y ), which could instead be used as the posterior esti-
mate that predictor g is associated. However, we see no advantage to this approach. The conditional
posterior distribution of pg is proportional to P(Ig|pg)×P(pg), yet is is hard to conceive a situation
in which we have detailed prior information about pg, above a belief in its mean. Regardless of
this, the conjugate prior β(1, b) is often used out of convenience [Zhang et al. (2005); Carvalho
et al. (2008)]. Doing so produces results more difficult to interpret because the posterior mean will
necessarily lie between 1/(2 + b) and 2/(2 + b).

2. Parallelization of MCMC Sampling. The bulk of Sparse Partitioning ’s processing time
is spent sampling from the posterior distribution. Therefore it is convenient that the two sam-
pling methods can be parallelized. Consider a set-up with one master node and H servants. It is
straightforward to parallelize the resampling of a component of G. When scoring the neighborhood
of partitions that differ in their value of Gk,j , simply assign each servant a portion.
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Parallelization of the first sampling method utilizes the sparse nature of the problem. Sparse
Partitioning instructs the (h+1)th servant processor to sample Ig+h+1 using the current values of
Ig+1, Ig+2, . . . , Ig+h. The sampling of Ig+h+1 is valid if the first h servants make no change to the
current model. Only in the rare case that one of the preceding servants has altered the current model,
must the system backtrack to the last correct sampling. During each iteration, most predictors
remain unassociated, so this parallelization is very efficient. This is demonstrated in Figure 1.

3. Confounding and Missing Data. Sparse Partitioning is designed to cope with imperfect
data, as is often the case with association studies. We consider two cases: when we wish to include
additional confounding covariates and when some data are missing.

3.1. Confounding. When we wish to include additional factors in the regression model, the
underlying relationship is transformed to f(X,Θ) + Ψω, where the columns of Θ and Ψ contain
the extra covariates. Those contained in Θ must be coded as binary or tertiary variables and are
treated the same as standard predictors. The method will then consider interactions with these
covariates, which is useful if, say, we wished to explore predictor-environment interactions. The user
will probably wish to amend the prior probabilities of associations for these variates, as there will
generally be a significantly stronger belief in their inclusions.

The covariates contained in Ψ are assumed not to interact with X or Θ. Sparse Partitioning
includes them in the underlying relationship and allows for their effect each time it calculates
a partition score. Normally it will make negligible difference to the results if the effect of these
covariates is adjusted for pre-analysis (this will be the case either if these covariates are orthogonal
to the main predictors or if the prior probabilities of association for the main predictors are much
less than one). These covariates are not restricted to being tertiary, so in association studies might,
for example, represent population structure or relatedness of samples.

3.2. Missing Predictors. The predictor set can be augmented as X = {O,U} where O and U
represent the observed and unobserved predictors, respectively. U is treated as a variable during
analysis, so the revised posterior distribution becomes

P(G,U |Y ,O) ∝ P(Y |G,U ,O)× P(U |O)× P(G).

Let Ug,j be the jth missing value of the gth predictor. Sparse Partitioning uses a prior distribution
of the form P(Ug,j |Og), equal to the frequencies that 0, 1 and 2 appear in the observed values for
the gth predictor. At each iteration, Sparse Partitioning resamples each missing value Ug,j from its
conditional posterior distribution P(Ug,j |U−g,j ,G,Y ,O) using a Gibbs’ Sampler. This sampling is
very fast when predictor g is not associated, as Ug,j will be sampled directly from its prior. Otherwise,
it is necessary to calculate P(Ug,j=u|U−g,j ,G, Y,O) ∝ P(Y |Ug,j=u, U−g,j ,G,O)×P(Ug,j=u|Og) for
u = 0, 1, 2.

Sparse Partitioning ’s method of sampling missing predictors assumes the predictors are uncor-
related. This is not normally the case for association study data, which typically display strong
patterns of linkage disequilibrium (LD). For these situations, software packages exist for estimating
missing genotypes based on the observed patterns of LD [Clark (1990); Stephens, Smith and Don-
nelly (2001)], which can be imputed in advance of analysis. When the variants are densely mapped,
we recommend imputation, as it should make fuller use of the information available, as well as speed
up convergence.

3.3. Missing Responses. When some response values are missing, the simplest solution is to
omit all data for the affected samples. However, they can be included, if the user prefers. Each
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unobserved Yi is sampled once per iteration using Metropolis-Hastings’ theory. When the response
is continuous, a new value y′ is proposed from a standard normal distribution (with density function
φ) and replaces the current value y with probability min(1, ρ), where

ρ =
P(G, Yi = y′|Y−i,X)
P(G, Yi = y|Y−i,X)

φ(y)
φ(y′)

=
P(Yi = y′, Y−i|G,X)
P(Yi = y, Y−i|G,X)

φ(y)
φ(y′)

.

With a binary response, it is possible to obtain the conditional posterior explicitly by calculating
P(Yi=y|G, Y−i,X) ∝ P(Yi=y, Y−i|G,X) for y = 0, 1, from which a new value can be sampled
directly (Gibbs’ Sampling).

3.4. Cross Validation. Typically, cross-validation is performed post-analysis by first using a
training data set to select a best model, then assessing this model’s suitability on a test data
set. Even ignoring time considerations, this is not possible with Sparse Partitioning because the
method neither reports a single best partition, nor provides estimates of P(f |G,X,Y ). However,
this problem can be overcome by treating response values as missing. Suppose YT corresponds to the
response values in a test data set; the user should first set these to missing. At each iteration, Sparse
Partitioning resamples these “missing responses” from their conditional posterior distributions.
Once collected, these samples provides an estimate of P(YT |X, Y−T ).

Alternatively, Sparse Partitioning provides an estimate of leave-one-out cross-validation. At each
iteration, the method calculates the expected value of each response, given the current partition.
When the response is continuous, we obtain

P(Y |σ2,X,G) ∝
∫
α

exp
{
− 1

2σ2
(Y − Vα)T (Y − Vα)− r

2σ2
αTα

}
,

where V is a design matrix, such that f(X) = Vα. Therefore

P(Y |σ2,X,G) ∝ exp
{
− 1

2σ2
Y T [I − V (V TV + rI)−1V T ]Y

}
= exp

{
− 1

2σ2
Y TE Y

}
,

which has the form of a multivariate normal distribution. Although its variance depends on σ2,
its expectation does not. The same is true for the conditional posteriors P(Yi|Y−i, σ

2,X,G), so we
obtain

E(Yi|Y−i,X,G) = −E−1
i,i

∑
j 6=i

Ei,jYj .

For a binary response, the expectation of Yi is the probability it equals 1:

E(Yi|Y−i,X,G) = P(Yi = 1|Y−i,X,G) ∝ P(Yi = 1, Y−i|X,G).

Therefore
E(Yi|Y−i,X,G) =

P(Yi = 1, Y−i|X,G)
P(Yi = 0, Y−i|X,G) + P(Yi = 1, Y−i|X,G)

Using these expectations, Sparse Partitioning is able to estimate E(Yi|Y−i,X) by Monte Carlo
integration.
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4. Further Details of the Simulation Studies. The main paper presents results from the
first simulation study. This study examined the performance of Sparse Partitioning for the case
of 100 individuals each typed for 1000 uncorrelated, binary predictors. A continuous response was
generated from three predictors, according to a particular underlying relationship, with the intro-
duction of normally distributed noise. In total, nine further studies were performed, using the first
study as a template. The table below highlights how each subsequent study altered one aspect of
the set-up:

Study Two Causal predictors unobserved.
Study Three 10% of predictor values missing.
Study Four Non-normal noise.
Study Five Tertiary predictors, 2 causal loci.
Study Six Binary response, 3 or 4 causal loci.
Study Seven Correlated predictors, 4 causal loci.
Study Eight Examine effect of prior choice.
Study Nine Examine effect of number of iterations.
Study Ten Non-disjoint underlying relationship, 3 or 4 causal loci.

Within each study, we compared methods under a range of different scenarios. Each scenario
focused on a particular underlying relationship (chosen from Models I to XV) and a particular
frequency for the causal predictors (0.05, 0.1, 0.2, 0.4 or random). In general, each study tested an
underlying relationship which was additive, one containing a “simple interaction” and one containing
a “full interaction.”

In most cases, we assessed a method’s performance by asking it to report the three predictors
for which it found most evidence of association, then counting how many causal predictors this list
contained. For each scenario, we obtained empirical estimates of detection accuracy by repeating
this procedure for 100 data sets.

4.1. Existing Methods and Settings. In order to offer a fair assessment of Sparse Partitioning ’s
performance, we tried to identify existing methods that could be considered rivals. Generally, a
regression method dealing with a continuous response can be adapted to handle a binary value by
adding in a suitable link function. However, the converse is not true. Therefore some methods of
this type were omitted from comparison [Hahn, Ritchie and Moore (2002); Verzilli, Stallard and
Whittaker (2006); Mailund, Besenbacher and Schierup (2006); Zhang and Liu (2007); Mukherjee
et al. (2009)].

Single performs a maximum likelihood test for each predictor, comparing the null model, f(Xg) =
α, with the alternative, f(Xg) = βXg . In the case of a continuous response, the residual sums of
squares, TSS0 and TSS1, are calculated for each model. The test statistic n log(TSS0/TSS1) is
compared to a χ2 distribution with degrees of freedom either 1 (binary predictors) or 2 (tertiary
predictors). The method returns a p-value for each predictor, which represents the probability of
observing under the null model a test statistic at least as extreme as that seen.

Pairs is an extension of Single, using the alternative model f(Xg, Xg′) = βXg ,Xg′ with degrees
of freedom equal to the number of unique values of (Xg, Xg′). The final score for each predictor
corresponds to the lowest p-value obtained across the N tests involving that predictor.

CART is available in R [R Development Core Team (2008)] via the package tree. The function
tree returns a model with an unrestricted number of associations. We reduced this to the required
size by prune.

RF is implemented in the R package randomForest. The function randomForest returns impor-
tance weightings for each predictor, from which the top associations can be selected.
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SSS is provided at the authors’ website. For the studies, the prior belief in the number of asso-
ciations present, priormeanp, was set to 5, while the number of iterations, iters, was set to 100.
nbest=1000 determined that the posterior estimates were based on the 1000 top scoring models.

Logic was run using the R package LogicReg. The function logreg, with parameters select=2 and
nleaves=s, returns a logic tree of size s. The package offers the ability to run using a MCMC based
method [Kooperberg and Ruczinski (2005)] by setting select=7. However, the size of the simulated
data sets proved too large for R to handle, so this method could not be used.

MARS was run using the R package mda. The function mars, with parameters nk=2s+1 and
degree=3, returns the best model with at most s predictors and allowing for at most three-way
interactions.

Sparse Partitioning was run for 200 iterations, which typically takes less than one minute. K, S,
C and pg were set to 4, 4, 3 and 5/N , respectively.

4.1.1. Generating Data sets. The following text explains the construction of each data set in
Study One, using as an example the underlying relationship of Model I. For Models II and III, f
was changed accordingly.

Let Z = (Z1, Z2, Z3) be the vector of the three causal predictors for a particular individual.
Therefore f(X) = f(Z) = Z1 +1.5Z2−2Z3. Let F be the set of unique possible values of f(Z) and
F a variable drawn at random from this set. Each response value was generated as F+N(0, σ2). This
technique ensured they were sampled evenly across their full range of values, rather than according
to their prevalence. From these response values, Z was sampled from its posterior distribution:

P(Z|Y ) ∝ P(Z)× P(Y |Z) ∝ mZ1
1 mZ2

2 mZ3
3 × N(Y |f(Z), σ2),

where m1,m2 and m3 were the causal allele frequencies under consideration. σ2 was picked to give
realistic levels of heritability (ranging between about 1/4 and 1/2). For Models I, II and III, it was
set to 1.7, 0.85 and 1.1, respectively.

In the final data set, X200 = Z1, X500 = Z2 and X800 = Z3. The remaining 997 predictors were
simulated from Bernoulli (100, ρ) with ρ ∼ U(0.05, 0.95).

Code for generating the data sets for each study is provided at the method’s homepage, located
at http://www.compbio.group.cam.ac.uk/software.html.

4.2. Study One: Additional Results. The top two plots of Figure 2 are enlarged version of those
in the main paper. The bottom plot shows the effect of changing some of Sparse Partitioning ’s input
parameters. When S = 1 (SP Additive), the maximum group size is limited to one, so the method
considers only additive models. When K = 1 (SP Interaction), only one tree is permitted, forcing
the full interaction model to be fitted at each step.

As expected, the performance of SP Additive is nearly identical to that of SSS, and their lines
almost exactly coincide for Model III. Also to be expected, the performance of Sparse Partitioning is
damaged when K is set to one, as then the method will necessarily overfit the true model. However,
it is worth noting that SP Interaction is the second best performing method for Model III. This
supports our belief that using an underlying relationship too general is less of a penalty than using
one too restrictive.

Additionally, the dashed lines in the bottom plot mark the average of the highest posterior
probability of interaction for the standard version of Sparse Partitioning. This provides an insight
into Sparse Partitioning ’s mechanics. For Model I, this line is very flat and close to zero, as desired
when the true underlying relationship contains no interactions. For Model II, the line mirrors the
detection accuracy; the point at which Sparse Partitioning begins to detect the interaction is the
point that it begins to successfully detect all three predictors. The same effect is seen for Model III,
except now the signal from the interaction is stronger, so it is detected sooner.

http://www.compbio.group.cam.ac.uk/software.html
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4.3. Study Two: Causal Predictors Unobserved. Due to high correlations between genetic vari-
ants, it is often possible in an association study to infer the location of causal predictors even if
they have not been typed directly. For this reason it is permissible, and usually more efficient, to
type just a subset of variants. This study considered the case in which the causal predictors are not
observed, but are highly correlated with observed predictors.

For these scenarios, Z1, Z2 and Z3 were considered unobserved predictors and replaced in the
final data set by Z ′ = (Z ′1, Z

′
2, Z

′
3). For each causal predictor, Z ′j was initialized to Zj and then

its genotypic values randomly toggled until the linkage disequilibrium (LD) between Zj and Z ′j
(measured in terms of correlation squared) dropped below the desired level (either r2 = 0.9 or 0.8).

The results for each level of correlation are shown in Figure 3. The shapes of the plots closely
match those of Study One, albeit, as expected, with lower average detection accuracy. The noticeable
exception is method Pairs, whose performance has caught up with that of Sparse Partitioning. When
there are just two causal predictors, Pairs approaches the gold standard method, as it performs
an exhaustive search of all two predictor models. Reducing the correlation between the causal and
observed predictors has the effect of increasing the noise in the model. This might explain why the
gap between Pairs and Sparse Partitioning has decreased. Once the noise increases to the extent
that one causal predictor becomes “unfindable,” we would expect Pairs to perform best. Bearing
this in mind, it is reassuring that Sparse Partitioning is at no point overtaken.

4.4. Study Three: 10% of Predictor Values Missing. As documented in Section 3, Sparse Parti-
tioning is designed to cope with missing predictor or response values. In this study, after simulating
each data set, 10% of the predictor values were selected at random and recorded as missing. The
detection accuracy was compared with Single, Pairs and SSS, the three existing methods able to
accept missing values. The results, shown in Figure 4, closely mirror the corresponding plots for
Study One.

4.5. Study Four: Non-normal Noise. For a continuous response, Sparse Partitioning calculates
a likelihood under the assumption of normal residuals. Therefore we tested the impact when this
assumption is violated. In this study we simulated data sets using first exponential, then uniform,
noise. In both cases the distribution parameters were set to produce heritabilities similar to those
in Study One.

Figure 5 displays the results. The introduction of exponential noise, shown in the top plot, does
not have a marked effect on the results; the plots still appear to closely resemble those of Study One.
This is not the case with uniform noise, where each model, and in fact each method, has responded
differently to its introduction. Nonetheless, with the exception of the low frequency end of Model
II data sets, Sparse Partitioning has maintained its lead, and has actually dramatically improved
under Model III.

4.6. Study Five: Tertiary Predictors. Two causal tertiary predictors were created by summing
two pairs of causal binary predictors, generated using the methodology of Study One. Three models
were used, both additive in the two causal predictors.

Model Underlying Relationship

IV Y = IX1>0 + IX2>1

V Y = f1(X1) + f2(X2) with each fk(0), fk(1) and fk(2) chosen at random

VI Y = f1(X1) + f2(X2) with fk additive (fk(0) + fk(2) = 2fk(1))

The results for each model are shown in Figure 6. For Models IV and V, Sparse Partitioning
has performed best. CART has performed very poorly for Model IV. Its underlying relationship is
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unable to consider additive contributions, which forces the method to pick between the two causal
predictors. Although RF encounters the same problem when fitting individual trees, its stochastic
nature allows both predictors to feature highly, provided both are chosen sufficiently often.

It is typical for association studies to prefer models which are linear in the number of alleles
present. This is a fair assumption if the effects of chromosomes within homologous pairs are in-
dependent, but less so if these pairs act in partnership. Model VI considers two linear models. It
is no surprise that SSS performs best, as its underlying relationship matches the model. Sparse
Partitioning has performed less well. The contrast between its performance for Models V and VI
would suggest this is a consequence of an underlying relationship too general. It is confusing why
this effect is apparent for Model VI, when it has not been a problem elsewhere. Nonetheless, we are
considering introducing an option which allows the user to “encourage” additivity. Alternatively,
we are finalizing a related method, a Bayesian version of Projection Pursuit, which views predictors
as quantitative, so should be able to overcome this problem.

4.7. Study Six: Binary Response. A binary response generally contains less information than
its continuous counterpart. Therefore, to maintain reasonable power for non-trivial models, we
reduced the number of predictors and increased the number of samples. We extended the study
of [Mukherjee et al. (2009)], which generated data sets of 100 predictors and 200 individuals for
each of three different models. For each underlying relationships, a Boolean function was used to
determine P(Yi = 1); if the function evaluated true, P(Yi = 1) was set to 0.9, if false, P(Yi = 1) was
set to 0.1. This corresponds to setting f(X) to 2.2 or -2.2 when using a logit link function.

Model Underlying Relationship

VII E(Y ) = 0.1 + 0.8×X1 ∧ (X2 ⇔ X3)

VIII E(Y ) = 0.1 + 0.8× (X1 ∧XC
2 )⊕X3

IX E(Y ) = 0.1 + 0.8× (X1 ∧X2)⊕ (X3 ∧XC
4 )

The results for each model are shown in Figure 7. Sparse Partitioning and MARS are the best
performing methods in this study, sharing the top two places across the three models. At the moment
Sparse Partitioning can not be applied to a response with more than two categories, so this might
be a useful extension to develop.

4.8. Study Seven: Correlated Predictors. To generate data sets displaying realistic patterns of
linkage disequilibrium (LD), we used the program ms [Hudson (2002)], provided on its author’s web-
site. The command ms 1000 1 -s 20 -r 10 20 -F 100 simulates 1000 individuals typed wildtype
or mutant for twenty Single Nucleotide Polymorphisms (SNPs). We concatenated the results of 100
runs, with every second SNP removed, to obtain a data set of 1000 individuals typed for 1000 SNPs.
To give an indication of the levels of LD this generated, if we filtered this data set so that no pair
of predictors remains with a squared correlation greater than 0.8, this would remove approximately
half the predictors. Again, three different underlying relationships were used, similar in nature to
those in Study One, except this time there were four causal predictors.

Model Underlying Relationship

X Y = aX1 + bX2 + cX3 + dX4

XI Y = f1(X1, X2) + f2(X3, X4) where f1 maps to {0, a, a, b} and f2 to {0, 0, 0, c}
XII Y = f1(X1, X2) + f2(X3, X4) where f1 maps to {0, a, b, c} and f2 to {0, d, e, f}

The coefficients in each model were generated randomly for each data set. Unlike the other studies,
this one used a prospective method of sampling. We created the predictors first, then used four of
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these to generate the response values. From the 1000 response values, we picked 100 representing a
sufficiently broad spectrum. If this was not possible, we picked four new causal predictors and tried
again. By generating the data sets in this fashion, it was not possible to fix the causal predictor
frequency and likely that the method produced a bias toward frequencies closer to 0.5.

We applied two scoring systems. The first, identical to that used in the other studies, made no
allowance for correlations. This could be considered overly harsh. Suppose a method identifies as
associated a predictor near to, and so in high correlation with, a causal predictor. Strictly speaking,
this would be a false positive and score zero, even though its detection would still be a helpful
indicator of the region likely to contain the true association. Therefore the second system scored
each block of ten predictors. For the method Single, which considers one predictor at a time, so
makes no allowance for LD, blocks were scored according to their best scoring predictor. For Pairs,
SSS, RF and Sparse Partitioning, blocks were scored by summing over their ten predictors. CART,
Logic and MARS only return precise models, rather than weightings for each predictor, so could
not be scored under this system.

Figure 8 provides the results for this study. As is necessarily the case, the detection accuracy
has improved using the second scoring system, and overall Single and RF benefited most from this
change. In most cases, however, the ranking of the five methods scored for both systems has been
preserved. Sparse Partitioning has performed admirably, coming top in five cases, beaten only by
Pairs in the sixth.

4.9. Study Eight: Examine Effect of Prior Choice. The most important input setting for Sparse
Partitioning is pg, the prior probability of association for each predictor. The other variable param-
eters, such as maximum number and size of groups, or variances of prior distributions, can almost
always be left at their defaults. In this study, we investigated the effect of different values for pg, as
opposed to keeping it at 0.005, the status quo for other studies.

Figure 9 presents the results for four choices, pg = 0.0005, 0.001, 0.002 and 0.005. For the first
two models, the difference is slight, but as expected the latter two choices, which are closest to the
true case, perform best. The difference is more noticeable for higher causal predictor frequencies
under Model III. The results suggest it is advisable to verge on the cautious side when setting pg,
which agrees with the general message that less restrictive is better.

4.10. Study Nine: Examine Effect of Number of Iterations. Naturally, the more iterations that
can be afforded, the better. In general we picked 200 iterations, as this allowed data sets to be
analyzed by Sparse Partitioning in under a minute. To compare this number to other methods, which
often sample for upward of 100,000 iterations, it is worth remembering that Sparse Partitioning
performs approximately 2N samplings per iteration.

Figure 10 shows the results of varying the number of iterations from 100 to 800. As with many
of the studies, the differences show up more as the models become more complicated. We can see
that greater performance could have been obtained through use of more iterations and possibly this
would have overcome some of the limitations of Sparse Partitioning found in other studies.

4.11. Study Ten: Non-Disjoint Underlying Relationship. It is conceivable that a predictor fea-
tures more than once in the underlying relationship. This might, for example, correspond to a
genetic variant involved in two or more pathways. This study considered three models where this is
the case.
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Model Underlying Relationship

XIII Y = X1 ×X2 +X2 ×X3

XIV Y = f1(X1, X2) +X2 ∧X3 + 2X4 where f1 maps to {0, 1, 2,−1}
XV Y = f1(X1, X2) + 2X2 ⊕X3 where f1 maps to {0, 1, 2,−1}

Although Sparse Partitioning has generally performed best, this study has uncovered scenarios
where Sparse Partitioning is significantly beaten. In Model XIII, the ability to recover the true
underlying relationship is highly dependent on how often the causal predictors’ values match. The
individuals for which either one or two of the causal predictors equal 1 will provide most information.
When the causal predictor frequencies are rare, the correlation between their values increases. When
this happens, each causal predictor will well predict the underlying relationship. Therefore the
method Single, which considers predictors independently, will have a large advantage, as all three
predictors will score highly. Conversely, Sparse Partitioning will perform badly, as the improvement
in fit of deducing the true relationship is not sufficient to offset its prior belief that fewer predictors
are associated. Hopefully, therefore, our prior belief in the rarity of such a relationship is correct.
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Fig 2. Results of Study One. The top two plots provide enlarged versions of those in the main paper. The bottom plot
shows the effect of restricting Sparse Partitioning’s underlying relationship by varying S and K. SP Additive (S = 1)
is only allowed to consider additive models, while SP Interaction (K = 1) insists on the full interaction model at
each step. Additionally, the dashed lines mark the average posterior probability of the top pairwise interaction for the
standard version of Sparse Partitioning.
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Fig 3. Results of Study Two: causal predictors unobserved. Top plot, r2=0.9; bottom plot, r2=0.8.
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Fig 4. Results of Study Three: 10% of predictor values missing. The performance of CART, RF, Logic and MARS
could not be compared as they are not designed to handle missing values.
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Fig 5. Results of Study Four: non-normal noise. Top plot, exponential noise; bottom plot, uniform noise.
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Fig 6. Results of Study Five: tertiary predictors.
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Fig 7. Results of Study Six: binary response. The number of causal predictors varies between models, so these plots
report the proportion of causal predictors correctly identified, rather than the number.
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Fig 8. Results of Study Seven: correlated predictors. Two scoring systems were used, “EXACT” and “BLOCK,” details
of which are provided in the main text. BLOCK could not be applied to CART, Logic and MARS so their scores under
this system are not recorded.
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Fig 10. Results of Study Nine: effect of number of iterations.
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models, so these plots report the proportion of causal predictors correctly identified, rather than the number.
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