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Integrated Systems and Technologies

Single-Molecule Genomic Data Delineate Patient-Specific
Tumor Profiles and Cancer Stem Cell Organization

Andrea Sottoriva1,2,3, Inmaculada Spiteri2, Darryl Shibata4, Christina Curtis3, and Simon Tavar�e1,2,5

Abstract
Substantial evidence supports the concept that cancers are organized in a cellular hierarchy with cancer

stem cells (CSC) at the apex. To date, the primary evidence for CSCs derives from transplantation assays,
which have known limitations. In particular, they are unable to report on the fate of cells within the original
human tumor. Because of the difficulty in measuring tumor characteristics in patients, cellular organization
and other aspects of cancer dynamics have not been quantified directly, although they likely play a
fundamental role in tumor progression and therapy response. As such, new approaches to study CSCs in
patient-derived tumor specimens are needed. In this study, we exploited ultradeep single-molecule genomic
data derived from multiple microdissected colorectal cancer glands per tumor, along with a novel
quantitative approach to measure tumor characteristics, define patient-specific tumor profiles, and infer
tumor ancestral trees. We show that each cancer is unique in terms of its cellular organization, molecular
heterogeneity, time from malignant transformation, and rate of mutation and apoptosis. Importantly, we
estimate CSC fractions between 0.5% and 4%, indicative of a hierarchical organization responsible for long-
lived CSC lineages, with variable rates of symmetric cell division. We also observed extensive molecular
heterogeneity, both between and within individual cancer glands, suggesting a complex hierarchy of mitotic
clones. Our framework enables the measurement of clinically relevant patient-specific characteristics in vivo,
providing insight into the cellular organization and dynamics of tumor growth, with implications for
personalized patient care. Cancer Res; 73(1); 41–49. �2012 AACR.

Introduction
The cancer stem cell (CSC) paradigm posits that malig-

nancies retain part of the stem cell organization of the tissue
of origin (1, 2) and that only a subset of stem-like cancer cells
have self-renewal capacity, influencing both tumor progres-
sion and therapeutic resistance (3, 4). For the vast majority
of cell divisions, a CSC gives rise, through asymmetric
division, to a transit-amplifying cell (TAC) with short-term
replicative potential, which becomes fully differentiated
after a certain number of divisions. Much less frequently,
a CSC undergoes self-renewal through symmetric division,
spawning a new CSC. Hence, TACs and differentiated cancer
cells (DCC) are thought to comprise the bulk of the tumor

mass. This model differs from the classical (also called clonal
or stochastic) model of cancer, where all cells are potentially
tumorigenic.

Colorectal cancer (CRC) develops through the accumula-
tion of key mutations in the epithelial tissue of the colon (5)
and it is a leading cause of cancer death (6). Evidence
suggests that CSCs are present and play an important role
in CRC progression and expansion (7–9). However, the most
reliable evidence for the existence of CSCs in human malig-
nancies to date comes from transplantation assays, which
identify CSCs on the basis of their clonogenicity in vitro,
using limited dilution experiments, or in vivo through mouse
xenograft experiments. This approach shows the ability of
isolated cell populations to form tumors and recapitulate
the heterogeneous populations found in the primary neo-
plasm. A known limitation of this method is that these so-
called tumor initiating cell fractions may be highly enriched
for cells that are able to survive experimental manipulations,
including the transplantation process and the foreign envi-
ronment in which they are grown (10). Moreover, while stem
cell transplantation assays can provide insight into the
properties of these cells under specific experimental condi-
tions, they cannot report on the fate of the transplanted cell
in its original tumor (11). Moreover, CSCs, that are thought
to be the drivers of subclonal expansions, may vary in
frequency and phenotype (12). However, definitive CSC
markers remain elusive in solid tissues and there is no
direct evidence for CSCs capable of fueling long-term
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expansion in nonmanipulated human solid malignancies, as
such new approaches are needed (10, 13, 14). Because of the
difficulty in measuring tumor dynamics directly in patients,
various parameters such as the CSC organization, the rate of
mutation and apoptosis, and the tumor age, have not been
quantified. These features play a fundamental role in tumor
progression and therapy response and are likely variable
among patients, with implications for personalized treat-
ment regimes.

To interrogate the dynamics of individual tumors, one can
exploit the fact that cells retain records of their past prolifer-
ative history in the form of somatic mutations [e.g., micro-
satellites (15, 16) or methylation (17)] that arise from errors in
the replication machinery. Therefore, cells contain molecular
clocks that register their phylogenetic history and can be read
using genomic approaches. Intrinsic tumor characteristics
directly shape such phylogenies, and consequently their cor-
responding molecular patterns.

We have developed a framework to measure tumor-specific
features based on the underlyingmolecular signature of cancer
cells. In previous studies, we showed the use of methylation-
based molecular clocks to explore the dynamics of the human
colon crypt (17–19) and CRC (20, 21), but with limited reso-
lution. With the adoption of high-throughput sequencing we
now obtain a 50-fold increase in throughput. Moreover, with
the enhanced precision of the selected molecular clocks and
novel computational methods that account for the spatial
structure of hundreds of billions of cells, we are now able to
reconstruct the ancestry of individual tumors and measure
multiple clinically relevant characteristics from tumor biopsies
or surgical resections. Here, we present a novel framework,
referred to as Spatial Cell Ancestral Inference (SCAI), that for
the first time enables the measurement of patient-specific
tumor characteristics, including CSC organization, using a
combination of ultradeep patient molecular data, spatial
computational modeling, and statistical inference (Fig. 1A).

Materials and Methods
Spatial cell ancestral inference

SCAI is divided into 3 building blocks as shown in Fig. 1A: the
patient molecular data, the mathematical/computational
model, and the statistical inference method. The patient
molecular data can be based on somatic point mutations,
microsatellites, or neutral methylation patterns derived from
clinical specimens. The second block is the mathematical
model of the biologic systemof interest. As in any experimental
setting, amodel of the studied system is required; in this case it
is a computational model. This must be a faithful representa-
tion of the system, simulate tumor growth in a spatial fashion,
and consider the underlying mechanisms that are thought to
be most relevant, such as the mutation rate, apoptosis, and
cellular organization. To fit the model to the data, we use a
statistical inference technique called Approximate Bayesian
Computation, or ABC (22, 23). This results in a probability
distribution of the parameter values, given the data we
observed. This distribution represents an indirect measure-
ment of that parameter or characteristic in the original biologic
system (the tumor) at the time the data were collected. Thus,
our approach enables the measurement of clinically relevant
parameters from human tumors without the need for invasive
techniques that are limited to animal models.

Molecular data
The IRX2 molecular clock. A key principle of our

approach is the use of neutral somatic mutations (tags) as a
molecular clock. Neutrality guarantees the linear relationship
between cell division and somatic errors, which would not
necessarily hold for a functional genomic region under selec-
tive pressure. A molecular clock has a certain probability of
ticking by introducing a neutral mutation at cell division. Here
we use DNA methylation as a marker of cell fate because the
error rate is 10,000-fold higher than that observed for nucle-
otide substitutions (�10�5 vs �10�9 errors per nucleotide per

Spatial agent-based 
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Figure 1. Schematic of the SCAI framework and sampling procedure. A, the SCAI framework makes use of patient molecular data, in this case neutral
methylation haplotypes, as markers of cell mitotic history. By integrating these data with agent-based spatial computational modeling and statistical
inference techniques such as Approximate Bayesian Computation, patient-specific tumor parameters can be estimated. B, 4/5 CRC glands, approximately
8,000 to 10,000 cells in size, were microdissected from each side of the tumor (left and right) and target sequenced at high coverage.
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division) and hence allows for more precise measurements
(24). The ticking of the clock corresponds to either a methyl-
ation or demethylation event at a CpG dinucleotide within the
selected neutral locus, which is essentially unmethylated at the
zygotic stage. Hence, molecular clocks based on a neutral
methylation locus should display low methylation in young
individuals and remain hypomethylated throughout life in
nondividing tissues, whereas they should accumulate methyl-
ation errors linearly with age in dividing tissues.
In this study, wemake use of the IRX2molecular clock, a 201

bp locus on chromosome 5. We generated high-throughput
methylation data using targeted bisulfite sequencing of DNA
from different normal tissue types, resected at the time of
autopsy frommultiple patients, to verify the neutrality of IRX2.
Methylation data from normal colon (n ¼ 6), heart (n ¼ 4),
cerebellum (n ¼ 4), and neutrophils (n ¼ 2) were analyzed.
Supplementary Fig. S1 indicates that IRX2 exhibits low meth-
ylation in nondividing tissues (heart and brain) and age-related
methylation in mitotic tissues (colon). Similarly, we report low
methylation in neutrophils because of the large number of slow
cycling bone marrow stem cells from which they derive, and
their short lifetime (�5 days). Furthermore, we report that
copy number alterations of this locus in CRC are rare, as they
were present in only 4 of the 1,192 arrays (jLRRj > 0.8) available
from The Cancer Genome Atlas (TCGA) CRC study (25). As
we model single-molecule information from a population of
cells, it is also important to verify that PCR amplification
biases, a potential problem of many second generation
sequencing approaches, do not alter the composition of the
patterns in our samples. The IRX2 locus spans the rs486667
SNP, which is heterozygous in an estimated 44% of individuals
of European descent, and can be used to assay allele-specific
PCR biases. The majority of individuals for whom we collected
normal brain and heart tissue were heterozygous for this SNP,
and were therefore used to confirm the absence of significant
PCR amplification biases in our approach (mean allelic fre-
quency 0.57� 0.07, 95%CI). As IRX2 spans an 8CpG region, this
locus allows for 256 unique methylation patterns, and avoids
the issue of saturating the clock. These findings indicate the
suitability of IRX2 as a molecular clock.
Cancer sample collection. We collected a total of 40

tumor glands from 5 CRCs (CT, CU, CX, HA, and Z). Clinical
information for each of the patients is reported in Table 1. All
tumors were untreated at the time of resection. For each
tumor, 2 regions approximately 0.5 cm3 in size were sectioned
from opposite sides of the tumor (referred to as left and right

side). Within each region, 3 to 5 CRC glands were microdis-
sected, each composed of 8,000 to 10,000 cells (Fig. 1B). DNA
from each gland was extracted and bisulfite converted as
previously described (20). The efficiency of conversion was
assessed in our dataset and confirmed to be extremely high
(>99.98%). Samples were then PCR amplified for the locus of
interest with multiplex identifiers and sequenced with a
Roche 454 GS Junior system. Amplicon sequence for IRX2 is
provided in Supplementary Table S1. We report an average
throughput of more than 1,500 reads per gland.

The error rate for the 454 sequencing technology is in the
order of 0.01 errors per nucleotide. However, the large majority
of these errors are because of the presence of homopolymers in
the sequence, a known problem for pyrosequencing (26). Using
targeted sequencing, we avoid this problem by excluding CpGs
that are in the proximity of homopolymers. Moreover, we
strictly filtered out sequences containing neither a T nor a
C at any of their CpG sites. We estimated those errors to occur
with rate 0.004 errors/nucleotide in our analysis. Thus, the
undetectablemethylation sequencing error (where aC converts
into a T or a T into a C) was approximately 0.002 errors/
nucleotide. Considering also the bisulfite conversion failure
rate (0.002), this results in amethylation tag sequencing fidelity
of 99.6%. Hence, the low error rate achieved with this conser-
vative filtering method, coupled with the high frequency of
methylation events (in contrast with the relatively low nucle-
otide substitution rate), makes our approach extremely robust
to sequencing errors. Sequence data analysis was done using a
custom R/Perl pipeline, which extracts the methylation status
from each 454 read and represents it as a binary string where 1
is methylated and 0 is unmethylated.

Modeling
Cancers are large and complex malignant tissues that

acquire the ability to grow out of control, invade the sur-
rounding tissues, and form metastases (27). During cancer
progression, tumor cells undergo a large number of mitotic
events and often present at diagnosis as a large mass with a
diameter of a few centimeters, containing hundreds of
billions of cells. Numerous mathematical and computational
models have been developed to simulate tumor growth (28–
30), which feature a considerable level of detail in simulating
the malignant processes and shed light on various aspects of
cancer dynamics. However, to do inference using molecular
data, we need to simulate the whole tumor with more than
1011 cells, millions of times. To tackle this problem, a novel
approach capable of simulating very large tumors quickly
was required.

In our large-scale tumormodel, we exploit the fact that colon
cancer is organized into glandular structures. Cancer glands
are thought to expand with different mechanisms, one of the
most common being gland fission (31, 32), where a gland splits
into 2 daughter glands containing about half of the original cell
population each. Other mechanisms of growth have also been
observed, such as top-down spread of clones (33); however,
those are computationally intractable because of their com-
plexity. For these reasons, we assume gland fission as the only
mechanismof expansion in ourmodel.We simulate the growth

Table 1. Patient clinical information

Patient Age
Tumor
size (cm) Stage MSIþ

CT 53 4.5 3 N
CU 50 4.5 1 Y
CX 44 9 3 N
HA 61 7.5 3 N
Z 83 6 3 NA

Delineating Patient-Specific Tumor Profiles

www.aacrjournals.org Cancer Res; 73(1) January 1, 2013 43

on June 4, 2013. © 2013 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst October 22, 2012; DOI: 10.1158/0008-5472.CAN-12-2273 

http://cancerres.aacrjournals.org/


and the exact 3-dimensional position of the glands at any
moment in time, but do not keep track of the position of single
cells within a gland. To achieve efficiency, we developed the
model in 2 computationally independent parts: the calculation
of the gland phylogenetic tree and the simulation of the single-
cell molecular patterns within the glands (see Supplementary
Materials and Methods for details). The model incorporates
cell division, apoptosis, molecular mutations (methylation
errors), and CSC organization by assuming that CSCs divide
symmetrically with probability c, thus generating a new CSC,
or asymmetrically with probability 1 � c, and yielding a TAC.
The latter can divide only a few times, G, before becoming
senescent and ceasing to divide (DCC). To model the classical
or clonal model of growth, it is sufficient to set c ¼ 1, making
all cells potentially tumorigenic. The cell-cycle time may be
variable across the neoplasm; moreover, recent studies of
normal colon crypts in mice suggest heterogeneity in the cell
division rate (34, 35). In the absence of human data and for the
sake of simplicity, in ourmodel we assume an average cell cycle
of 4 days (36) uniformly across the tumor. We do not make
further assumptions about the growth of the tumor because its
evolutionary dynamics directly follow from a chosen parame-
ter set.

In our simulationsweuse a 370� 370� 370 point lattice that
contains the growth of a large carcinoma with up to 16 million
glands and a total of 130 billion cells. Considering an average
cell diameter of approximately 12mm, this forms a neoplasm of
about 7.5 cm in diameter.

Statistical inference
Because of the complexity of biologic systems and the

numerous possible interactions between the underlying
mechanisms and their parameters, the most appropriate
method to address the problem is Bayesian inference (37). A
powerful and elegant technique suitable for use with agent-
based models is ABC (19, 22, 23). This family of statistical
inference methods evolved from earlier approaches based
on rejection algorithms used to construct posterior
distributions (38, 39). The following ABC scheme yields a
sample from an approximation of the posterior distribution
P(ujr[S{D},S{D0}] < e), given the data D and a tolerance
threshold e:

1. Sample the parameter u from the prior distribution P(u).
2. Simulate the data D0 from the computational model with

input u.
3. If r(S[D], S[D0]) < e accept u.
4. Go to 1.

In short, we accept those parameter sets that generate
methylation patterns similar to the ones we observe, given a
certain error threshold e, a set of summary statistics S, and a
distance measure r. We use the following summary statistics
for each gland, which are valid for any generic set of binary
strings:

* Average percent methylation Sp.
* Number of distinct methylation patterns Sd.

* Number of singleton patterns (patterns that appear only
once in the gland) Ss.

* Mean pairwise distance between the patterns Sw.
* Kolmogorov distance (40) of the pattern set Sk.
* Shannon index (41) of the pattern set Sh.

Each summary statistic is normalized to have mean 0 and
standard deviation 1. This ABC step produces a table where
every line corresponds to a single tumor simulation. We have
calculated more than 4,500 different phylogenetic trees of the
glands from which we computed 8 million instances of tumor
molecular patterns, each corresponding to a 130 billion cell
neoplasm. We have taken prior distributions of all the para-
meters as uniform and validated our framework on synthetic
data (see Supplementary Material and Methods and Supple-
mentary Fig. S2). In our results, we summarize the information
in each posterior distribution by its modal value.

Results
Cancer glands are heterogeneous, harboring multiple
cell lineages

As the methylation profiles of neutral loci reflect the pro-
liferative status of cells, they can be exploited to reconstruct the
relationship between subclones within a sample. Intratumor
heterogeneity and the spatial distribution of cancer clones are
poorly understood, but are believed to follow evolutionary
principles (42). We observe that almost all tumor glands
(36/40) contained multiple clones and were composed of 2 to
5 distinct mitotic lineages, as shown by the phylogenetic
reconstruction of the methylation patterns in Fig. 2A (see
Supplementary Material and Methods for details). It is antic-
ipated that physically proximal regions are more closely relat-
ed. As approximate spatial information (right or left side of a
tumor mass) was collected for each sample, the extent of
heterogeneity in spatially separated tumor fragments can be
examined. Figure 2B illustrates the tendency of the glands to
cluster by side, indicating spatial correlation between different
parts of the tumor at themolecular level, although the extent of
the clustering varies between tumors. We note that occasion-
ally the right and left glands cluster together (e.g., tumor CT)
partly because of the stochasticity of the methylation patterns
but also because of the heterogeneity present even between
nearby glands. Thus, CRC glands are spatially related within a
tumor but also exhibit heterogeneity, indicative of a complex
hierarchy of mitotic clones spanning multiple spatial scales
(see Supplementary Table S2).

Inference of patient-specific tumor profiles
The patient-derivedmolecular data we have discussed so far

represent the input for our analysis framework, which returns
the posterior distributions of the tumor parameter values.
These parameters correspond tomeasurements of tumor char-
acteristics directly derived from the individual patient samples.
Within SCAI, the unknowns of the system are represented as
parameters of the analysis. Rather than making assumptions
about these parameters, we use statistical inference to infer
them from the data. Specifically, we interrogated the following:
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* The fraction of CSCs in the tumor, j.
* The symmetric division rate of CSCs, c.
* The methylation/demethylation rate per cell division, m.
* The context-dependent methylation factor, x.
* The relative tumor age frommalignant transformation, g .
* The number of TAC divisions before full differentiation,G.
* The rate of apoptosis of cancer cells, a.

The parameter x models the feed-forward effect in which
the more a CpG-island is methylated, the more it tends to
methylate further. Although little is known about context-
dependent methylation, it is predicted that this phenome-
non occurs in normal colon crypts (18). The model of cell
division assumes that CSCs divide symmetrically, producing
a new CSC with probability c and otherwise producing a
new TAC that will divide only G times before becoming fully
differentiated. The combination of c and G determines the
CSC fraction j within a tumor, following the relation in
Supplementary Fig. S3, where a high j corresponds to the
classical or clonal model of malignancies. Hence for each
pair of values c and G used in the simulation, there is a
corresponding j value.
We estimated a variable CSC fraction between tumors, with

values between 0.5% and 1.5% for all cases apart from CX with
4% (Fig. 3, column A). These values are consistent with the
fractions determined from functional assays based on CD133þ

human CRC cells (43, 44), but also reflect the variability of the
CSC organization in different CRC patients (45). The rate of
symmetric divisions also varies between tumors, with values
ranging from 1% for tumor Z to 24% for tumor CU (column B).
We observed cases with a large TAC population (parameter
G—column C) such as tumors CT and CU, and others that do

not have a TAC compartment at all (CX and Z). However, the
inference for G is not optimal because of the dim molecular
signal left by such short-living TACs (see Supplementary
Material andMethods and Supplementary Fig. S2). By inferring
a CSC organization in human tumors, these results suggest
that CRC is a CSC-driven malignancy. Moreover, for the first
time we quantify variability in the cellular organization and
hierarchical structure of tumors that results from differences
in the (a)symmetric division rate of CSCs and the replicative
potential of TACs. Our results also confirm an elevated meth-
ylation rate in tumors with respect to the normal tissue (17),
varying across patients from 10�4 to 10�3 errors per CpG per
division (Fig. 3D). In addition, we observe context-dependent
methylation (column E) in a subset of tumors (CX, HA, and Z),
where methylation tends to increase in already methylated
loci. We predict a relative tumor age, defined here as the time
from the emergence of the first malignant cancer cell until the
time of surgical resection, between 12 and 39 months (column
F). Importantly, this value does not reflect the time during
which mutations accumulated before the development of the
malignancy (e.g., during the adenoma stage). Finally, we obtain
an apoptotic rate on the order of 0.5% per cell division in all
tumors with HA and Z showing even lower rates (0.3% and
0.2%, respectively). Notably, we observe that even relatively low
apoptotic rates have considerable impact on slowing tumor
growth.

For each tumor, these characteristics can be summarized
into a patient-specific cancer profile that illustrates the differ-
ences in the characteristics and in the cellular organization of
each tumor (Fig. 4). For example, CT displays a very small CSC
population and a considerable TAC compartment, accompa-
nied by relatively high mutation and apoptotic rates and a
tumor age of 12months. Tumor CU shares similar features, but

Tumor CT, gland R1 Tumor CU, gland R4 Tumor CX, gland L3

Tumor HA, gland L5 Tumor Z, gland R3 Tumor Z, gland L2
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Figure 2. Intratumor heterogeneity between and within glands. A, the phylogeny of the methylation patterns shows that almost all glands (36/40) contained
multiple clones, with 2 to 5 coexisting lineages (branch thickness corresponds to number of reads per pattern). An example of a monoclonal gland is
shown for tumor Z, gland L2. Different clones correspond to distinct CSCs lineages that coexist within the tumor gland. B, the methylation patterns of tumor
glands tend to cluster by tumor side, indicating spatial correlation between different tumor areas. Extensive intergland heterogeneity is also present,
and some glands cluster together despite being located on different sides of the tumor (CT). These data reflect a complex hierarchy of mitotic clones across
different scales.
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exhibits a higher symmetric division rate and hence a larger
CSC fraction. CX contains a large CSC population and no TAC
compartment; it features a lower mutation rate, but still
develops in 12 months potentially because of the lack of TAC
proliferation. This tumor is less consistent with a model where
a small fraction of cells drive tumor growth. Tumor HA has a

small CSC population and also a limited TAC compartment,
highmutation rate, but lower apoptosis rate with an estimated
tumor age of 39 months. Finally, tumor Z exhibits a small CSC
fraction, no TAC compartment, and a low apoptotic rate with
an estimated tumor age of 15 months. For tumor Z, using 2
additional validated molecular clocks (Supplementary Fig. S4

CT CU CX HA  Z
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Figure 4. Comparisons of patient-specific cancer profiles. For each patient, we independently estimated a set of tumor characteristics that correspond to
different cellular organizations, mutation and apoptosis rates, and tumor ages. These results reveal CSC organization in human tumors, based on the
underlying molecular signature, and highlight variability in the hierarchical structure of the cancer cell population between patients.
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Figure 3. Distributions of clinically relevant tumor parametersmeasuredwith SCAI. We report that the tumors show a variable CSC fraction between 0.5% and
4% (A), with a symmetric division rate between 1%and24% (B). The number of TA stages also varies between patientswith only CTandCUshowing a 5 stage
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and Table S1), we confirmed the same results (Supplementary
Figs. S5 and S6 and Material and Methods).

Reconstructing tumor ancestral trees
Using the patient-specific parameters, we can retrace the

ancestral tree of each tumor, providing insight into tumor
evolutionary dynamics. We simulated the growth of the malig-
nancywithin our framework for each patient, virtually sampled
4 glands per tumor side and represented the phylogeny of 5
cells from each gland (Fig. 5). Each tree reflects the cellular
organization of the neoplasm. Indeed, the tumors with a low
CSC fraction (CT, CU, HA, and Z) show a limited number of
long-lived lineages from which the cells in the glands derive.
Those tumors also display an overall clustering of the glands by
side. On the contrary, tumor CX shows a mixture of long-lived
lineages because of the higher CSC fraction, in line with the
classical interpretation of a largely tumorigenic malignancy.
TumorCX is also the largest neoplasm in our dataset (see Table
1), possibly reflecting the higher proliferative potential con-
ferred by a larger population of CSCs.

Discussion
Deep-sequencing technologies have enabled the generation

of high-throughput molecular data, which, when coupled with
careful tumor sampling schemes, can provide new insight into
tumorigenesis. We present a novel framework to trace the
ancestries of cell populations within individual cancers and to
quantify intratumor heterogeneity in primary human malig-
nancies, while accounting for spatial processes and cellular
dynamics. Importantly, this approach enables the measure-
ment of tumor-specific characteristics from patient molecular
data. Taken together, the resulting information defines a
patient-specific tumor profile, which can be used to inform
targeted treatment options.
Here, we interrogated intratumor heterogeneity at multiple

levels of resolution, namely, between spatially separated tumor

regions, between and within cancer glands, and summarized
for the entire neoplasm (Supplementary Table S2). The spatial
relationship between glands is evident from the molecular
data, but it is accompanied by clonal heterogeneity indicative
of a complex hierarchy of mitotic clones, spanning multiple
spatial scales. We speculate that CSCs promote intratumor
heterogeneity on the smallest scale (gland-size populations),
and that clonal variation increaseswith spatial distance, driven
by larger and larger groups of CSC lineages. As such, neigh-
boring groups of CSCs would share a common ancestor and
would have more similar genomic profiles.

Using our novel experimental and computational frame-
work, we quantify CSC numbers in CRC without the need for
xenotransplantation assays. Our results complement the evi-
dence from transplantation experiments concerning the diver-
sity in differentiation between cells from the same tumor. In
particular, we infer a CSC fraction approximately 1%, consis-
tent with xenotransplantation results using the CD133þmark-
er (43). Moreover, the CSC fraction exhibits variability across
patients, as also reported by xenotransplantation assays (45).
The combination of CSC characteristics (symmetric division
rate and number of transit amplifying stages) indicates rad-
ically different hierarchical organization for different tumors,
which also exhibit different mutation and apoptosis rates (Fig.
4). The set of parameters for each patient represent a tumor
profile that can be used to simulate the ancestral history of the
sampled glands. Using our model, we simulated the entire
history of a tumor using the inferred parameters (based on the
modal value of the posterior) to generate a representative
phylogenetic tree. We report clear differences between
patients, which reflect the CSC organization responsible for
neoplastic growth, with malignancies bearing a small fraction
of CSC exhibiting fewer long-lived lineages (Fig. 5). The recon-
structed trees and underlying data suggest that large clonal
expansions are uncommon once the malignancy is initiated.
Rather, the data suggest a complex and continuous interplay

Figure 5. Reconstruction of tumor
ancestral trees. We retraced the
tumor phylogeny by simulating a
neoplasm with the inferred
parameters for eachpatient basedon
sampling 5 cells from 8 cancer
glands per tumor (4 per side). In all
tumors that exhibit a small CSC
fraction (CT, CU, HA, and Z), the tree
structure clearly underlines a small
number of long-living CSC lineages.
For tumor CX, with a large CSC
population, the tree reflects the
mixture of a large number of long-
living lineages, indicating a larger
population of cells with tumorigenic
capacity.

CT CU

CX HA Z

L1
L2
L3
L4
R1
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between different coexisting clones, driven by CSCs. CSCs also
contribute to intratumor heterogeneity by establishing the
distinct cell lineages observed within the cancer glands. In
particular, we observe that the majority of glands contained
multiple clones, harboring 2 to 5 unique lineages. On the basis
of themolecular signature of theCSC compartment, our results
also indicate that CSCs are not quiescent as is sometimes
suggested, but rather represent a mitotically active population
that evolves and contributes to tumor growth and clonal
diversity (12).

The CSC architecture may reflect features of the normal
crypt stem cell structure driven by the Wnt signaling pathway
(9). We have previously shown that the human colon crypt is
composed of 15 to 20 stem cells, about 1% of the total 2,000. In
CRC, our results suggest a similar fraction of CSCs, with values
consistently on the order of 1%. In the normal crypt, the stem
cell population is in homeostasis whereby 1 daughter cell
remains in the niche as a stem cell whereas the other
differentiates and leaves the base of the crypt. In tumors,
CSCs are thought to arise because of mutations in normal
stem cells (46), leading to an increase in the number of
aberrant symmetric divisions and expansion of the CSC pool.
The loss of asymmetric stem cell divisions was implicated in
the oncogenicity of APC (adenomatous polyposis coli) muta-
tions in the gut (47). Importantly, our approach provides
quantitative estimates of the symmetric division rate c,
which we observe to be low for normal colonic crypts
(2.5%; ref. 17), but up to 25% in some tumors (Fig. 4, tumor
CU). As we previously noted, CSC organization may have an
important effect on tumor dynamics, mediated through the
extent of intratumor heterogeneity (48, 49) and by conferring
a selective growth advantage during tumor progression and
therapy (50).

Our multisampling scheme, coupled with ultradeep
sequencing of an informative molecular clock enables the

interrogation of geographically separated areas of the tumor,
providing a panoramic view of the heterogeneity within the
neoplasm. Using a novel computational framework and a
multisampling scheme, this approach elucidates on the cellu-
lar dynamics that regulate tumor growth in individual patients,
with implications for personalizing patient treatment and
potentially informing prognosis. Our framework is based on
data collected from readily available biopsy or resection speci-
mens, and allows for the generation of patient-specific cancer
profiles within days from the time of collection.
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