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Some stochastic models for the copy number of plasmids in a cell line are 
studied. When considering the behavior of copy number in the whole cell line, the 
theory of multitype branching processes is appropriate. Attention is paid to the cure 
rate in the cell line, and the asymptotic fractions of cells containing a given number 
of plasmids. These quantities are used to compare the models numerically. 

1. INTRODUCTION 

In this paper, we study the behavior of some stochastic models of plasmid 
reproduction, and the maintenance of plasmid copy number. The motivation 
for this study arose from work of Gardner et al. (1977), Novick and 
Hoppensteadt (1978), and Emerson and Hoppensteadt (198 1). 

We consider a cell line initiated by a single cell at time n = 0, and growing 
by binary splitting at times n = 1, 2, .... The initial cell contains a number of 
plasmids, which replicate in the cell, and are then distributed to the two 
daughter cells at cell division. We shall analyze two ingredients of this 
process. The first is the replication mechanism, the second the partition 
mechanism. The replication process determines how plasmids within a given 
cell replicate before cell division, whereas the partition mechanism describes 
how the plasmids, after replication in a cell, are divided among the two 
daughter cells. 

Several models for the replication process have been considered. Random 
replication is taken to mean that plasmid replication occurs sequentially, so 
that a given plasmid may replicate several times before partition (Rownd, 
1969). Models of this type, which are related to the classical Polya urn 
schemes, have been discussed in the context of plasmid incompatibility by 
Novick and Hoppensteadt (1978) and by Ishii et al. (1978). 

In a recent report, Gardner et al. (1977) described another collection of 
stochastic replication schemes. In essence, they modeled the behavior of the 
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number of plasmids contained in a cell in any specific generation of a 
randomly chosen line of descent through the cell population. The aim of their 
study was to quantify the differences between their replication schemes with 
respect to the following properties: 

This includes the mean and 
variance of the number of plasmids in the line of descent at particular times 

Along a random line of descent, the cells must 
eventually be cured (Le., contain no plasmids; see Section 2). How fast does 
such curing occur? 

Emerson and Hoppensteadt (198 1) also consider aspects of these 
problems using computational methods. 

The focus of the present paper is the simultaneous study of plasmid copy 
number and cure rate in the whole cell line rather than along a random line 
of descent, using the models of Gardner et al. We concentrate o n  two 
measures to assess quantitatively the differences between the replication 
mechanisms: the asymptotic cure rate (Section 3.1) and the asymptotic 
proportions of cells containing a given number of plasmids (Section 3.2). In 
Section 4, numerical comparisons are made. The basic tool we use is the 
(finite and countable) multitype branching process which describes the 
evolution of plasmid numbers through the cell line. Some of the more 
technical derivations are relegated to the Mathematical Appendix. 

We conclude this section with a description of the replication and partition 
mechanisms that we will analyze, 

1.1, The Replication Processes 

(a) The Multiplicative (or Doubling) Model (M). Suppose that at cell 
contains i (>O) plasmids just before replication. We assume that each 
plasmid replicates once independently of all others, giving rise to either one 
offspring plasmid (with probability 1 - p )  or two offspring (with probability 

(a) Stability of plasmid copy number. 

(b) The cure rate. 

I 

There are three such mechanisms that we shall describe. 

p ) ,  where 0 < p < 1. If we define 

R,, = Pr { 1 plasmids in cell before 

i before replication}, 

then in the present case we have 

partition 1 

When p =  1, the model reduces to one in which each plasmid produces 
exactly two offspring; hence the term “doubling.” The parameter p takes 
account of random variation in this reproduction scheme. 
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(b) The Additive Model (A). We again consider a situation in which a cell 
contains i (>O) plasmids. In this case, there is a fixed number N of 
replication events, each of which is successful with probability p ,  indepen- 
dently for each such event. The number of plasmids in the cell prior to 
partition and after replication is then equal to i + Y, where Y is a binomial 
random variable with parameters N and p .  This model can be ascribed to 
Kasamatsu and Rownd (1970) (in the case p = l), who wanted to model a 
regulation mechanism to control the replication process. 

It is readily seen that for i > 0, 

R , , =  ( ) p ' - ' ( l - p ) P - ' + i ,  l = i , i + l ,  ..., N + i .  (1.3) 
l - i  

(c) The Equilibrium Model (E). This process also seeks to describe a 
replication control mechanism. Given i (>O) plasmids in a cell, and a 
replication event success probability of p = 1, the number of plasmids in the 
cell before partition is 2N, regardless of the value of i. This model reflects the 
inability of a given cell to contain more than a given number of plasmids. 
When p < 1 ,  we view the process as leaving i + Y offspring plasmids, where 
Y is a binomial random variable with parameters 2N - i and p .  It follows 
that 

1 = i, ..., 2N. 

In all three models, it is assumed that p ,  and the form of the replication 
probabilities R, , ,  remain constant through time. From a standpoint of 
replication control mechanisms, it might be argued that p should depend on 
the plasmid copy number i; the larger i, the smaller should be p .  We shall 
not attempt an analysis of this process. Finally, since we are supposing that 
cured cell (one containing no plasmids) leaves cured daughter cells, we must 

In Section 2 we study the role of the parameters p and N on the evolution 
I have Roo= 1. 

of plasmid copy number in a random line of descent. 

2. RANDOM LINES OF DESCENT 

A random line of descent through the cell line is defined as follows. We 
choose with probability f one of the two daughter cells at time n =  1, with 
probability f one of the daughter cells of that chosen at time n = 1 ,  and so 
on. Now let X ,  be the number of plasmids in the cell (before replication) at 
time n, n = 0, 1,2,  .... For the three models described earlier, it is clear that 
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{X,, ,  n 
are given by 

0 )  is a Markov chain, and its one-step transition probabilities (pi j )  

pij = Pr { X ,  + , = jl X,, = i} = R ,  Pl j ,  (2.1) 
I 

where, as in (Ll),  

Ril  = Pr { 1 plasmids in cell before partition 1 i before 

replication }, 

and 

P,j = Pr{randomly chosen daughter cell inherits j 

plasmids I mother cell had 1 before partition}. 

So as not to obscure the effects of the replication process, we shall in all 
cases assume a random partition process. This means that any plasmid in a 
cell before partition is assigned independently and at random to either of the 
two daughter cells. In particular, 

P,= 6) 2 4 ,  j = o , l ,  ..., 1. 

The type of Markov chain represented by the transition probabilities (2.1) is 
most easily ascertained by looking at the probability generating functions 
(Pgf)?(s), i > 0, given by 

&(s) = c p i j s ' ,  0 < s < 1. 
J 

Using (2.2) and the replication probabilities (1.2)-( 1.4), these pgf s are 
readily evaluated. The results are given in Table I. From this table, it is 

TABLE I 

Multiplicative 
( + + + ) I  ( 1  -T+T)' P PS 

Additive (+++) ' ( l -T+T)  P PS 

(+++)'(1 -T+T) p ps lN-' 
Equilibrium 
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immediate that for the multiplicative model, X,, is a Galton-Watson 
branching process with offspring pgf f ( s )  given by 

f ( s ) = ( f + f s )  1 --+- . ( ; 7 )  
Similarly, the additive model may be viewed as a branching process with 
immigration, stopped whenever 0 is reached. The offspring pgf f ( s )  and 
immigration pgf b(s) are given by 

( ; 7 ) N  1 1  
2 2  

f ( s ) = - + - s ,  b(s)= 1 --+- . 

The equilibrium model has no such convenient representation. 
All three processes have an absorbing state at 0, which corresponds to 

curing of the line of descent. We shall write the transition matrix P = ( p i j )  in 
the form 

P =  ( 1  0”). 
P Q  

where Q corresponds to transitions among the transient states { 1,2, ...}. Of 
fundamental importance in such models is the Perron-Frobenius eigenvalue, 
p (say), of the matrix Q. For the multiplicative model, the representation of 
{X, , }  as a branching process allows us to obtain from Seneta and Vere-Jones 
(1966) and (2.4) that 

pM =f’( l )  = ( + p < 1. (2.7) 

The equilibrium model has a finite Q matrix, and if p > 0, this matrix is 
primitive. We have been unable to compute pE explicitly, but we can 
establish the bounds, good for p T 1 ,  from the maximum and minimum row 
sums of Q (Seneta, 1981, p. 8), 

1 -(2-p)-’(1 - p / 2 ) * y p E <  1 -(i)’”. (2.8 1 
For the additive model, the situation is more complicated. We define 

Qr(s )  = 1 (r = 0) 

(r 2 11, 
r -  1 

= n bV;(s)) 
l = O  

where 
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and f(s) and b(s) are given in (2.5). Then if a, = Q,- 1(0) - Q,(O), r 2 1, the 
equation 

m C a$= 1 
l =  1 

(2.10) 

has a unique solution s*, and pa = s*-', and < p A  < 1. The reader is 
referred to Seneta and Tavare (1983) for details. 

This done, it is in principle straightforward to analyze the behavior of the 
cure time To = inf(n > 0: X,, = O}. It is elementary to show that curing must 
eventually occur, the random line of descent eventually containing no 
plasmids. Some numerical computations of the distribution of To have been 
given (Emerson and Hoppensteadt, 1981; Gardner et al., 1977) in the case 
p = 1.  We shall content ourselves by considering the (asymptotic) cure rate 
0, say, defined by 

e= n-tw lim Pr{X,,+, =OlX,, > 0) 

Pr{To > n + 1 )  
= 1 - lim 

n+m Pr{To>n}  ' 

(2.11) 

If we assume that X o  = i > 0 is fixed, then it is readily established that 

e= 1 - p .  (2.12) 

For the doubling model, this is contained in Kolmogorov's result (cf. Harris, 
1963, p. 18) when p < 1, and for the additive model this follows from Seneta 
and Tavare (1983). For the equilibrium model, it is a straightforward conse- 
quence of nonnegative matrix theory (see Seneta (1981, Theorems 1.2 
and 4.6)). 

3. PLASMID COPY NUMBER IN THE WHOLE CELL LINE 

The behavior of copy number in a random line of descent gives a poor 
picture of the distribution of copy number in the whole cell line. We give a 
simultaneous study of copy number in all cells in this section. Our method is 
based on considerations of Harris (1963, p. 47). See also Novick and 
Hoppensteadt ( 1  978, p. 426). 

For j 2 0, let xl;" be the number of cells in generation n containing j 
plasmids before replication, Clearly, c.>oxl;" = 2", so we may disregard 
x',"' (which counts the number of cured cells in generation n), and focus on 
the vector process X; = (Pi), P,", ...). Now consider a cell containing i 
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(>O) plasmids before replication. We compute the mean number mu of cells 
containing j plasmids produced by a cell containing i. Given that the parent 
cell produces k plasmids before partition, the mean number of j-type cells 
produced is, from (2.2), 

1 X  ] ( ; ) 2 - L f  ( k k j ) 2 - k l = 2  ( j k ) 2 - X '  j # k / 2 ,  ( 3 . 1 )  

2 ( ) 2 - k  if j = k / 2 .  
kl2 

In either case, the (conditional) mean number is 2P,. Averaging over the 
distribution of k gives 

mij = C Rik 2 ~ ,  = 2pij, i, j > 1. ( 3 4  
k 

Writing M =  (mi,), and using (2.6), we find 

M = 2Q. ( 3 . 3 )  

Clearly, cells behave independently of one another, and their offspring 
distributions do not change with time. The pgf of the distribution of the 
number of different types produced by an i-type cell is then 

k 

f ( i ' ( s ~ ,  s2,.*.) = 2 R i k  PuSjSk-j, i >  1, (3.4) 
k > i  j = O  

where so = 1. It follows that 

I,=, = 2pij = mij,  

in agreement with (3.2). The process X; is now identified as a multitype 
Galton-Watson branching process (cf. Harris (1963, p. 36))  with mean 
matrix M and offspring pgfs f"'. We note that extinction (X' = 0') is 
impossible in these models, since a cell with i > 0 plasmids necessarily 
produces at least one cell with positive plasmid copy number. 

Further analysis depends on the behavior of powers of the matrix M, 
which in view of (3.3) is essentially covered in Section 2. Let p be the 
general symbol for the eigenvalue in the discussion (2.7)-(2.10), and let v', 
w denote the corresponding left and right eigenvectors of Q, respectively. 
Clearly, 2p is the Perron-Frobenius eigenvalue of M, with associated vectors 
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v', w. In all cases 2p > 1 (except when p = 1 in the multiplicative model, a 
case we shall not consider further). Using results of Seneta and Tavare 
(1983) and Seneta and Vere-Jones (1966) for the two cases of countably 
infinite Q, we may take v', w to be normalized so that 

c v i =  1, c u i w i =  1. 
i > l  i >  1 

(3.5) 

3.1. Cure Rates 
Conditional on X,, the mean number of uncured cells at time n + 1 is 

XAM1, where 1' = (1, 1, ...), and so the mean proportion remaining uncured 
is (XA M1)/(2XA 1). Hence the unconditional proportion cured from the nth 
to the (n + 1)st generation is given by 

Since extinction is impossible, we see that 

XAM1 2XAQl XAl - - <-- - 1. O <  2XA1 2XA1 XLl (3.7) 

If we now concentrate on the equilibrium model (which has a finite 
number of types), then we have from a theorem of Kesten and Stigum (1966) 
that there is a r.v. W, with Pr[ W > 01 = 1 such that 

(2p)-"XA + Wv' as. as n + a. (3.8) 

It follows that 

X; M1/2XL 1 + p a.s. (3.9) 

Thus from (3.9), the dominated convergence theorem, and (3.7), we obtain 

n-w 
(3.10) 

For the other two models, the presence of a countable number of types 
makes the analysis less simple. Assuming, by analogy with the equilibrium 
model that Pr[ W > 01 = 1, we can establish, using a theorem of Moy (1967) 
that (3.8) and (3.9) hold with convergence a s .  replaced by convergence in 
probability. Details of this, and a discussion of the assumption 
Pr[ W > 01 = 1, are given in the Mathematical Appendix. This is sufficient to 
ensure that (3.10) holds also. Note that (3.10) and (2.12) give the same 
expression for the asymptotic cure rate. It is worth noting that in the 
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equilibrium model the fraction 2-"X; 1 of uncured cells converges as .  to 0 
as n + 00 (and to 0 in probability in the other cases). Thus even though the 
total number of uncured cells grows to infinity, they become sparser and 
sparser. 

3.2. Copy Number Density 
There are several ways in which the evolution of copy number could be 

measured. The simplest for numerical comparisons (see Section 4) seems to 
be the asymptotic fraction of cells containing a given number of plasmids. 
For the equilibrium model, we know from (3.8) that 

+ v' a.s. as n +  00, x:, 
x; 1 

(3.11) 

so that v ,  can be viewed as the asymptotic fraction of cells containing i 
plasmids; (3.11) holds for the other cases in the sense of convergence in 
distribution on the set { W > 0) (see Mathematical Appendix). In any case, 
we use v as a simple means of comparing the processes. In particular, the 
mean p and variance 0' of v have useful interpretations ih this context. 

For the multiplicative model (with p < 1) standard theory (see Harris 
1963, p. 17) shows that 

wheref,(s) is given in (2.9) andf(s) in (2.4). The variance is 

For the additive model, one obtains (Seneta and Tavare, 1983) 

Nps * NP 
PA=-= 2p,-1 

(3.12) 

(3.13) 

(3.14) 

with variance 

For the equilibrium model, the mean and variance are most easily 
calculated on a computer. However, when p =  1 a complete analysis is 
possible. Indeed pE = 1 - 2-2N, 

u,=P;' (7) 2-2N, j =  1 ,..., 2N, (3.16) 
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pE = Np, 1, 0; = Np,  1 (N + f - Np, 1). (3.17) 

4. NUMERICAL RESULTS 

With these theoretical results established, we can compute p, v, and 
compare models. For the additive and multiplicative processes, where Q is 
countable, we employed the truncation algorithms of Seneta (198 1, 
Section 6.4). Let ,,,Q be the n-square top left-hand corner of Q, and set 
(")x; = (1, ..., 1). The simplest algorithm to find p, v proceeds via a series of 
iterations: 

For k 2 0, set (")y; = (")xi - (")Q, and define ("gk as the first element of 
(")Yi.  Then 

(")Xi+ I = ("92 (n)Y;, k z 0. (4.1) 

The scheme is iterated until I ("gk+] - (,,gkI < E, for some tolerance E; we 
chose E =  The sequence ("9 increases to p as n increases, and (")x' 
converges to v', normalized so that ul = 1. Typically, n = 30 was sufficient 
to produce no change in ("9 to four or five decimal places, and the first 20 
elements of (")x' differed little also. For the equilibrium model, the same 
technique was used for the whole finite matrix of transient states Q. The 
mean in (3.12) was computed via an algorithm of Pollak (1969), and the 
values of s* = p i 1  found by algorithm (4.1) were checked for consistency 
with the solution of (2.10). 

In Tables 11-IV, we compare the cure rates and asymptotic copy 

TABLE I1 

Asymptotic Cure Rates (3.10) 

Additive Equilibrium' 
Multi- 

p plicative N = 5 10 15 N = 5  10 15 

0.1 0.45 0.3194 0.2098 0.1377 0.2373 0.1056 0.0457 
0.3 0.35 0.1327 0.0337 0.0078 0.0611 0.0051 O.OOO4 
0.5 0.25 0.0494 0.0039 0.0003 0.0165 0.0003 

0.9 0.05 0.0041 0.00 16 
0.7 0.15 0.0157 0.0003 0.0049 3~ 1 0 - ~  

(.00098 9.5 x lo-'  9 x lo-'') 

' Parenthetical values for p = 1 from (3.16). 

~~ 
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distribution for a range of values of p and N. Our choice of values of N was 
predicated on the use of reasonable amounts of computer time, although 
there is some evidence (Gardner et al., 1977) that these values may not be 
unreasonable. 

To provide some detail about the effect of p on the copy number 
distribution (3.1 l), we plot in Fig. 1 the distributions {v i }  for the additive 
model with N =  5.  Figure 2 gives the analogous distributions for the 
equilibrium model with N = 5.  

~ 

25 1 

I 

TABLE I11 

Means of Copy Number Distribution (3.11) 

Additiveb Equilibrium' 

I 

Multi- 
p plicative" N =  5 10 15 N = 5  10 15 

0.1 1.104 1.384 1.723 2.070 1.599 2.250 2.974 
0.3 1.353 2.042 3.217 4.571 2.547 4.652 6.927 
0.5 1.729 2.714 5.039 7.505 3.409 6.669 1O.OOO 
0.7 2.504 3.613 7.004 4.141 8.236 
0.9 6.020 4.537 4.745 9.474 

(4.995 z10.0 zl5.0)  

a From (3.12). 
'From (3.14). 
'Parenthetical results for p = 1 from (3.1 7). 

I 'From (3.13). 
bFrom (3.15). 
'Parenthetical results for p = 1 from (3.17). 

TABLE IV 

Variance of Copy Number Distribution (3.11) 

Additiveb 
Multi- 

p plicative" N =  5 10 15 

Equilibrium' 

N = 5  ' 1 0  15 

0.1 0.108 0.328 0.766 1.178 
0.3 0.414 1.082 2.432 3.900 
0.5 1.045 1.812 4.071 6.227 
0.7 3.108 2.506 5.352 
0.9 26.81 1 3.068 

0.600 1.343 2.186 
1.489 3.447 5.308 
2.059 4.432 6.668 
2.346 4.844 
2.460 4.980 

(2.522 25.0 z 7 . 5 )  
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5. DISCUSSION 

We have examined each of three models of plasmid replication proposed 
in Gardner et al. (1977) and Novick and Hoppensteadt (1978) under the 
assumption of random partition from the standpoints of a random line of 
descent and of a whole cell line. The concepts of asymptotic cure rate, 
defined for each approach, coincided. The second standpoint allowed 
consideration also of the asymptotic fractions of cells containing a given 
number of plasmids, and seems useful in that the study of copy number by 
random line of descent (Gardner et al., 1977; Emerson and Hoppensteadt, 
1981) is likely to be generally misleading. The study of the evolution of the 
whole cell line was achieved by the use, in a simple way, of the extensi.ve 
theory of multitype branching processes. 

The multiplicative model allows for “unrestricted” replication, and is 
unlikely to be accepted as plausible. Numerical results indicate that a 
decrease in cure rate, with increasing p for a given type of model, or for fixed 
moderate p in proceeding from multiplicative to additive to equilibrium is 
accompanied by an increase in the mean of the corresponding copy number 
distribution (as might have been anticipated). The variance of this 
distribution is somewhat higher for the equilibrium model than for the 
additive one, for the same values of the parameters N and p. For p close to 
unity, the multiplicative model has both high mean and variance in this 
distribution, which highlights its unsuitability. 

MATHEMATICAL APPENDIX 

The deduction that (3.8) and (3.9) hold with convergence in probability 
and that (3.10) continues to hold, for the multiplicative and additive models, 
may be made by first checking that the conditions of (Moy, 1967, 
Theorem 1) are satisfied. We give sufficient information for the interested 
reader to reconstruct the full argument. The underlying R-classification 
theory of nonnegative matrices may be found in Seneta (1981). 

Since we are assuming p # 0, in view of (2.4) for the multiplicative 
model, and (2.5) for the additive model, the matrix Q of (2.10) is irreducible 
and aperiodic. In the multiplicative model (where we assume further p < l), 
Q is R-positive with convergence radius R = 2/(1 + p ) ,  with R-invariant 
measure v’ = { v i )  > 0’ normed according to (3.5) given by the Yaglom 
conditioned-limit distribution, where the corresponding R-invariant vector 
w = {w,} is given by wi = i / p M ,  i 2 1 (with pM given by (3.12)); see Seneta 
and Vere-Jones (1966). In the additive model, Q is R-positive with R = s*, 
1 < s* < 2, and the left and right R-invariant vectors v‘ (>O’) and w (>O) 
can be taken to satisfy (3.5) (Seneta and Tavare, 1983). Since M =  2Q, M 

1. 



254 SENETA AND TAVARE 

has analogous "Perron-Frobenius" structure, with convergence radius 
R/2= (2p)-' (<1), and the same v' and w as Q. Thus the preliminary 
conditions of (Moy, 1967, Section 2), on the Galton-Watson process with a 
countable number of types, are satisfied. 

2. Write C(i) = E((X; w)'JX, = e,), i > 1, where e, is the vector with 
unity in the ith position and zeros elsewhere. If 4 

l 

2 C(i)Vi < 00. 
i =  1 

Theorem 1 of May (1967) implies that for a fixed starting vector of form e j ,  
there is a proper random variable W satisfying 0 < E( W') < 00 and such 
that for any vector f = {A} ,  i >, 1, satisfying 

IA/w,I < const, i >  1, (A21 

we can conclude 

convergence being in mean square. We show below that in both 
multiplicative and additive multitype models, (Al)  is satisfied and (A2) is 
satisfied with f = 1. Since M1 = 2Q1 < 21, it follows (A2) is also satisfied 
with f = M1. Hence (2p)-" X; 1 + W, (2p)-" X; M1 + (v'M1) W =  2pW, 
convergence being taken in probability. If it is true in our specific 
framework, in analogy to the case of a finite number of types, that 
Pr[W= 01 = 0 (see below), (3.9) holds with convergence in probability. In 
view of (3.7), X; M1/(2X; 1) is uniformly integrable, and since convergence 

Equation (3.11) can be established in the sense of convergence of the 
in probability implies convergence in distribution, (3.10) follows. 

finite-dimensional distributions of the vector XA/(X; 1) using the previous 

-i 

j 
discussion and the Cramer-Wold device. 

cases to check (Al)  and (A2), we notice that for either 
Before passing to separate consideration of the multiplicative and additive 

C(i) = E(w'X, Xi wJ X, = e,) = w'E(Xl Xi I X, = e i )  w, 

and in view of (3.4) the ( j ,  t) entry of E(X, Xi IX, = e,) for i, j ,  t > 1 is 
given by 

= 0, otherwise 
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(with the further restriction on the first line that j +  t Q  2i in the 
multiplicative, j + t Q N + i in the additive, so 

k -  1 

c ( i ) = 2  2 Ri,kPkjWk-jWj. (A31 
k > m a x ( Z , i )  j =  1 

3 .  Multiplicative case. Since wl = const i, we have from (A3)  

and since (k  - j ) j  Q k2/4,  

which is of the form const, i + const2i2, so ( A l )  holds since the variance of 
the Yaglom distribution is finite if and only if the variance of the subcritical 
offspring distribution is finite. On account of the form of w, (A2)  holds with 
f =  1. 

4. Additive case. In Seneta and Tavart (1983, Section 2) ,  it is shown 
that 

1 0 0  l o o  \ 

where const and the ck are positive and independent of i, while Eo = 1, 
0 g Et g s*' ( 1  - G,df,(O))), where G,(s) = si. Since in our case 
f ( s )  = f + f s, it follows f t ( s )  = 1 - (f)' + (f)'s, so 1 - f i (O)  = (f)', and in 
view of the form of Go, C; < i(s*/2)'. Thus, wI Q const i. We may now 
imitate the sequence of inequalities for the multiplicative case to obtain 

C(i) Q const, + const, i + const, i2. 

Inequality ( A l )  follows from the fact that, in view of the simple form off(s) 
and b(s) given by ( 2 . 5 ) f " ( l - )  < co and b"(1-) < GO; whence we can use 
dominated convergence along the lines of ( 1 3 )  of Seneta and Tavare (1983) 
to show C i2vi < 00. That (A2)  holds with f = I follows from the obser- 
vation that 

00 

w,)const kCk 
k =  1 

since Eo = 1 .  
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5.  We have not been able to establish that Pr[ W > 01 = 1 in the 
multiplicative and additive cases, although, since W is not degenerate at 0, 
Pr[ W > 01 > 0. We are indebted to F. M. Hoppe for pointing out that even 
thoughf(0) = 0, simple examples with Pr[ W =  01 > 0 can be constructed. In 
the event that this is so in our countable-types cases, the interpretation of 
1 - p  as an asymptotic cure rate is still plausible from the fact that 
E(X;+ l)/E(2X; 1) -+ p as n -+ 00; while that of the element ui of v as the 
limiting asymptotic fraction of cells containing i plasmids, i >  1, is still 
pertinent on the set { W > 0). 
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