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Abstract 

For the haploid genetic model of Moran, the joint distribution of the 
numbers of distinct ancestors of a collection of nested subsamples is derived. 
These results are shown to apply to the diffusion approximations of a wide 
variety of other genetic models, including the Wright-Fisher process. The 
results allow us to relate the ancestries of populations sampled at different 
times. Analogous results for a line-of-descent process that incorporates the 
effect of mutation are given. Some results about the ages of alleles in an 
infinite-alleles model are described. 

MORAN MODEL; WRIGHT-FISHER MODEL; INFINITE ALLELES; AGE OF ALLELES; 

LINES OF DESCENT; DIFFUSION APPROXIMATION 

1. Introduction 

Consider the evolution of a haploid population comprising 2N individuals in 
each generation. Assuming for the moment that generations are distinct, each 
individual in generation s + 1 is the offspring of exactly one individual in 
generation s. The number of offspring born to individual j in generation s is, 
however, a random variable Yj, say, constant population size being maintained 
by the requirement that Y1+ 

Y2+''" 
+ Y2N = 2N. The random variables 

Y1, " " " 
, Y2Nare assumed to be exchangeable, with a joint distribution that is 

invariant over time. Suppose that we now choose, without replacement, a 
random sample of size i from the population at some time labelled 0. Labelling 
time in the reverse direction, we observe the number of distinct ancestors 

Al(n) of the sample n generations before now. Thus A1(1) is the number of 
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distinct parents of our sample of size i, A1(2) the number of distinct grand- 
parents, and so on. 

Several authors have studied the behavior of the process {A1(n), n 
_ 

0}. In 
particular, Felsenstein (1971) uses the process to determine the rate of loss of 
alleles in a class of neutral haploid models with no mutation. For our purposes, 
it is enough to record that {A1(n), n -0; A1(0) = i} is a Markov chain with state 
space {1, 2, ... , i} whose one-step transition probabilities 

(1.1) 
gl- gi(1) = P(Al(n + 1) = j Al(n)= 1) 

can be computed explicitly: see Gladstien (1978). We shall cite one important 
example. 

The Wright-Fisher genetic model asserts that (Y, .. , Y2N) have a joint 
multinomial distribution with 

(1.2) P(Y1 = Yl, . , Y2N = Y2N) = ( )2N 

The prescription (1.2) is equivalent to each individual choosing his parent 
independently uniformly at random from the parent population. Watterson 
(1975) used the fact that in this case 

g(2N)A'0', 1<=]_< 
(1.3) g = (2N)-' 1 

where 

A'f(x)= (-1)'+"n()f(x +n). 
n=O n 

The formula (1.3) will be familiar as the distribution of the number of occupied 
cells (parents) when 1 balls (individuals) are dropped at random into 2N cells. 

Several choices of distribution for (Y1, 
? . 

', Y2N) result in models in which 
the generations may be considered overlapping. One such is due to Moran 
(1958), where 

(0, 2, 1,... , 1), or a permutation 

(1.4) (Y**, Y2N 
of this, with probability 1-(2N)-1 

(1, 1, 1, 1, 1) with probability 

(2N)-1 

(cf. Cannings (1974)). In this model, the ancestor of an individual may be that 
individual itself if it survives. While the natural time-scale for this process is in 
units of birth-death events, we will for uniformity continue to call these 
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generations. It follows from (1.4) that 

1(1- 1) 
(1.5) g11 = 1 

4N- = 1,1-1. 4N2 

In all these models state 1 is absorbing, corresponding to the observation that 

eventually the sample, or population, can be traced back to a single ancestor. 
For the process specified by (1.5) it is a straightforward matter to compute 

the transition probabilities g,l(n) = P(A1(n) = 11 AI(0)= i). We obtain 

(1.6) 
gi(n)= 

" (-1)'-(2r- 
1)i[r1(r-1), 1l i, (1.6) l! (r-l()! in), 

where A, = 1- (r(r - 1)/4N2), and we use the notation 

a,3 = a(a- 1) .. (a- r + 1), at,) = a(a + 1)... (a + r- 1). 

It is interesting to note that the distribution of the number of distinct ancestors 
of a sample of any size i -2N can be found by studying the single process 
A1(.). Thus far, however, we have considered the ancestry of only a single 
sample. 

In this paper, we study the joint distribution of the number of distinct 
ancestors of a sequence of nested subsamples taken from a population repro- 
ducing according to the Moran model (1.4). Such nested subsamples arise 

directly when making inferences about a large sample from ancestral informa- 
tion concerning a subsample. They also arise indirectly in the study of the 

relationship between the ancestries of distinct generations. See Watterson 
(1982a). This joint distribution is derived in Section 2, and some examples of 
its application are given in Section 3. 

The corresponding exact results for more complicated discrete time models 
such as the Wright-Fisher process (1.2) are unmanageable, and so in Section 4, 
we use results of Kingman (1982a) to find large population approximations in 
these cases. The jump chain of the continuous-time approximating process has 
the structure of the discrete-time Moran model, and the results of Section 2 
become applicable. 

In Section 5, we introduce a process incorporating mutation, which is an 
extension of a model due to Griffiths (1980), and study subsampling in the lines 
of descent for this process. Some application to the infinite-alleles model, and 
the ages of alleles, are given. 

2. The ancestry of a subsample 

Suppose that at generation 0 we randomly select a sample of i individuals 
from the population and then select a further subsample of size j from the i. 
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How is the process of ancestors of the subsample related to that of the whole 
sample? 

We shall use the following notation: 

Al(n) = number of distinct ancestors of members of the sample n 
generations before the present. 

A2(n) = corresponding number for the subsample. 

P,(i, j; 11, 12) = 

P(Aa(n) 
= 11, A2(n) = 12 A1(0) = i, A2(0) = j) 

gl(n)= FP(Al(n) = 11 A1(0)= i) (given by (1.6)) 

N,() = min {n : A,(n) = l}, r = 1, 2 

Am(l) = A2(N1()). 

Thus A(l1) is the number of distinct ancestors of the subsample at the most 
recent time that the sample has 1 distinct ancestors. By the nature of the 

process, A*(l) is also the number of distinct ancestors of the subsample 
whenever the sample has 1 distinct ancestors. 

The following lemma is the basis of most of our results. 

Lemma 1. Given AI(0) = i, A2(0)= j, {A*(i - li), i = 0, , i - 1} forms an 
inhomogeneous Markov chain with transition probabilities given by 

P(A*(l -1) = k-1 I A*(1)= k) 

(2.1) = 1 -P(A*(- 1)= k A(l) = k) 

k(k - 1) 
1(1- 1) 

Proof. Since the A2(n) ancestors of the subsample are a subset of the Al(n) 
ancestors of the sample it is clear that A2(n + 1) = A2(n) whenever Al(n + 1) = 

Al(n). Further, since the j members of the subsample were randomly selected 
from the sample, their A2(n) ancestors form a random subset of the Al(n) 
ancestors of the sample. Thus if Al(n + 1) = Al(n)- 1, so that two of the Al(n) 
ancestors have a common parent, the probability that these two are both in 

A2(n), so that A2(n + 1) = A2(n) - 1, is 

(A2(n))/ (Al(n)) A2(A(n)-1) 
2 / 

2/A(n)(Ax(n)-1) 
That is, 

P(A2(n + 1) = k - 1 I A(n) = 1, Ax(n + 1) = 1- 1, A2(n) = k) 

(2.2) k(k - 1) 
1(1- 1) 
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But by the definition of A*, and since A2 changes only when A1 does, this is 

precisely 

k(k-1) 
P(A*(1- 1)= k-1 A*(1)= k)-= k(k- 1) 

1(1 - 1) 

The probability (2.2) is unaffected by conditioning on the values of 

AI(0), " " " 
, Al(n - 1) and A2(0), 

' 
, A2(n - 1), and so the Markov property 

holds for the sequence 

A*(i), A*(i - 1),..., A*(1). 

Clearly A(1)- A*(l -1) is at most 1, and so the complementary probabilities 
in (2.1) follow immediately. 

Note that we have nowhere used the transition probabilities for the process 

{Al(n)}. 
Thus these results will hold for a variety of such processes and in 

particular when {A1} is a continuous-time process. This fact will be used in 
Section 4 below. 

Using Lemma 2.1 we obtain the conditional distribution of A2(n) given 
A (n), which is the main result of this section. 

Theorem 2. 

P(A2(n) = 12 I Al(n) 
= 

11, A1(0) = i, A2(0) = i) 
(2.3) (i-j)! 

(i-/1)! j! (j- 1)! 11! (1l- 1)! (i+12- 

(j-12)! (11-12)! i!(i-1)! 12! (12 -21)! 
(ll+-1 

(i + 
121-ll- 

D! 
Remark. Surprisingly, j and 11 play interchangeable roles in this expression, 

and it does not depend on n. 

Proof. Clearly the required probability is 

P(A(l1) = 12 I A2(0) = j, A1(0) = i) 

= 

4•i(ll, 
12), say. 

Usually we shall suppress the dependence of 4 on i and j. The forward 

equations now give the recurrence 

12.(12+1)4,1 1 

112(12- 

1)) 

with boundary conditions 

4 (i,2)= 12 =2j 
= 0 otherwise. 
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The recurrence can be solved recursively for 4(i -1,12), /2= 1,...,, 
40(i - 2, 12), 12 = 1,..., j and so on. A simple inductive argument shows that 
(2.3) gives the general solution. 

Combining this result with (1.6) we obtain the joint distribution of Al(n) and 
A2(n) as 

(2.5) P,(i, j; 11, 12) = 
g1(n)(/1, 12). 

The bivariate process {(Al(n), A2(n)} itself forms a Markov chain with 
transition probabilities 

i(i - 1) 
1 

11 
= i, 12 = j 4N2 ' 

i(i- 1)-j(j- 1) 
(2.6) Pl(i, ; 11, 12)= 4N2 1 i-1,12=j 4N2 

jG(- 1) 
4N2 '1=i-1,2=-1 

0 otherwise, 

cf. Watterson (1982b). 
Note that A1(N2(k)) is the number of distinct ancestors of the sample when 

the subsample first has exactly k distinct ancestors. That is 

A1(N2(k)) = max {l: A*(1) = k}. 

Using (2.3) we can obtain the distribution of this quantity. 
Lemma 3. 

P(Ai(N2(k)) = 1 A1(0)= i, A2(0)= j) 
(2.7) (i-j)!(i-1-1)! j! (-1)!l! (1- 1)! (i + k)! 

(j- k - 1)! (1- k)! i! (i- 1)! k! (k - 1)! (l+ j)! (i + k -1- j)! 

Proof. 

P(A1(N2(k)) = 11 A1(O) = i, A2(0)= j) 

= P(A*(l/ 1) = k ? 1, A*(1)= k) 

k(k + 1) 
= (1 + 1, k + 1) . 

1(1 + 1) 

The result follows from (2.3). 
Taking k = 1 we obtain the conditional distribution of A1 when A2 first hits 

state 1. 
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Corollary 4. 

P(AI(N2(1)) = I I A1(0)= i, A2(0) = j)= U(- 1)(i + 1)( )! 
(l + j)! (i - 1)! (i - 1-j + 1)! 

This is the quantity 
Yi,•i; 

of Watterson (1982b). 
The formula (2.3) extends in an obvious manner to an extended model 

where we take q nested samples S1Q S2 2~' Sq with IS,= i,. If we now 
write 

A,(n) = number of ancestors of sample S, n generations back, 

N,(I) = min {n : A,(n) = l}, 
A*+ 1(l) = 

Ar+I(N,(I)) 
then Lemma 1 shows that {A*} is a Markov chain. Clearly, given {A*}, {A_-11 
is independent of {A*+1} and so by repeated application of Theorem 2 we have 
the following result. 

Theorem 5. 

P(A,(n) = 1, r = 2, 
. 
. , q I Al(n)= 11, A,(O)= i,, r = 1, 1 , q) 

q-1 (i4- i,+)! (4, +/,+1-1)! xfli 
r= 

1(/,_/+1)!. 
(4, 

+ 

ir,•- 
1)! 

(4,-/,-/,+r1+/,+1) 
" 

The joint distribution of the Markov chain (A,(n), ... , A,(n)) can be obtained 
as an expression analogous to (2.5). 

3. Applications of the subsampling formula 

In this section we use formula (2.3) to investigate the relationships between 
the ancestries of a sample and a subsample and of populations observed at 
different times. 

Example 1. Suppose we are interested in the time N1(1) back to a single 
ancestor for a sample of size i, but are able to determine only the time N2(1) 
for a smaller subsample of size j. What is the distribution of N1(1) given N2(1)? 

From Corollary 4 we have 

P (N1(1)= n, + n2 I N2(1)= n2) 

= P(N,(1)= 
n•+ 

n2 A1(n2)= 
1)P(AI(n2)= 

11 N2(1)= n2) 

= 
- 

g12(n- 1)yij;, for n, 1, 
S2N2 
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while for nl= 0 we obtain 

P (N1(1) = n2 I N2(1) = n2) = Yi;1 
(3.1) j- 1 i+ 1 

j+1i-1' 

giving even for small j a very high probability that 
NI(1) 

= N2(1). 
For n 1>0 the probabilities are of order N-2; for example 

1 (j- 1)(i + 1)(i- ]) 
N2() + 1) N2 (j + 2)(j + 1)(i- 1)(i - 2) 

Example 2. The above examples indicate that the common ancestor of a 

subsample has a high probability of being also the common ancestor of the 
whole sample. When this occurs, it implies that in some generation the sample 
and the subsample had the same number 1> 1 of ancestors. Clearly the I 
ancestors of the subsample were the same individuals as those of the sample 
and so the numbers of ancestors must be equal in all earlier generations: the 
ancestries have 'coupled'. Note that if I = 1 then the common ancestor of the 

sample occurred prior to that of the subsample and we do not consider this to 
be coupling. The distribution of the common number L of ancestors in the 
most recent coupled generation is 

P(L = 1)= cz 

= 
••.•(ll)- 

(l + 1,l+1) 

=21(i -j)j! 
(j- 1)! (i-1- 1)! (i +bl- 1)! =21(i-j)by (2.3) i! (i- 1)! 

(j+/)! 
(j- 1)! 

' 
b 

and c2+' '+Ci is given by (3.1). Considering cdJc_- we find a mode of the 
distribution of L to be at the largest integer f such that 

2(i-j)-1? When i is large and j/i = a we find 

2(1 - a) 
and 

c1 = 1-P (coupling) 

2(1 -a) 

- t-2 

Example 3. Watterson (1982b) considers, for the Wright-Fisher model, the 
sequence T, where T, is the most recent generation in which the individuals of 
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generation n all had a common ancestor. This sequence is related to the 
process of mutant substitutions. Here we consider the analogous quantities in 
the Moran model. 

It is clear that the ancestors of generation 0 in generation m are a subset of 
those of generation 1, and so on. Since by the Markov property the ancestry 
prior to generation m is independent of that subsequent to generation m we 
can consider the ancestors of generation 0, generation 1,. ? 

-, generation m - 1 
in generation m, to form nested random subsets selected from generation m. 
Given the sizes of these subsets we can obtain the joint distribution of 

To, ' " 
- , Tm from repeated application of Theorem 2. We assume that m < 2N, 

so that To> m. If there are I&m) ancestors of generation r in generation m and 

A,(n) denotes the number of ancestors of generation r in generation m + n, we 
have, given Im) - A,(0) = i, 

P (To = m + to, - , Tm = m + tm I A(0)= i,, r = 0, .. - m) 

= P(Ar(t, - 1)=2, A,(t)= 1, r = 0, --, m) 

= P(A8(t, - 1)= I, s > r, A,(t, - 1)= 2, 
Irs :r<s 

A,(tA)= 1, r = 0, 
. 

, m) 

(3.2)1 =22,)m1 gimo(to- 1)4~ji 
i(o,(m~ -o) 

0m )... 
io(l10o, 

2) 

x 

go-l,4(tl--to-- 
1)OLo-1a_ o-1(/ml, 

Im-11) 
x 

?-. 
x 12o0-1110-1(121, 2) 

x - * * 
X 

gml-1,2(tm 
- tm_i - 1) 

where the sum is taken over the set {ls : 2 
- 151 +,:- 5 .5 

I5n, s 5is- i, + 1, 
r = 0, 

? ? 
9 , m - 1, s = r + .1, , m}. To obtain the unconditional joint distribu- 

tion of To, T1, 
-' 

, we must average (3.2) over the distribution of the I(m) 
Note that the one-step transition probabilities of the Markov chain 
(A,(n), . - 

- , Ao(n)) where now 
iq- . -> - io, are, from Theorem 5, 

P(A,(n + 1) = I,, r = 0, - - , q I A,(n)= i,, r = 0, - - , q) 

1 (it4N2 ;421)0, j 

1=O< 
, q 

(3.3) 
=4N2 {ir+l(ir+- 1) ir 

lj = i, j = 0, , r; = i4 -1, j = r + 1, . . , q 

1 

=4N2 oo i - 1, j = 0, 
. 
, q 

= 0 otherwise. 
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Hence 

P(Ik+1) =4, r = 
0,., 

k + 1 I(k)= i,, r = 0,..., k) 
=0 if lk+1 2N 

and otherwise is given by (3.3). 
Thus if we write 

41k(io, , ik)= (k) , r = 0, 
r = 

, k) 

then the q4k satisfy the recurrence 

1 
Ok(io, " 

, ik-1, 2N) = 
- 

k-l(io, 
" 

, ik-1) 2N 

1 k-1 
+ 2 -~0 03 i4, 

4++1- ., ik-1+) (3.4) 4N ,=o 

x 
{(4.1 

+ 
1)M+i 

- 4(4- 1)} 

1 
+ 4 k-1(io + 1..., ik-1 + 1)io(io + 1). 4NW 

In principle, (3.4) together with (3.2) gives the joint distribution of 

To, 
'" 

, Tm for any m <2N. In view of the complexity of these formulae, 
however, we shall consider some special cases where more explicit answers are 

possible. 

Example 4. When to = tm = t > 0 we have, since 
To-! T1 - ? ? - Tm, 

P(T = T1= = Tm = t+ m) 

=P(To = Tm = t + m) 

= P(To = Tm I Tm = t + m)P(Tm = t + m) 

= P (A*(2)= 21 Tm = t + m, A2(0)= Ao(m), 
A1(0) = 2N)P(Tm = t + m) 

= X b2Nj(2, 2)g2N,(m)P(Tm = t+ m) 

2N+1 j-1 
= g2Ni(m) P(Tm = t + m) 2N- 1 i+1 

= A2mP(Tm = t + m) 

since as noted by Kingman (1982a) 

+1~ 



On the genealogy of nested subsamples from a haploid population 481 

is an eigenvector of (gi). Its eigenvalue is 

A2 = 
(-~4N2) 

so that 

P(To= Tm = t+m)= - 1-- g2N,2(t- 1) 

Summing over t >0 gives 

(3.5) P(To= Tl= **= T) = 1- . 

The latter two results are consistent with (Tm, m =0, 1, 2, ) being a 
Markov chain. In fact, however, such is not the case; it may be verified that 

P(T2 = t2 I T1 = t1, To = to) is not independent of to, for instance. 

Example 5. Extending the result of the above example, we can consider the 
distribution of Tm - To. Watterson (1982b) showed how this distribution is 
related to the number of substitutions of mutant nucleotides in generations 
0, ... , m- 1, and obtained an approximation for the Wright-Fisher model. 
Here we obtain an exact distribution for the Moran model. 

The joint distribution of To and Tm, when m <2N, is, for t, > to, 

P (T = to, Tm = ti) 

= 2 
g2N,(m)Pto-m-1(2N, 

j; k, 
2)Px(k, 

2; k - 1, 
1)gk-1,2(tm - to- 1)g21 k i 

= Y E Pm(2N, k; j, 2)g2N,k(tO- m - 1)P(k, 2; k -1, 1)gk-1,2(t2 - to- 1)g21 
k i 

since 2N,i (k, 2) = 42N,k (j, 2) 

S N? gk,2(m)g2N,k (to-m - 1)gk-1,2(t- to- 1). k4N 

Thus for t>0 

P(Tm- To= t)= P(To=to, Tm=to+t) 
to=2N-1 

1 m+2 

T1 4 2: gk,2(m)g2N,k(t- m 
-1)gk-,2(t-1) 4N4 to=2N-1 k=3 

where the range of k is chosen to include 
all positive terms, 

1 m+2 
= 

4 
gk,2(m)gk-1,2(t 1) C 

g2N,k(to)- 
4N k=3 to=2N-m-2 
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Now since k 
--- 

m + 2, 

_ 
g 

2N,k (to) = E 
I(AI(t) 

= 
k)I AI(0)= 

2N , 
to= 2N-m-2 t=0 

the mean number of generations that 
Al(.) 

spends in state k. But since 
gkk-1= k(k - 1)(2N)-2, this expectation is clearly (2N)2/k(k - 1). That is 

1 m+2 
P(Tm- T= t) = 2 k,2(m)gk-,2(t-- 1)/k(k-1). Nk=3 

Recall that we have assumed m < 2N. If m 
_ 2N, further terms are needed on 

the right. 

4. Approximations to other models 

One natural question to ask is how the results of Sections 2 and 3 apply to 
other reproduction schemes, as typified by the Wright-Fisher model in (1.2). 
Kingman (1982a,b), as part of his analysis of a related genealogical process- 
the coalescent-showed that the Markov chain with transition probabilities 
(1.3) is well approximated by a death process in continuous time. 

Temporarily denoting the discrete-time process by A(N)(n) to exhibit the 

dependence on the population size 2N, Kingman showed that as N - oo 

(4.1) 
A(1N)([2Nt]) , Al(t), t O0 

where Al(t) is a death process on {1,2, ..., i} with infinitesimal generator 
Q = (qi) given by 

-1(1- 1) 
(4.2) q 2 

- 
q,-1, 

1 
i. 

Kingman (1982a), Section 4 also discusses the convergence of other discrete 
ancestral chains to the process determined by (4.2). Thus, viewed on their 
natural time-scale, many genetic models have the same ancestral process, 
whose structure differs only by the choice of time-scale from the Moran 

genealogical model (1.5). It follows immediately from (1.6) that the transition 
functions g1i(t) = P (Al(t) = 11 A1(0) = i) are given by 

(4.3) g11(t) - t pr(t)(-1)'-'(2r- 
1)it[7-1 1 .--I) -i, 

(4.3) g,(t) (r-)! i, 
5 

where 

p,(t) = exp {-r(r- 1)t/2}. 
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Notice that in the case of the chain specified by (1.5), the time-scaling required 
to achieve (4.2) is in units of 2N2 generations. 

The ancestral probabilities for the whole population may be obtained by 
letting i - oo in (4.3). The process then starts from an entrance boundary at oo; 
in this case the total population size is infinite, since N-+oo. Cf. Watterson 

(1982b), (3.6). 
As far as the subsampling schemes studied in Section 2 are concerned, we 

note that in Theorem 2, the derivation depended only on the behavior of A2(.) 
at the times A1(.) changed state. Hence the result there applies also in the 

present (continuous-time) framework. In particular, (2.3) gives the conditional 
distribution of A2(t) given 

Al(t). 
Letting i - oo in (2.3) we obtain 

P(A2(t) = 121 Al(t) 
= 

il, 
A(0O) 

= oo, A2(0) = j) 

(4.4) =ll(iV- 12 =, 2, 
/l- 

min 
\1 2/1 

(4.4) is the conditional distribution of the number of ancestors at time t of a 
random sample of j individuals, given that the whole population had 

il 
distinct 

ancestors at time t. The conditional distribution (4.4) admits a simple interpre- 
tation. The denominator is the number of ways in which the j individuals can 
be assigned to 

ll 
ancestors. The first term in the numerator is the number of 

ways of choosing the 12 ancestors of the j from i possible ancestors, and the 
second term is the number of ways the j individuals can be assigned to 12 

ancestors, each ancestor being assigned at least one of the individuals. (4.4) was 
found by Griffiths (1980) by a different argument. 

The joint distribution of (Al(t), A2(t)) follows as in (2.5), using (4.3) in place 
of (1.6), and the generalisation to the multiple subsamples (Al(t), ' ' ', A,(t)) 
follows from (4.3) and Theorem 5. Continuous-time analogues of the problems 
considered in Section 3 can be studied in a similar manner; here we highlight 
only one of them, the continuous-time counterpart of Example 4. 

From Corollary 4, we have 

P(A1(N2(1)) = 1 I 
AI(0)= 

0, A2(0) = j) - 
j+1' 

and hence the probability that the common ancestor of a sample of size i taken 
at time 0 is also the common ancestor of the whole population at t time units 
before 0 is given by 

(4.5) 1 gi(t) -1= 
e_ ii 

The case i=0o is due to Watterson (1982b), where further details relating to 
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approximations to the results of Example 5 in Section 3 may be found. (The 
divisor j+2 in Watterson (1982b), (3.9), is a misprint for j + 1.) 

5. Lines of descent and the effect of mutation 

The genealogical process 
Al(.) 

used in the earlier part of this paper can be 
used to describe the genetic composition of a sample from a population in 
which no mutation occurs between the allelic types (cf. Felsenstein (1971), and 
the review article of Tavare (1984), and the references contained therein). We 
now consider the case in which mutation can occur between the allelic types. 
We make the simplifying assumption that the mutation rate away from any 
allelic type is the same for all types. That is, for 0 <m <1, 

(5.1) P (an allele does not mutate) = 1- m. 

The line of descent from a given individual is now taken to be the descendants 
of that individual, but excluding any new mutants and their descendants (cf. 
Griffiths (1980)). 

The mathematical tools used to analyse such a line-of-descent process are 
similar in spirit to those of Sections 2 and 4. However, the questions naturally 
asked about such a process are somewhat different, and we have therefore 

separated its analysis from that of the earlier models. 
We shall use notation similar to that of Sections 1 and 2. In particular: 

A,(n) = number of lines of descent from the members of the sample 
going back n generations from the present time, 0. 

A2(n) = same quantity for the subsample of size A2(0) chosen 
at random without replacement from the A1(0). 

hil(n) = P(A (n)= I A(0) = i), O - 
1 --i. 

We shall use the Moran reproduction scheme specified by Equation (1.2), and 
we assume that only the new-born individual can mutate. The one-step 
transition probabilities h,- h1i(1) are then given by 

i(i+ 0 - 1) 
2N(2N + ) ' 

(5.2) hl= i(i+0-1) 
2N(2N + 0) ' 

0, otherwise 

where 

2Nm 
1-m 
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cf. Tavar6 (1984). We remark that here state 0, rather than state 1, is the 

absorbing state, and 
Al(n) 

=0 when each member of the sample is descended 
from a mutant occurring subsequent to time (-n). We turn now to the 
computation of the joint distribution of (A,(.), A2(.)). If we define 

P,(i, i; 11, 12) = P (Al(n) = 11, A2(n)= 12 I A1(0) = i, A2(0) = j) 

then 

i(i+6-1) 
12N(2N+ 6)' 11= i, 12 = 

(i-j)(i+j++-1) 
(5.3) P1(i, ; l1, 12)= 2N(2N+ ) ' 

j(j+ 0 - 1) 
2N(2N+ 6) 1= i-1, 12=-i1 

0, otherwise. 

These transition probabilities can be computed by conditioning on the ancestry 
of the whole sample and then taking a random sample of size j from that. The 
state space of the Markov chain (Al(n), A2(n)) is '== {l =0,1,... ,i; 
12=0, 1,... , min (j, 1)}. The probabilities in (5.3) reduce to those in (5.2) 
when i = j, and to those of (2.6) when m = 0. 

Analogous to Theorem 2, we have the following result. 

Theorem 6. 

P (A2(n)= 121 Al(n) = 11, A1(0) = i, A2(0) = j) 
(5.4) (i-)! F(+ 0)! (i- l)! F(i+ 12+ 0)l ! F(1 + 0) 

i! F(i 
+ 0)(i- 11- + 

12)1/21 (1-/2)1 (U-/2)1 F(12 + 0)F(2 + 11 + 0) 
Proof. From (5.3), and ideas analogous to those in the proof of Lemma 1, we 

see that {A*(i - l1), 11= 0, , i} is a non-homogeneous Markov chain with 
transition probabilities given by 

P(A*(l- 1)= k- 1 A*(1)= k)= 1-P(A(l/- 1)= k I A*(/)= k) 
(5.5) k(k + 0 - 1) 

I(l+0-1) 

As in the proof of Theorem 2, the probability on the left of (5.4) is just 

Sb(l1, 12)= P(A (11) = 12 A2(0)= j, A1(0)= i), 
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and the forward equations yield in place of (2.4) the recurrence 

(11-12+ 1)(1+12+ 0) 

(1+ 0)(1+ 1) 

+ 0( 1li + 1, la ++12 (11 + 1)(l1 + 0) 

with boundary conditions 4(i, 12) = 1 if 12 = 0 otherwise. The solution of this 
is (5.4), as can be verified by substitution. The joint distribution of (Al(n), 
A2(n)) follows immediately from (5.4) as 

(5.6) P,(i, j; li, 12) = hi1(n)4(l1, 2). 

An explicit expression for the transition function hii(n) is given in the remark 
after (5.10). 

We shall later require the distribution of A1(.) at the time when A2(.) first 
hits state k. This follows by the same method of proof as Lemma 3, using (5.5). 

Lemma 7. 

P 
(AI(N2(k)) 

= 11 Am(O) = i, A2(0) = j) 

(i-j)! F(j + 0)j! (i- 1- 1)! F(i + k + 1+ 0)1! F(l+ 0) 
i! F(i+0)(i-l+k-j)! k!(1 - k)! (j-k- 1)!F(k+)F(j+ 1 + 0+1) 

In the special case k = O0, we obtain 

P 
(AI(N2(0)) 

= 1 A 1(0) = i, A2(0) = j) 
(5.7) (i + )(i- j)! (i- 1-1)! jF(j+ 0)F(l+ 0) 

i! (i- 1- j)! F(0)F(j+1+ 0 +1) 

1 = , , , i - j. 

5.1. Continuous-time results. While it is clear from the previous paragraphs 
that explicit results for the Moran process determined by (5.3) are available, we 
shall focus attention from now on on continuous-time results which apply (as 
approximations) to other reproduction schemes as typified by the Wright- 
Fisher model (1.2). As in Section 3, such results arise by letting N -- co. We will 
assume that 0= 2Nm/(1 - m) remains fixed as N - -o, or, equivalently, that 

(5.8) m 
-•0, 

2Nm -*0 as N - o. 

Denoting the discrete-time process by {(A N)(n), A N)(n)), n 0} to highlight 
the dependence on N, it follows by examination of the transition probabilities 
in (5.3) and an argument analogous to that of Kingman (1982a) that as N - o, 

(AFN ([2N2-]), A N)([2N2-])) = 
(A (-), 

A2(')) 
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where (Aj(t), A2(t)) is a Markov process on $9, with infinitesimal generator 

{O(i, j; 11, 12)} determined by 

-i(i + 0-1)/2; 11= i, 12 = j 

(5.9) O(i, j; li, 12)=1(i-j)(i+ j +0 -1)/2; l= i-1,12= 

j(j + 0 - 1)/2; l1 = i- 1, 12 = j- . 
We remark that the continuous-time process {A1(t), t 0} and its generalisa- 

tion specified by (5.9) arise not only as the 'diffusion' approximation for the 
model (5.3) but also for the other reproduction schemes specified in Section 1. 
In particular, Griffiths (1980) essentially showed that if in the Wright-Fisher 
line-of-descent process, we measure time in units of 2N generations, and 
assume that 4Nm -> 0 as N -> oo, then AN)([2N-]) => A1('). 

The generator of 

A1&() may be found from (5.9) by setting j = i. Thus the results of this section 
also apply as approximations to a variety of other discrete-time models. 

We record first some properties of the continuous-time death process Al(t). 
Defining 

hil(t)= P(Al(t)= 1 AJ(0)= i), 0 -5 -i, 
we have 

pk(tk)(-1)k-'(2k 
+ 0 -1)(l+ )(-i 

1+l<i 
(5.10) h1(t) 

k 
= 

11! (k 
- 1)! (i + 0)(k) 

1+• 
fP 0(t)(-1)k(2k +0-1)0(k -1)ik, 

. 
=0 

k= k ! (i + 0)(k) 

where pk(t)= exp {-k(k + 0- 1)t/2}. 

Remark. The discrete-time transition probabilities hil(n) for the Moran 
model specified by (5.2) are given by (5.10) with pk(t) replaced by p0, say, 
where 

k(k + 0-1) 2Nm 
pk = 1- O= 2N(2N+ 0)' 1- m 

If we are interested in the distribution of lines-of-descent in the whole 
population, then the process 

A1(') 
starts from an entrance boundary at oo (the 

limit N--oo having been taken). The transition functions 

h,(t) = P(Al(t) = 1 I A(0) = oo) 

may be obtained from (5.10) by letting i 
---o. 

The probabilities h1(t) were first 
found by Griffiths (1980). 

We notice that the proof of Theorem 6 makes no assumption about the 
time-scale chosen, since the crucial probability (5.5) is the same in discrete or 
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continuous time. Thus the result of Theorem 6, and consequently of Lemma 7, 
apply in the present continuous-time setting. In particular, we have 

P,(i, j; l,, 12) P(Al(t) = l,, A2(t) = 12 1 A1(0) = i, A2(0) = j) 
= 

hil(t)4(11, 12), 

where hil1(t) is given explicitly by (5.10), and 4(11, 12) by (5.4). As an immediate 

consequence, we obtain by letting i -e co in (5.4) 

P (A2(t) = 12 I A(t) = 11, A1(0) = co, A2(0) = j) 

11 ,+0 
- 

) (5.11) 12 
12 , 12 = 0, 1, 

* *, min (j, 11), j+11 +0-1 

which is the analog of (4.4). It implies in particular that the transition functions 

h.,(t) and h1(t) are related by 

(5.12) hj,(t)= 2 h,,(t) 1 +-1 +)(+ -1 
12 = 0, 1, 

. 

, j. 
11=12 12 1-2 

(Cf. Griffiths (1980), Equation (22).) 

5.2. Some results for the infinite-alleles model. In this section, we shall assume 
that all mutations are to new types, this corresponding to the (continuous-time) 
infinite-alleles model. A line-of-descent is all descendants of the same type as 
the ancestor, and Al(t)= 0 means that all the individuals in the sample consist 
of types that first arose by mutation in the interval (-t, 0). 

One question asked about this process concerns the ages of the alleles in a 

sample or in the population. Suppose that the infinite-alleles population is 

stationary. It is clear that the quantities hio(t) and ho(t) of (5.10) can be 

interpreted as the distribution functions of the age of the oldest allele in a 

sample of size i and in the whole population, respectively. Note that neither 

depends on the frequency of the allele in question. (Of course, analogous exact 
results hold for the discrete-time Moran model.) 

If a sample of size i is chosen from a (stationary) infinite-alleles population, 
and a further subset of size j is randomly chosen from the i, what is the 
probability that the oldest in the sample is included in the subsample? Using 
(5.7), this is clearly 

j(i + 0) 
(5.13) P(A1(N2(0)) = 0 I A (0) = i, A2(0) = j) ( + . i (i + 0) 

This is an exact result for the Moran model (5.3) with the appropriate 
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identification of 0. Letting i - oo, we see that the probability that a sample of 
size j includes the oldest in the population is 

(5.14) P(A1(N2(O)) =O I 
AI(O) 

= co, A2(0) = j) = - 
j +0 

(5.13) and (5.14) are certainly not new. (5.13) is due to Kelly (1977) in the 

setting of the discrete-time Moran model, and (5.14) was found by Watterson 
and Guess (1977). It is interesting to note, however, that these results are 

simple consequences of our analysis of the bivariate line-of-descent process. A 
further consequence of (5.13) is the distribution of the number Fi, say, of the 
oldest allele in a sample of size i. By considering the probability of not 

choosing the oldest when a random subsample of size j is taken, we see that 

(5.15) E P(F, = n) (+= 0 j = 1, 2, ---, i - 1. 
n=1 j i(j + ) ' 

Hence PI(FI = n) may be found: 

(5.16) P(F, = n) =0- 1, n = 11, 21, 1, 
i. 

n n-1 n 

From (5.15) with j = 1 and j = 2 respectively, 

i+O (i+O)O(i-1) EFj = 
1+, 

Var (Fi) = 
(1+)2(2+0) 1+ 0 (1'+ )2(2+ 6) 

(5.16) is also due to Kelly ((1977), (1979), Chapter 7) for a related Moran 

process. 
We conclude this section with the following result. 

Theorem 8. Consider a stationary infinite-alleles model. Then the distribu- 
tion of the number Nj, say, of types in the population that are older than the 
oldest allele in a sample of size j is geometric, with mean EN! = 0/j, and 

(5.17) P(N = 
n)=j-•. 

, n = 0, 1, 2, 
--- 

Proof. From (5.7), the distribution of Ai(N2(0)) is 

(5.18) 
P(AI(N2(0))= 

1 
A2(0)= j, A(0O)= o)= j(i + o)(+ o) 

r(0)(r0 + 1+ 0 + 1) 

Ewens (1972) showed that the distribution of the number of types in a sample 
of size 1 from a stationary population has probability generating function fi(s) 
given by 

(5.19) ft(s) = 
(Os),(/•,I, 

11. 
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The number of lines of descent surviving in the population at the time A2() 
hits 0 is given by (5.18), and the individuals at the roots of these lines form a 
random sample from a stationary population. It follows from (5.18) and (5.19) 
that 

J +~ (Os)(,) jF(j + )F(i+ 0) )E(s=) E+ 
is)j+0 1=1 0(1) F(j+l+0+1)F(0) 

Sj (0s)(1) 1 
j+0 1=o(j+0+1), 1! 

J 
- F(Os, 1; j + 0 + 1; 1), 
j+0 

where F( ) is the hypergeometric function (cf. Abramowitz and Stegun (1972), 
p. 555) 

j j+0 
j+0 j + 0(1-s) 

j+ 0(1- s) ' 

from which (5.19) follows. 
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