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Abstract 

The Galton-Watson process with immigration which is time-homogeneous 
but not permitted when the process is in state 0 (so that this state is absorbing) is 

briefly studied in the subcritical and supercritical cases. Results analogous to 
those for the ordinary Galton-Watson process are found to hold. Partly-new 
techniques are required, although known end-results on the standard process 
with and without immigration are used also. In the subcritical case a new 

parameter is found to be relevant, replacing to some extent the criticality 
parameter. 

GALTON-WATSON PROCESS; IMMIGRATION; SUBCRITICAL; SUPERCRITICAL; 

RENEWAL EQUATION; EXTINCTION-TIME DISTRIBUTION; PLASMIDS 

1. Introduction 

We treat briefly the simple branching (Galton-Watson) process with time- 

homogeneous immigration (BPI), with the difference that no immigration is 

permitted when the process is in state 0, so that this state is absorbing. This 
variant of the usual branching process arises as a biological model; and our 
sketch of the theory is motivated by the need to consider the relevant 
mathematical structure separately from the biological problems. We do not aim, 
at least in this note, at a more or less complete presentation of the theory, nor at 
the levels of utmost mathematical generality to which such simple processes have 
been studied in recent years. It will be seen that while use is made of results for 
the ordinary Galton-Watson process (without and with immigration), the 

techniques of analysis are not entirely standard. The results obtained are, 
however, analogous to those for the ordinary absorbing process, and the 
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modified process provides information about the first-passage time to 0 in the 

ordinary Galton-Watson process with immigration. 
Pakes [6] has treated the situation dual to ours, where immigration is 

permitted only when the process is in state 0, and extensions of that situation 
have been made; these are different in essence. 

We denote our process by { Y,}, t ? 0, where Yo is taken to have some initial 
distribution 

{rr,}, 
j 

-0O, 
with p.g.f. Go(s) = -0 oirs', s E [0, 1]; and write the 

offspring and immigration p.g.f.'s as F(s)7=CRofjs', B(s)= 7=objs' respec- 
tively. Our basic assumptions, which we assume to obtain throughout, are 
0< B (0)<1, 0< F(0)< 1. Then for sE [0, 1] 

G,+,(s) 
= E(s t+1) = E(E(s Y+ I Yt)) 

i.e. 

(1) G,I,(s) = B(s)G, (F(s))+ 
G,,(0)(1- 

B(s)), t 0 

which is our fundamental equation. 
One model [3], [5] for the number of plasmids in a randomly chosen daughter 

cell (out of two daughter cells) supposes that if there were i - 1 plasmids in the 

parent cell, then (a fixed number) n of replication events take place, on each of 
which there is, independently, a chance p of a new plasmid being formed. If at 
the end of this process there are k ( i) plasmids (including the original i) then 
each daughter cell has probability 1 of receiving any one of these, independently 
for each plasmid. If the parent cell has 0 plasmids, it is said to be cured, and each 

daughter cell receives 0 plasmids. Thus if Y,+, is the number of plasmids in a 

daughter cell, and Y, the number in a parent cell, it follows that when Y, > 0 

(2) Y,+, = U, + U,+.. - + U., 
where N, = Y, + Z,, with Z, - Bin(n, p), and U, - Bin(l, i). Under the natural 

independence assumptions implying the Markov property it is readily checked 
that the model we have proposed holds and in particular (1) obtains with 

F(s)= 
_+is 

and B(s)= 1- + s . 

Equation (2) may be written in the more conventional form: if Y, > 0 

(3) Y,., = U, +U2+--+ U, + I 

where I is a random variable with p.g.f. B(s). In our special case m F'(1 -) = 

i, so for purposes of application we need consider only a subcritical process for 

the general model, and this is our basic presentation. We shall additionally, and 
only very briefly give some basic details on the case m > 1, since this can be done 
without extensive analysis. 
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Iterating (1) we obtain 

G,,I(s) 
= 

P+,+(s)Go(F+,(s))+ 

Z G,t_, (O)(P,(s)- P,r+(s)) 
r=0 

where 

P,(s)=l1, if r=0; =HB(F,(s)), ifrl. 
1=0 

Here F, (s) is the lth functional iterate of F (Fo(s) = s), and P, (s) is recognizable 
as the p.g.f. of generation size at time r of an ordinary BPI {X,} with offspring and 

immigration p.g.f.'s F(s) and B(s), starting with 0 individuals (Xo = 0). Thus for 

sE[0, 1] 

(4) G,(s)= P,(s)Go(F,(s))+ G,_,(O)(P,_r(s)-P,(s)) 
r=1 

and consequently 

(5) 1 - G, (s) = P, (s)(1 - 
G0(F, (s))) + E (1 - 

G,_, (0))(Pr-_,i(s) 
- 

P, 
(s)). 

Notice that G, (0) = P(T - t) where T is the time to extinction for the process 
{ Y,}, or the first-passage time to 0 for a corresponding ordinary BPI. Putting s = 0 
in (5) and writing a, = P,_,(0) - P, (0), r 1, u, = 1 - G, (0), we obtain 

(6) u, = c, + 
Utru,_,a, r=1 

where c, = P, (0)(1- Go(F, (0))). (6) has the form of a renewal equation for {u,} 
with {a,} satisfying a, > 0 and Y'=, a, = 1 - P, (0). (The positivity of each a,, t > 1, 
follows from P, (0) = P,_1(O)B(F1_(0)) and the basic assumptions 0 < F(0) < 1, 
0 < B (0)< 1.) 

It is known that for {X,} the state space S = {0, 1,2, - -} is the union of two 

disjoint sets J* and S - J* such that J* is irreducible and aperiodic and contains 
the state 0. Moreover if jO J*, p ' = 0 for each integer i 

_- 0, h > 0. The set 
S - J* may be empty ([7], ?5.2). For the stopped process { Y,} of present interest, 
similar reasoning shows that the states {1, 2, - - -} may be subdivided into 

(different) sets J* (non-empty) and {1, 2, - - } - J* with analogous properties. 
More detailed results than the foregoing basics require further assumptions. 

We assume that EYo, m 
- F'(1 -) and A B'(1 -) are all finite, and EYo > 0. It 

is well known (e.g. [8]) that 

(7) E(X,)= P(1 -)= A(1- m')/(1- m), m1 1 

and since we can say in general from (3) that 

Y,+, U, + U2 + UY, +I 
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where Ui's, Y, and I are all independent, 

E (Y, ) 
Y,)= 

Y,m + A 

whence 

E(Y,+,) mE(Y,) + A. 

Iteration then yields 

(8) EY, 
= 

m 'E(Y,,) + P'(1 - ) 

where P'(1 -) is given by (7). 

2. The subcritical case 

In the case m < 1 ergodicity (i.e. positive-recurrence of the index set J*) is 
known to obtain iff I'=, bj log j < c, and hence certainly obtains when A < x, for 
the process {X,} (see [7] for references). This implies in particular that as t - 
P, (0) --- a > 0 so that in (6), :r a, = 1 - a < 1. 

Now in fact 

a, = P,_i(0) - P, (0) = (1 - B (Fr,_(0)))P,_r(0) -A (1 - Fr, (0))a 

and since (1- F,(0))/(1 -F,_(0))-- m as r---*o, the series := a,z' has con- 

vergence radius 
m-'. If we also assume I Yj logjf; < as we shall do 

henceforth in this section, then from [4] 1 - F, (0)-cm (0<c - 1), so 

P,_r(O) - P, (0)-- cAacm'-', and we see that the series diverges to x at z = m '. It 
follows that we can find a positive number so, 1 < s, < m-' such that 

i as,= 1 

and putting ad, = a,sl,, u, = u,s,, , = c,s, in (6) we find 

ui, = _, + 
tu,_,ra, 

so that {ad} is a probability distribution all of whose terms are positive and all of 

whose moments are finite; and 6, = s(,P, (0)(1 - Go(F, (0)))~- caE( Yo)(som)' is a 

sequence of positive terms such that j,7= 5, < x. Applying [2], p. 330, Theorem 1, 
all of whose conditions are satisfied, we obtain 

ui,---• 

, i ka, = K, say, where 0()< K < 

so that 

(9) s 
,(1 

- G, (0))-- K, 
O < K < 

x. 
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This provides information on the extinction-time distribution which completely 
parallels that for the ordinary subcritical branching process, with So playing the 
role of m-' in that situation. We return to the further significance of this point 
shortly, but are now able to pass on to another feature of similarity: the analogue 
of the Yaglom conditional limit theorem for the subcritical process. 

Multiplying (5) by s' we notice in the expression 

s0(1 - G, (s))= sP, (s)(1 - Go(F, (s))) 
(10) 

+ s~r'(1 
- G,,r(O ))s(P,,(s)- P, (s)) 

r=1 

that the first summand on the right is < st(1- Go(F,(s)))< st(1-Go(F, (0)))-- 
cE(Yo)(som)' ---> 0 as t --->o, since som < 1. Also 

Pr_ (s) - Pr (s) = 
(1 

- B 
(Fr_I(s)))PrI(s)<- 1 

- B 
(F,-I(0)) (11) A(1 

-F•,(0))_ 
Amr 

by the mean value theorem, so that 
=1,s,(P,_,(s)-P,(s))<0 

for each 

s E [0, 1]. Noting (9) we find, letting t ---> in (10), that 

(12) lim 
so(1 

- G,(s))= K E s (P,_,(s)- P,(s)). ----oc ?r=l 

From (9) and (12) 

= 

_1- 
Es)O---> 1- 1 s h(P,(s)-P,(s)) 1 - G, (0) 1 - G, (0) _,= 

= V(s), say, 

s E [0, 1], which is clearly independent of the initial distribution vector r'. Also 

by dominated convergence on account of (11) 

lim V(s) = 1 - lim 1 s 
(Pr•i(s) 

- P(s)) = 1, 

so we have a proper limit distribution for P(Y, = j Y, > 0), j = 1,2, . Using 
analogous reasoning 

lim (1 - V(1 - 8))/8 = - C 
s,)(d(P,_,(s)- 

Pr(s))/ds), =I 

(13) 
= s Am'-' = soA/(1 - som) 

r=1 

from (7). 
If we denote by pl the t-step transition probabilities of the Markov chain 

underlying { Y,}, we have as a consequence of the above limit theorem that for 
jE J* in particular 
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7 vip !/ {I G,(0)} ---> vj, vj = 1 
i=1 jEJ* 

where ••=, vis' = V(s). Specializing to an initial distribution concentrated at 
i EJ*, we have from (9) 

(14) sOp-) K(i)v;, i, e J* 

where K(i) can be expected to depend on i. For fixed i E J* the limit is positive 
for at least one jE J*. Now the irreducible aperiodic set J* must be either 
R -positive, R -null or R -transient, and the behaviour exhibited in (14) can occur 

only in the R -positive case with so = R ([9], Chapter 6). The R -positivity theory 
now shows that vj > 0 for each j E J* (since the limit in (14) must be positive for 
each i,j), that {K(i)}, i E J* is the unique (to constant multiples) R-invariant 
vector of the set J*; and {v,}, j E J* the unique (to constant multiples) invariant 
measure, scaled (as is possible in this particular situation) to have sum 1. These 
results are analogous to those of Seneta and Vere-Jones [10] for the ordinary 
subcritical process. 

Working from the expression 

V(s) = 1 - C s (P, (s)- P, (s)) 

and putting p = 1/so (m < p < 1), we find 

(15) B (s)V(F(s))= pV(s)+(1-p), sE[0, 1] 

which resembles the functional equation B(s)P(F(s))= P(s) for the p.g.f. P(s) 
of the stationary-limiting distribution of the corresponding ordinary BPI, {X,}. 
This suggests writing V(s) = P(s)H(s), where H(s) satisfies H(0) = 0 (since 
P(0)> 0), H(1)= 1, on s E [0, 1] and subsequently using the usual fixed-point 
shift by writing f(x) = 1 - F(1 - x), b(x)= 1 - B(1 - x), h (x) = 1 - H(1 - x), 
p(x) = 1 - P(1 - x), to obtain finally 

(16) (1 - p)g(x)= ph(x)- h(f(x)), x E [0, 1] 

where g(x)= p(x)/{l1 -p(x)}. 
If in (16) we regard h as an unknown function, with all other functions as 

specified previously, and p as any finite number satisfying p > m, on iteration we 
obtain 

h(x)=h(f, + (g{ 
g(x))/p 

P P i=O 

where f, (x) = 1 - F, (1 - x) is the ith functional iterate of f(x). If we impose the 
constraints that h(O)=O, O<h'(O+)<c, since h(f,(x))-h'(0+)f,(x)S 
h'(0 + )f, (1) - h'(0 + )cm " it follows that 
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(17) h(x) = gV( (x))/p p i=0 

(which evidently converges uniformly in x E [0, 1]). It is easily checked that this 
is indeed a solution of (16) which, under these conditions, is unique. If we seek 

h(x) such that h(1) = 1, then p must satisfy 

(18) 
=-p 

V M) 
1-p 7=0 p 

It is readily seen that there is just one such p in the interval m < p, and that it 
must satisfy m < p < 1. 

Thus returning to So and the p.g.f. V(s) of the Yaglom-type limit distribution, 
(17) and (18) indicate how these relate to the p.g.f. P(s). Equation (15) provides 
the simplest way to compute moments of {v,}; EIl, jvj = A /(p - m), in agreement 
with (13). 

3. The supercritical case 

Putting W, = Y, /m' in the case m > 1 we notice from (3) that 

E(Y,, I Y,) = mY, + A mY,, if Y,> 0 

=0 mY, if Y, =0 

so that in general E(W,,+ I 
Y,)= 

W,. The sequence {Y,J is Markovian, and from 

(7) and (8) EW, 5 EYo+ A /(m - 1), so { W, is a submartingale with bounded 
mean and hence by the submartingale convergence theorem (as in [8] for {X,}) 

Wt 
---> W with E(W)EYo + A /(m - 1) 

where the proper random variable W may, however, be degenerate. To 

investigate its distribution, notice from (4) that for s 0 

G, (e -s/m') = P, (e-s/m' )Go(F, (e -s/' )) 

(19) t-1 
+ E Gk (O){Pt-k-1(e-s/m) - P,-k (e-s/m' ). 

k=0 

Now if in this supercritical case also we make henceforth the additional 

assumption that I,=, j logjf, < o, it is known (e.g. [6], [1]) that 

s ?0, where /(s) and 4(s) are the Laplace transforms of proper non- 
degenerate distributions with finite means. 

Now 
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P,-k-,(e-s/m _- P,-k (e -s/m) 1 - P,-k (e-s/, ) 

s d 
P,-k 

(ex) 
IX=• m' dx 

by the mean value theorem, where -s/m' < < < 0; 

? (s/m')P,'k (1 -) 

and from (7) 

= (s/m')A(m-k - 1)/(m 1) sAm-k/(m -1). 

Hence by dominated convergence, letting t -- 
+c 

in (19) 

(20) 

0(s)- 
E(e-s")= (s)Go(qk(s))+ Gk (O){4(s/m"k')- (s/mk)}. 

k =() 

Since (- 0'(0 + ))< < , it can similarly be established by dominated convergence 
that (- O'(0 + )) < oc, and further information can be deduced from (20). 

Note added in proof. The is some overlap between the early part of our 
results (to Equation (9)) and results of Zubkov [11]; ours are somewhat more 

general. Results for the critical case have been obtained by Ivanoff and Seneta 

[12]. 
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