
Stochastic Models for Plasmid Copy Number 

Eugene Seneta Simon Tavar6 
Dept. of Math. Statistics- Department of Statistics 
University of Sydney Colorado State University 
NSW 2006 Fort Collins, Colorado 
Australia 80524 

ABSTRACT 

Some stochastic models for the copy 
number of plasmids in a cell line are 
considered. We discuss plasmid copy num- 
ber in both random lines of descent and 
the whole cell line. The models are com- 
pared by use of asymptotic cure rates 
and the asymptotic fraction of cells 
containing a given number of plasmids. 
The results are derived using the exten- 
sive theory of multitype branching 
processes. Numerical comparisons are 
also presented. 

I. Introduction 

In this paper we study the behavior of some stochastic 
models of plasmid reproduction proposed by Gardner et al.[2] 
and Novick and Hoppensteadt C61. Consider a cell line initi- 
ated by a single cell at time n = 0, and growing by binary 
splitting at times n = 1, 2, .... The initial cell contains 
a numbe.r of plasmids which replicate in the cell, and are 
then distributed at random to the two daughter cells at cell 
division. A cell is said to be cured if it contains no 
plasmids, and then its daughter cells are also cured. The 
main features weseek to analyse are the stability of plasmid 
copy number and the cure rate under different models of 
plasmid reproduction. We now describe briefly three such 
models developed in [a]. 

Doubling model. If the plasmid copy number in a cell is cur- 
rently i(> 0 ) ,  then there are i birth events, each of which 
survives to partition with probability p. 
number of survivors by Y, the number of plasmids in the cell 
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before partition is i+Y. 0 
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Additive model. There is a fixed number N of birth events, 
each of which is successful with probability p.  If there 
are i ( >  0) plasmids before replication, theke-will be i + Y 
before partition. 

Equilibrium model. If there are currently i(> 0) plasmids 
in a cell, there are 2N- i birth events, each of which is 
successful with probability p. The number of plasmids in 
the cell before partition is then i+Y. 

We remark that in each case above, survival of a birth 
to partition occurs independently for each birth event. To 
avoid obscuring the replication mechanisms described above, 
we will be assuming a random partition mechanism so that the 
probability PR 
tributes j to a particular daughter cell is 

that a cell now containing R plasmids con- 
j 

Pgj = (J92-2 , j=O, 1,. ..., 2 . 
' 11. RANDOM LINES OF DESCENT 

We first discuss the evolution of plasmid copy number 
along a random line of descent; that is, we choose at random 
a daughter cell of that cell chosen at the previous stage, 
so constructing a random line of descent from the initial 
cell. Let Xn be the number of plasmids before replication 
in the cell chosen at time n. It is clear that IX , nLO) 
is a Markov chain with one-step transition probabirities pij 
given by 

where P is given in (l.l), and Rig is the probability that 
a cell initially containing i plasmids produces2 before par- 
tition. 
prescriptions given in the introduction. 

!j 

The Ria are computed for the three models from the 

For the doublind model, we can write Xn+l= E l +  ...+ 5 , xn 
where the E are i.i.d. random variables with probability 
generating ifunction f ( s )  given by 

. It follows immediately that IXnl is a Galton-Watson branching 
process (GWBP) with offspring p.g.f. f(s). 

A similar representation holds for the additive model. 
If Xn> 0, we have Xn+l= C 1 +  . . . + E  + 1,the Si being i.i.d. 

'n 



with p..g.f. f(s), and independent of I, which has p.g.f. 
b ( s ) :  

f(s) = :+is, b(s) = (l-f+%z)N, 0 1 ~ 2 1  (2.3) 

The chain {Xn> is now identified as a GWBP with immigration 
stopped at zero. Further details are contained in [lo]. 

i 
i 

Finally, the equilibrium model leads to a finite Markov 
chain with 

I 

It is intuitively clear that eventually the line of de- 
l 

scent is cured 
focusses on the curing time, 
state 0 is absorbing, and so we can write (pij) in the form 

(so that Xn= 0 for some n) and interest then I 

In Markov chain terminology, To t 

1 
! 

(2 .5 )  

The matrix Q, and its Perron-Frobenius eigenvalue p play a 
fundamental role in our analysis. While it is possible to 
find properties of the cure time numerically (cf. C11, C21 
forthe case p=l), we concentrate on the asymptotic cure 
rate 8 defined by 

Pr{TO > n+l> 
(2.6) e = lim Pr€Xn+l = 0 IXn > 01 = 1 - lim n- n- Pr{To> nl 

i 

In all cases, it can be shown that 8 = 1 - p .  This is veri- ! 
fied for the multipicative model (when p <  1) via Kolmogorov's 
theorem C3, p. 181, and for the additive model using results 
established in C91. Using subscripts M, E, A to distinguish 
the models, we find in particular that p M =  (1 + p)/2 (cf. 
C111). 

when p =  1, P E  = 1 - 2 -2N), although a functional equation for 
can be given C91. Computation of p will be described in 

section w. 
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Neither p E  nor p A  can be found explicitly (except I 

i 
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. 111. COPY NUMBER IN THE WHOLE CELL LINE i 

The behavior of copy number in a random line of descent 
tells us little about copy number density in the whole cell 
line, To study this problem, we use 3 method due to Harris 
[3]. 
cells in generation n containing j plasmids before replication. 
Since 1 X(j) = 2", w e  concentrate on the vector process 

See also [SI. For j > 0, let XAl) be the number of - 

n 3, '> 0 



(1) ( 2 )  
. 

x ' =  (Xn , Xn , .... 1. It turns out C l O l  that X ' is a -n -n 
multitype GWBP, with mean matrix M =  

a cell containing i before replication) given by M = 2 Q ,  Q 
being determined in ( 2 . 5 ) .  Further analysis depends on the 
behavior of powers of M, which in view of the relationship 
M=2Q can be carried out by studying Q .  In particular, let 
- v', w be the left and right eigenvector of Q corresponding 
to eigenvalue p .  

)(where mi is the 
expected number of cells containing j (mil p asmids pro d uced by 

We can normalise these so that 
1 vi=l, 1 w.v..=l . 

1 1  i> 1 - i>l - 
To describe the cure rate in the whole cell line, we 

look at the proportion of cells cured from the nth to 
(n+l)st generation. This is given by 

. and, using C41, 151  we have 1'mOn=l- p .  

the asymptotic cure rate for the whole cell line; notice that 

section 2 .  

Thus 1 - p  gives n3- 

. this is the same as for the random line of descent in 

To assess the copy number density we chose a measure 
which is relatively easy to compute. 
that extinction is impossible in our models, we find that 

(almost surely for the equilibrium model, in probability for 
the others). In any case, v. can be viewed as the asymptotic 
fraction of cells containin4 i plasmids, and the mean and 
variance of the distribution ( v . 1  provide a way of comparing 
the stability of plasmid copy number across models. 

IV. NUMERICAL COMPARISONS AND DISCUSSION 

Using the observation 

-n X'/(X'1) -n - -+us - as n + a  . ( 3 . 3 )  

1 

Having established in ( 3 . 2 ) ,  ( 3 . 3 )  our criteria for 
comparing these replication systems, we give some numeri- 
cal results. 
in [ l o ] ,  C71, [ 8 ,  Chapter 7 1 .  

These were derived using algorithms described 



TABLE I 

Asymptotic cure rates (1 - p )  

.5 

.7 

.9 

Additive 
N = 5  10 15 

Multi- . 
plicative 

.25 .0494 .0039 .!go3 .0165 .0003 

.15 .0157 .0003 .0049 3 x 1 6 ~  

.05 ,0041 .0016 

Equilibrium 
N = 5  10 15 

.1 

.3 
.45 .3194 .2098 .1377 .2373 ,1056 .0457 
.35 .1327 .0337 .0078 .0611 .0051 .0004 

- 

B 
- 
.1 
.3 
.5 
.7 
.9 - 

- 

P 

.1 

. 3  

.5 

.7 

.9 - 

- TABLE I1 
Means of copy number distribution v' 

Multi- 
plicative Additive - 

N = 5  10 15 

Equilibrium 
N =  5 10 15 

1.104 1.384 1.723 2.070 1.599 2.250 2.974 
1.353 2.042 3.217 4.571' 2.547 4.652 6.927 
1.729 2.774 5.039 7.505 3.409 6.669 10.000 
2.504 3.613 7.004 4.141 8.236 
6.020 4.537 4.745 9.474 

TABLE I11 

Variance of c o w  number distribution 

Plulti- 
plicative Add it ive 

N = 5  10 15 

Equilibrium 

N = 5  10 15 

.lo8 .328 .766 1.178 .600 1.343 2.186 

.414 1.082 2.432 3.900 1.489 3.447 5.308 
1.045 1.812 4.071 6.227 2.059 4.432 6.668 
3.108 2.506. 5.352 2.346 4.844 

26.811 3.068 2.460 4.980 
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V. CONCLUSIONS 

We examined three models of plasmid replication pro- 
posed in C21 and C63 under the assumption of random par- 
tition from the standpoint of a random line of descent and 
of a whole cell line. The concept of asymptotic cure rate, 
defined for each approach, coincided. The second viewpoint 
also allowed consideration of the asymptotic fractions of 
cells containing a given number of plasmids, and seems use- 
ful in that the study of copy number by random line of 
descent C11 C21 is likely to be generally misleading. The 
study of the evolution of the whole cell line was achieved 
by the use, in a simple way, of the extensive theory of 
multitype branching processes. 

The multiplicative model allows for "unrestricted" 
replication, and is unlikely to be accepted as plausible. 
Numerical results indicate that a decrease in cure rate with 

p in proceeding from multiplicative to additive to equilibrium, 
as accompanied by an increase in the mean of the corresponding 
copy number distribution (as might have been expected). The 
variance of this distribution is somewhat higher for the 

' equilibrium model than for the additive one, for the same 
values of the parameters N and p. 
multiplicative model has both high mean and variance in this 
distribution, which highlights its unsuitability. 

. increasing p for a given type of model, or for fixed moderate 

For p close to unity the 
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