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6 Simon Tavaré

1 Introduction

One of the most important challenges facing modern biology is how to make
sense of genetic variation. Understanding how genotypic variation translates
into phenotypic variation, and how it is structured in populations, is funda-
mental to our understanding of evolution. Understanding the genetic basis
of variation in phenotypes such as disease susceptibility is of great impor-
tance to human geneticists. Technological advances in molecular biology are
making it possible to survey variation in natural populations on an enormous
scale. The most dramatic examples to date are provided by Perlegen Sciences
Inc., who resequenced 20 copies of chromosome 21 (Patil et al., 2001) and by
Genaissance Pharmaceuticals Inc., who studied haplotype variation and link-
age disequilibrium across 313 human genes (Stephens et al., 2001). These are
but two of the large number of variation surveys now underway in a number
of organisms. The amount of data these studies will generate is staggering,
and the development of methods for their analysis and interpretation has be-
come central. In these notes I describe the basics of coalescent theory, a useful
quantitative tool in this endeavor.

1.1 Genealogical processes

These Saint Flour lectures concern genealogical processes, the stochastic mod-
els that describe the ancestral relationships among samples of individuals.
These individuals might be species, humans or cells — similar methods serve
to analyze and understand data on very disparate time scales. The main theme
is an account of methods of statistical inference for such processes, based pri-
marily on stochastic computation methods. The notes do not claim to be
even-handed or comprehensive; rather, they provide a personal view of some
of the theoretical and computational methods that have arisen over the last
20 years. A comprehensive treatment is impossible in a field that is evolving
as fast as this one. Nonetheless I think the notes serve as a useful starting
point for accessing the extensive literature.

Understanding molecular variation data

The first lecture in the Saint Flour Summer School series reviewed some basic
molecular biology and outlined some of the problems faced by computational
molecular biologists. This served to place the problems discussed in the re-
maining lectures into a broader perspective. I have found the books of Hartl
and Jones (2001) and Brown (1999) particularly useful.

It is convenient to classify evolutionary problems according to the time
scale involved. On long time scales, think about trying to reconstruct the
molecular phylogeny of a collection of species using DNA sequence data taken
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from a homologous region in each species. Not only is the phylogeny, or branch-
ing order, of the species of interest but so too might be estimation of the di-
vergence time between pairs of species, of aspects of the mutation process that
gave rise to the observed differences in the sequences, and questions about the
nature of the common ancestor of the species. A typical population genetics
problem involves the use of patterns of variation observed in a sample of hu-
mans to locate disease susceptibility genes. In this example, the time scale
is of the order of thousands of years. Another example comes from cancer
genetics. In trying to understand the evolution of tumors we might extract a
sample of cells, type them for microsatellite variation at a number of loci and
then use the observed variability to infer the time since a checkpoint in the
tumor’s history. The time scale in this example is measured in years.

The common feature that links these examples is the dependence in the
data generated by common ancestral history. Understanding the way in which
ancestry produces dependence in the sample is the key principle of these notes.
Typically the ancestry is never known over the whole time scale involved. To
make any progress, the ancestry has to be modelled as a stochastic process.
Such processes are the subject of these notes.

Backwards or Forwards?

The theory of population genetics developed in the early years of the last
century focused on a prospective treatment of genetic variation (see Provine
(2001) for example). Given a stochastic or deterministic model for the evolu-
tion of gene frequencies that allows for the effects of mutation, random drift,
selection, recombination, population subdivision and so on, one can ask ques-
tions like ‘How long does a new mutant survive in the population?’, or ‘What
is the chance that an allele becomes fixed in the population?’. These questions
involve the analysis of the future behavior of a system given initial data. Most
of this theory is much easier to think about if the focus is retrospective. Rather
than ask where the population will go, ask where it has been. This changes
the focus to the study of ancestral processes of various sorts. While it might
be a truism that genetics is all about ancestral history, this fact has not per-
vaded the population genetics literature until relatively recently. We shall see
that this approach makes most of the underlying methodology easier to derive
— essentially all classical prospective results can be derived more simply by
this dual approach — and in addition provides methods for analyzing modern
genetic data.

1.2 Organization of the notes

The notes begin with forwards and backwards descriptions of the Wright-
Fisher model of gene frequency fluctuation in Section 2. The ancestral pro-
cess that records the number of distinct ancestors of a sample back in time is
described, and a number of its basic properties derived. Section 3 introduces



8 Simon Tavaré

the effects of mutation in the history of a sample, introduces the genealogical
approach to simulating samples of genes. The main result is a derivation of the
Ewens sampling formula and a discussion of its statistical implications. Sec-
tion 4 introduces Kingman’s coalescent process, and discusses the robustness
of this process for different models of reproduction.

Methods more suited to the analysis of DNA sequence data begin in
Section 5 with a theoretical discussion of the infinitely-many-sites mutation
model. Methods for finding probabilities of the underlying reduced genealog-
ical trees are given. Section 6 describes a computational approach based on
importance sampling that can be used for maximum likelihood estimation of
population parameters such as mutation rates. Section 7 introduces a number
of problems concerning inference about properties of coalescent trees condi-
tional on observed data. The motivating example concerns inference about
the time to the most recent common ancestor of a sample. Section 8 develops
some theoretical and computational methods for studying the ages of muta-
tions. Section 9 discusses Markov chain Monte Carlo approaches for Bayesian
inference based on sequence data. Section 10 introduces Hudson’s coalescent
process that models the effects of recombination. This section includes a dis-
cussion of ancestral recombination graphs and their use in understanding link-
age disequilibrium and haplotype sharing.

Section 11 discusses some alternative approaches to inference using approx-
imate Bayesian computation. The examples include two at opposite ends of the
evolutionary time scale: inference about the divergence time of primates and
inference about the age of a tumor. This section includes a brief introduction
to computational methods of inference for samples from a branching process.
Section 12 concludes the notes with pointers to some topics discussed in the
Saint Flour lectures, but not included in the printed version. This includes
models with selection, and the connection between the stochastic structure of
certain decomposable combinatorial models and the Ewens sampling formula.

1.3 Acknowledgements

Paul Marjoram, John Molitor, Duncan Thomas, Vincent Plagnol, Darryl Shi-
bata and Oliver Will were involved with aspects of the unpublished research
described in Section 11. I thank Lada Markovtsova for permission to use some
of the figures from her thesis (Markovtsova (2000)) in Section 9. I thank Mag-
nus Nordborg for numerous discussions about the mysteries of recombination.
Above all I thank Warren Ewens and Bob Griffiths, collaborators for over 20
years. Their influence on the statistical development of population genetics
has been immense; it is clearly visible in these notes.

Finally I thank Jean Picard for the invitation to speak at the summer
school, and the Saint-Flour participants for their comments on the earlier
version of the notes.
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2 The Wright-Fisher model

This section introduces the Wright-Fisher model for the evolution of gene fre-
quencies in a finite population. It begins with a prospective treatment of a
population in which each individual is one of two types, and the effects of mu-
tation, selection, ...are ignored. A genealogical (or retrospective) description
follows. A number of properties of the ancestral relationships among a sample
of individuals are given, along with a genealogical description in the case of
variable population size.

2.1 Random drift

The simplest Wright-Fisher model (Fisher (1922), Wright (1931)) describes
the evolution of a two-allele locus in a population of constant size undergoing
random mating, ignoring the effects of mutation or selection. This is the so-
called ‘random drift’ model of population genetics, in which the fundamental
source of “randomness” is the reproductive mechanism.

A Markov chain model

We assume that the population is of constant size N in each non-overlapping
generation n, n = 0,1,2,.... At the locus in question there are two alleles,
denoted by A and B. X,, counts the number of A alleles in generation n.
We assume first that there is no mutation between the types. The population
at generation r 4+ 1 is derived from the population at time 7 by binomial
sampling of N genes from a gene pool in which the fraction of A alleles is its
current frequency, namely 7; = i/N. Hence given X, = i, the probability that
Xr+1 =jis
Pij = (J;T)Wf(l —m)N 7, 0<i,j<N. (2.1.1)

The process {X,.,7 = 0,1,...} is a time-homogeneous Markov chain. It
has transition matrix P = (p;;), and state space § = {0,1, ..., N}. The states
0 and N are absorbing; if the population contains only one allele in some
generation, then it remains so in every subsequent generation. In this case,
we say that the population is fized for that allele.

The binomial nature of the transition matrix makes some properties of the
process easy to calculate. For example,

erl

E(X,|X,01) = N7

- erh

so that by averaging over the distribution of X, _; we get E(X,.) = E(X,_1),
and
E(X,) =E(Xo), r=1,2,.... (2.1.2)
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The result in (2.1.2) can be thought of as the analog of the Hardy-Weinberg
law: in an infinitely large random mating population, the relative frequency
of the alleles remains constant in every generation. Be warned though that
average values in a stochastic process do not tell the whole story! While on
average the number of A alleles remains constant, variability must eventually
be lost. That is, eventually the population contains all A alleles or all B alleles.
We can calculate the probability a; that eventually the population contains
only A alleles, given that Xy = i. The standard way to find such a probability
is to derive a system of equations satisfied by the a;. To do this, we condition
on the value of X;. Clearly, ap = 0,ay =1, and for 1 <7 < N — 1, we have

N-1

a; =pio- 0+ pin -1+ Z Dija;. (2.1.3)
j=1

This equation is derived by noting that if X; = j € {1,2,..., N — 1}, then
the probability of reaching N before 0 is a;. The equation in (2.1.3) can be
solved by recalling that E(X; | Xo =14) =, or

N
Z PijJ = i
=0

It follows that a; = C' for some constant C. Since ay = 1, we have C = 1/N,
and so a; = i/N. Thus the probability that an allele will fix in the population
is just its initial frequency.

The variance of X, can also be calculated from the fact that

Var(X,) = E(Var(X,|X,-1)) + Var(E(X, | X,-1)).
After some algebra, this leads to
Var(X,) = E(Xo)(N —E(Xj))(1 — A") + A" Var(Xy), (2.1.4)

where
A=1-1/N.

We have noted that genetic variability in the population is eventually lost.

It is of some interest to assess how fast this loss occurs. A simple calculation
shows that

E(X,(N - X,)) = NE(Xo(N — Xo)). (2.1.5)

Multiplying both sides by 2N =2 shows that the probability h(r) that two
genes chosen at random with replacement in generation r are different is

h(r) = A"h(0). (2.1.6)

The quantity h(r) is called the heterozygosity of the population in generation
r, and it measures the genetic variability surviving in the population. Equation
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(2.1.6) shows that the heterozygosity decays geometrically quickly as r — oo.
Since fixation must occur, we have h(r) — 0.

We have seen that variability is lost from the population. How long does
this take? First we find an equation satisfied by m;, the mean time to fixation
starting from Xy = ¢. To do this, notice first that mg = my = 0, and, by
conditioning on the first step once more, we see that for 1 <i < N —1

N-1
mi = pio - 1+pin -1+ Zpij(1+mj)
j=1
N
=1+ Zpijmj. (217)
=0

Finding an explicit expression for m; is difficult, and we resort instead to an
approximation when NV is large and time is measured in units of N generations.

Diffusion approximations

This takes us into the world of diffusion theory. It is usual to consider not the
total number X, = X (r) of A alleles but rather the proportion X,/N. To get
a non-degenerate limit we must also rescale time, in units of NV generations.
This leads us to study the rescaled process

Yy (t) = N"'X(|Nt]), t>0, (2.1.8)

where |z] is the integer part of z. The idea is that as N — oo, Y (+) should
converge in distribution to a process Y(-). The fraction Y (¢) of A alleles at
time ¢ evolves like a continuous-time, continuous state-space process in the
interval § = [0,1]. Y(+) is an example of a diffusion process. Time scalings in
units proportional to N generations are typical for population genetics models
appearing in these notes.

Diffusion theory is the basic tool of classical population genetics, and there
are several good references. Crow and Kimura (1970) has a lot of the ‘old
style’ references to the theory. Ewens (1979) and Kingman (1980) introduce
the sampling theory ideas. Diffusions are also discussed by Karlin and Taylor
(1980) and Ethier and Kurtz (1986), the latter in the measure-valued setting.
A useful modern reference is Neuhauser (2001).

The properties of a one-dimensional diffusion Y'(-) are essentially deter-
mined by the infinitesimal mean and variance, defined in the time-homogeneous
case by

ply) = lim BE(Y (0 +h) = Y () | Y(2) = ),
o*(y) = lim hUE((Y (4 R) — Y (1) | Y () = y).
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For the discrete Wright-Fisher model, we know that given X, =i, X,4; is
binomially distributed with number of trials N and success probability i/N.
Hence

E(X(r+1)/N—-X(r)/N| X(r)/N =i/N) =0,
13 %
— 2 — 9 e — - —
B(CX( -+ /N = X2 | X0 = i) = g (1- ).
so that for the process Y(-) that gives the proportion of allele A in the popu-
lation at time ¢, we have

ny) =0, oy =yl-y), 0<y<Ll (2.1.9)

Classical diffusion theory shows that the mean time m(x) to fixation, start-
ing from an initial fraction z € (0,1) of the A allele, satisfies the differential
equation

%x(l —x)m” (x) = -1, m(0) =m(1) =0. (2.1.10)

This equation, the analog of (2.1.7), can be solved using partial fractions, and
we find that

m(z) = —2(zlogx + (1 —x)log(l —x)), 0<z<1. (2.1.11)

In terms of the underlying discrete model, the approximation for the ex-
pected number m; of generations to fixation, starting from i A alleles, is
m; = Nm(i/N). If i/N =1/2,

Nm(1/2) = (—2log2)N =~ 1.39N generations,
whereas if the A allele is introduced at frequency 1/N,

Nm(1/N) =2log N generations.

2.2 The genealogy of the Wright-Fisher model

In this section we consider the Wright-Fisher model from a genealogical per-
spective. In the absence of recombination, the DNA sequence representing
the gene of interest is a copy of a sequence in the previous generation, that
sequence is itself a copy of a sequence in the generation before that and so on.
Thus we can think of the DNA sequence as an ‘individual’ that has a ‘parent’
(namely the sequence from which is was copied), and a number of ‘offspring’
(namely the sequences that originate as a copy of it in the next generation).

To study this process either forwards or backwards in time, it is conve-
nient to label the individuals in a given generation as 1,2,..., N, and let v;
denote the number of offspring born to individual 7, 1 <17 < N. We suppose
that individuals have independent Poisson-distributed numbers of offspring,
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subject to the requirement that the total number of offspring is N. It follows

that (v1,...,vn) has a symmetric multinomial distribution, with
N! \"
]P(Vl :m17...7l/N:mN):m (N) (221)

provided my + --- + my = N. We assume that offspring numbers are inde-
pendent from generation to generation, with distribution specified by (2.2.1).

To see the connection with the earlier description of the Wright-Fisher
model, imagine that each individual in a given generation carries either an A
allele or a B allele, i of the IV individuals being labelled A. Since there is no
mutation, all offspring of type A individuals are also of type A. The distribu-
tion of the number of type A in the offspring therefore has the distribution of
vy + - -+ + v; which (from elementary properties of the multinomial distribu-
tion) has the binomial distribution with parameters N and success probability
p = i/N. Thus the number of A alleles in the population does indeed evolve
according to the Wright-Fisher model described in (2.1.1).

This specification shows how to simulate the offspring process from par-
ents to children to grandchildren and so on. A realization of such a process for
N =9 is shown in Figure 2.1. Examination of Figure 2.1 shows that individ-
uals 3 and 4 have their most recent common ancestor (MRCA) 3 generations
ago, whereas individuals 2 and 3 have their MRCA 11 generations ago. More

Fig. 2.1. Simulation of a Wright-Fisher model of N = 9 individuals. Generations are
evolving down the figure. The individuals in the last generation should be labelled
1,2,...,9 from left to right. Lines join individuals in two generations if one is the
offspring of the other
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generally, for any population size N and sample of size n taken from the
present generation, what is the structure of the ancestral relationships link-
ing the members of the sample? The crucial observation is that if we view
the process from the present generation back into the past, then individuals
choose their parents independently and at random from the individuals in
the previous generation, and successive choices are independent from genera-
tion to generation. Of course, not all members of the previous generations are
ancestors of individuals in the present-day sample. In Figure 2.2 the ances-
try of those individuals who are ancestral to the sample is highlighted with
broken lines, and in Figure 2.3 those lineages that are not connected to the
sample are removed, the resulting figure showing just the successful ances-
tors. Finally, Figure 2.3 is untangled in Figure 2.4. This last figure shows the
tree-like nature of the genealogy of the sample.

Fig. 2.2. Simulation of a Wright-Fisher model of N =9 individuals. Lines indicate
ancestors of the sampled individuals. Individuals in the last generation should be
labelled 1,2,..., 9 from left to right. Dashed lines highlight ancestry of the sample.

Understanding the genealogical process provides a direct way to study
gene frequencies in a model with no mutation (Felsenstein (1971)). We content
ourselves with a genealogical derivation of (2.1.6). To do this, we ask how long
it takes for a sample of two genes to have their first common ancestor. Since
individuals choose their parents at random, we see that

1
IP( 2 individuals have 2 distinct parents) = A = <1 - N) .
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Fig. 2.3. Simulation of a Wright-Fisher model of N = 9 individuals. Individuals
in the last generation should be labelled 1,2,..., 9 from left to right. Dashed lines
highlight ancestry of the sample. Ancestral lineages not ancestral to the sample are
removed.
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Fig. 2.4. Simulation of a Wright-Fisher model of N = 9 individuals. This is an
untangled version of Figure 2.3.
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Since those parents are themselves a random sample from their generation,
we may iterate this argument to see that

IP(First common ancestor more than r generations ago)

— = (1 - %) (2.2.2)

Now consider the probability h(r) that two individuals chosen with re-
placement from generation r carry distinct alleles. Clearly if we happen to
choose the same individual twice (probability 1/N) this probability is 0. In
the other case, the two individuals are different if and only if their common
ancestor is more than r generations ago, and the ancestors at time 0 are dis-
tinct. The probability of this latter event is the chance that 2 individuals
chosen without replacement at time 0 carry different alleles, and this is just
E2Xo(N — Xo)/N(N — 1). Combining these results gives

(N —1) E2Xo(N — Xo)

Mr)=A""—x N(N —1)

— \"h(0),

just as in (2.1.6).

When the population size is large and time is measured in units of NV
generations, the distribution of the time to the MRCA of a sample of size
2 has approximately an exponential distribution with mean 1. To see this,
rescale time so that r = Nt, and let N — oo in (2.2.2). We see that this

probability is
1\ Mt
(1 — N) — e_t.

This time scaling is the same as used to derive the diffusion approximation
earlier. This should be expected, as the forward and backward approaches are
just alternative views of the same underlying process.

The ancestral process in a large population

What can be said about the number of ancestors in larger samples? The
probability that a sample of size three has distinct parents is

(%) (%)

and the iterative argument above can be applied once more to see that the
sample has three distinct ancestors for more than r generations with proba-

]
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Rescaling time once more in units of N generations, and taking » = Nt, shows
that for large N this probability is approximately e~3t, so that on the new
time scale the time taken to find the first common ancestor in the sample of
three genes is exponential with parameter 3. What happens when a common
ancestor is found? Note that the chance that three distinct individuals have
at most two distinct parents is

3(N-1) 1 3N -2
N2 N2 N2
Hence, given that a first common ancestor is found in generation r, the con-
ditional probability that the sample has two distinct ancestors in generation
ris
3N -3
3N =2’
which tends to 1 as N increases. Thus in our approximating process the num-
ber of distinct ancestors drops by precisely 1 when a common ancestor is
found.

We can summarize the discussion so far by noting that in our approximat-
ing process a sample of three genes waits an exponential amount of time T3
with parameter 3 until a common ancestor is found, at which point the sample
has two distinct ancestors for a further amount of time 75, having an exponen-
tial distribution with parameter 1. Furthermore, T5 and T, are independent
random variables.

More generally, the number of distinct parents of a sample of size k indi-
viduals can be thought of as the number of occupied cells after k£ balls have
been dropped (uniformly and independently) into N cells. Thus

gk; = IP(k individuals have j distinct parents) (2.2.3)
—N(N=1)---(N—j+1D8YN* =12 .k

where S,(j ) is a Stirling number of the second kind; that is, S,(j ) is the number
of ways of partitioning a set of k elements into j nonempty subsets. The terms
in (2.2.3) arise as follows: N(N —1)--- (N — j + 1) is the number of ways to
choose j distinct parents; Sg ) is the number of ways assigning k individuals to
these j parents; and N* is the total number of ways of assigning k individuals
to their parents.

For fixed values of N, the behavior of this ancestral process is difficult
to study analytically, but we shall see that the simple approximation derived
above for samples of size two and three can be developed for any sample size
n. We first define an ancestral process {AN(t) : t = 0,1,...} where

AN (t) = number of distinct ancestors in generation ¢ of a
sample of size n at time 0.

It is evident that AY () is a Markov chain with state space {1,2,...,n}, and
with transition probabilities given by (2.2.3):
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P(AY(t+1) = jlAY(t) = k) = gi;.
For fixed sample size n, as N — oo,

gy NN —1)- - (N — k +2)
k NF

= (;) % + O(N™?),

since S,(Ckfl) = (g) For j < k —1, we have

9k,k—1 =

AN(N—=1)---(N—j+1 _
ng:SI(c]) ( )Nk( J ):O(N 2)

and

ger =N NN -1)---(N-k+1)

=1- (g) % +O(N7?).

Writing G for the transition matrix with elements gz;,1 < j < k < n. Then
Gy =T+N"'Q+O(N"?),

where [ is the identity matrix, and @ is a lower diagonal matrix with non-zero
entries given by

k k
Qe = — (2)> Qhk—1 = (2)> k=n,n—-1,...,2. (22.4)

Hence with time rescaled for units of N generations, we see that

Nt
— @t

GN'=(I+N'Q+O(N?)
as N — oo. Thus the number of distinct ancestors in generation Nt is ap-
proximated by a Markov chain A, (t) whose behavior is determined by the
matrix @ in (2.2.4). A, (-) is a pure death process that starts from A, (0) = n,
and decreases by jumps of size one only. The waiting time 7} in state k is
exponential with parameter (’2“), the T being independent for different k.

Remark. We call the process A, (t),t > 0 the ancestral process for a sample of
size n.

Remark. The ancestral process of the Wright-Fisher model has been studied
in several papers, including Karlin and McGregor (1972), Cannings (1974),
Watterson (1975), Griffiths (1980), Kingman (1980) and Tavaré (1984).
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2.3 Properties of the ancestral process

Calculation of the distribution of A, (t) is an elementary exercise in Markov
chains. One way to do this is to diagonalize the matrix @ by writing Q = RDL,
where D is the diagonal matrix of eigenvalues A\, = — (’;) of @, and R and L are
matrices of right and left eigenvalues of (), normalized so that RL = LR = I.
From this approach we get, for j =1,2,...,n,

gnj(t) = P(An(t) = J)
- 2k — 1)(=1)F75_
I o L 3( ).,]“’1)HW] (2.3.1)
P Ik — )
where
amy =ala+1)---(a+n—1)
appp =afa—1)---(a—n+1)
a(o) = a[o] =1.
The mean number of ancestors at time ¢ is given by
2 2k —1
EA,(t) = Ze*k%*l)tﬂw, (2.3.2)

k=1 "V (k)

and the falling factorial moments are given by

QAL r+k—2)
k=r (k) r . T

for r = 2,...,n. In Figure 2.5 EA,(t) is plotted as a function of ¢ for n =
5,10, 20, 50.

The process A, (-) is eventually absorbed at 1, when the sample is traced
back to its most recent common ancestor (MRCA). The time it takes the
sample to reach its MRCA is of some interest to population geneticists. We
study this time in the following section.

The time to the most recent common ancestor

Many quantities of genetic interest depend on the time W,, taken to trace a
sample of size n back to its MRCA. Remember that time here is measured in
units of N generations, and that

Wp=Tn+Tn_1+ +T5 (2.3.3)

where T}, are independent exponential random variables with parameter (’;)
It follows that
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Fig. 2.5. The mean number of ancestors at time ¢ (x axis) for samples of size
n = 5,10, 20, 50, from (2.3.2).

50

Therefore
1=EW, <EW, <EWy < 2,

where Wy is thought of as the time until the whole population has a single
common ancestor. Note that EW,, is close to 2 even for moderate n. Also

1 1 2
EWy —W,) =2 (n N> < -
so the mean difference between the time for a sample to reach its MRCA, and
the time for the whole population to reach its MRCA, is small.
Note that T makes a substantial contribution to the sum (2.3.3) defining
W,,. For example, on average for over half the time since its MRCA, the sample
will have exactly two ancestors. Further, using the independence of the T},

n n —2
VarW,, = ZVaer = Z (S)

k=2 k=2
n—1
1 1 1
= — — 41 - = _
() (0+3)

It follows that
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2
1 = VarWW, < VarW,, < lim VarW,, = 8— — 12 ~ 1.16.

n— oo 6

We see that Ty also contributes most to the variance.
The distribution of W,, can be obtained from (2.3.1):

- o k(k—1)t/2 (2k — D(=1)*'nyy _

P(W, <t)=P(A,(t) =1) =Y (2.3.4)
k=1 (k)
From this it follows that
—1
PW, >t) = 3 ety O(e ™) as t — oo.
n+1

Now focus on two particular individuals in the sample and observe that if
these two individuals do not have a common ancestor at ¢, the whole sample
cannot have a common ancestor. Since the two individuals are themselves a
random sample of size two from the population, we see that

P(W, >t) > P(Ws >t)=e",

an inequality that also follows from (2.3.3). A simple Markov chain argument
shows that
3(n—1)et

P(W, >t) <
( >1) < n+1

)

so that
et <IP(W, >t) <3e*

for all n and ¢ (see Kingman (1980), (1982c)).
The density function of W,, follows immediately from (2.3.4) by differen-
tiating with respect to t:

fw, (1) = i(—nkawnw (2 — Dk(k — Dngy

k=2

2.3.5

In Figure 2.6, this density is plotted for values of n = 2,10,100,500. The
shape of the densities reflects the fact that most of the contribution to the
density comes from T5.

The tree length

In contrast to the distribution of W,, the distribution of the total length
L, = 2Ty 4 --- 4+ nT, is easy to find. As we will see, L,, is the total length
of the branches in the genealogical tree linking the individuals in the sample.
First of all,
n—1 1
EL, =2 Z i 2logn,

Jj=1
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Fig. 2.6. Density functions for the time W,, to most recent common ancestor of a
sample of n individuals, from (2.3.5). —n =2; ------ n=10; — — — — n = 100;
— - —- n=>500.

and

n—1
1
VarL, =4 " — ~21?/3.
=]
j=1

To find the distribution of L,,, let E(A) denote an exponential random variable
with mean 1/, all occurrences being independent of each other, and write
=, for equality in distribution. Then

L, = ZjTj =4 _ZE((j—l)/Z)

n—1

= 2 iy, Enl1/2)

=a | mnax  B;(1/2),
the last step following by a coupling argument (this is one of many proofs of
Feller’s representation of the distribution of the maximum of independent and
identically distributed exponential random variables as a sum of independent
random variables). Thus

P(L, <t) = (1 - e—t/2)n71, t>0.
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It follows directly that L, — 2logn has a limiting extreme value distribution
with distribution function exp(— exp(—t/2)), —oco < t < 0.

2.4 Variable population size

In this section we discuss the behavior of the ancestral process in the case
of deterministic fluctuations in population size. For convenience, suppose the
model evolves in discrete generations and label the current generation as 0.
Denote by N(j) the number of sequences in the population j generations
before the present. We assume that the variation in population size is due
to either external constraints e.g. changes in the environment, or random
variation which depends only on the total population size e.g. if the population
grows as a branching process. This excludes so-called density dependent cases
in which the variation depends on the genetic composition of the population,
but covers many other settings. We continue to assume neutrality and random
mating.

Here we develop the theory for a particular class of population growth
models in which, roughly speaking, all the population sizes are large. Time
will be scaled in units of N = N(0) generations. To this end, define the relative
size function fy(x) by

zw, %<x§%,j:l,2,... (2.4.1)

We are interested in the behavior of the process when the size of each gener-
ation is large, so we suppose that

i fy (@) = f(2) (24.2)

exists and is strictly positive for all x > 0.
Many demographic scenarios can be modelled in this way. For an example
of geometric population growth, suppose that for some constant p > 0

N(j) = [N (1= p/NY].

Then
J\}im fn(z) =e " = f(x), > 0.

A commonly used model is one in which the population has constant size
prior to generation V', and geometric growth from then to the present time.
Thus for some a € (0,1)

. Nal, >V
N(j):{{Noj/VJ,;iO,...,V
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If we suppose that V = | Nv| for some v > 0, so that the expansion started v
time units ago, then

In(@) = f(z) = omin(z/v,1)

The ancestral process

In a Wright-Fisher model of reproduction, note that the probability that two
individuals chosen at time 0 have distinct ancestors s generations ago is

P(Ty(N) > ) :jf[l (1 - ﬁ) :

where T5(N) denotes the time to the common ancestor of the two individuals.
Recalling the inequality

T
< —log(1l — < 1
x < —log( a:)_l_x,a:< ,
we see that
1 ® 1 ® 1
= < - log<1——.)§§ ~ T
= NO) = N(G)) T NG~ 1

It follows that

[Nt] INt]

1 1
lim — 3 log (1——,) — lim S ——.

Since
s/N dr

S 1 /
Z:I NG) o Tw@)
we can use (2.4.2) to see that for ¢ > 0, with time rescaled in units of N
generations,

Jim P(Ty(N) > [Nt]) = exp (- /0 t )\(u)du) ,

where A(+) is the intensity function defined by
Au) = ——, u>0 (2.4.3)
flw)™ == -
If we define

/1(15):/0 Au)du,
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the integrated intensity function, then (2.4.2) shows that as N — oo
N7'T(N) = Ty,

where
IP(Ty > t) = exp(—A(t)), t > 0. (2.4.4)

We expect the two individuals to have a common ancestor with probability
one, this corresponding to the requirement that

lim A(t) = oo,

t—o0
which we assume from now on. When the population size is constant, A(t) = ¢

and the time to the MRCA has an exponential distribution with mean 1. From
(2.4.4) we see that

ET, = / P(Ty > t)dt = / e AW qt,
0 0

If the population has been expanding, so that f(¢t) < 1 for all ¢, then
A(t) > t, and therefore

P(T, >t) <P(Ty>t), t>0,

where T35 denotes the corresponding time in the constant population size case.
We say that Ty is stochastically larger than T5, so that in particular ETy <
ETs = 1. This corresponds to the fact that if the population size has been
shrinking into the past, it should be possible to find the MRCA sooner than
if the population size had been constant.

In the varying environment setting, the ancestral process satisfies

P(A2(t+s) =1]|A2(t) =2) = P(Tr <t + 8|12 > t)
=Pt <Tr <t+s)/IP(T> >1t)
=1 —exp(=(A(t +s) — A1),

so that
IP(Ax(t + h) = 1|Az(t) = 2) = AN(t)h +o(h), h | 0.

We see that As(+) is a non-homogeneous Markov chain. What is the structure
of A,(+)?

Define Tj(N) to be the number of generations for which the sample has k
distinct ancestors. In the event that the sample never has exactly k distinct
ancestors, define T, (V) = oo. We calculate first the joint distribution of T5(N)
and T(N). The probability that T5(N) = k,T2(N) = [ is the probability
that the sample of size 3 has 3 distinct ancestors in generations 1, 2, ...,
k — 1, 2 distinct ancestors in generations k,...,k+ 11— 1, and 1 in generation
[ 4+ k. The probability that a sample of three individuals taken in generation
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j — 1 has three distinct parents is N(j)(N(j) — 1)(N(j) — 2)/N(j)?, and the
probability that three individuals in generation k—1 have two distinct parents
is 3N (k)(N (k) — 1)/N(k)3. Hence

IP(T5(N) = k, To(N) =1)

WG -G -2 | 3w -1 JRETNG) -1 1
=11 II
e N(5)3 N (k)2 ) N(j) N(k+1)

For the size fluctuations we are considering, the first term in brackets is

k—1
I (-t i)~ (] 7).

Jj=1

while the second term in brackets is

()~ ([ 55)

j=k+1

For k ~ Nts,l ~ Nty with t35 > 0,t2 > 0, we see via (2.4.2) that
N2IP(T53(N) = k, To(N) = 1) converges to

flts, tg) = e 3AEIZN(13)e™ (Altz+ta)=Ala)) \ (5 1 1) (2.4.5)
as N — oo. It follows that
N~YT3(N), Ty (N)) = (T3, T»),

where (T3, T%) have joint probability density f(ts,t2) given in (2.4.5).

This gives the joint law of the times spent with different numbers of ances-
tors, and shows that in the limit the number of ancestors decreases by one at
each jump. Just as in the constant population-size case, the ancestral process
for the Wright-Fisher model is itself a Markov chain, since the distribution
of the number of distinct ancestors in generation r is determined just by the
number in generation r — 1. The Markov property is inherited in the limit,
and we conclude that {A3(t),t > 0} is a Markov chain on the set {3,2,1}.
Its transition intensities can be calculated as a limit from the Wright-Fisher
model. We see that

(D)AE)h + o(h j=i-1
P(A3(t+h) = jlAs(t) =i) = 1 — ( )/\( )h+o(h), j=1i
0, otherwise

We can now establish the general case in a similar way. The random vari-
ables T, (N), ..., Ta(N) have a joint limit law when rescaled:

N=YTu(N),..., Ta(N)) = (T, ..., Ts)
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for each fixed n as N — oo, and the joint density f(tn,...,t2) of Th, ..., Ts
is given by

Pt t2) = H (Dsrew{-(§)ue)- a6} @0

for 0 < t,,...,t2 < oo, where 5,11 = 0,8, =tp,5; =t;+ -+, j =
2,...,n—1.

Remark. The joint density in (2.4.6) should really be denoted by fy,(¢tn, - - -, t2),
and the limiting random variables T, ..., T2, but we keep the simpler no-
tation. This should not cause any confusion.

From this it is elementary to show that if S; = T}, + --- 4 T}, then the
joint density of (Sy,...,S2) is given by

oloms 53 = [T ()Mo (= (3) o) - atssa0).

=2

for 0 < s5, < Sp—1 < - -+ < s9. This parlays immediately into the distribution
of the time the sample spends with j distinct ancestors, given that S;11 = s:

P(T) > t|S;41 = 5) = exp (_ @ (A(s + 1) — A(s))) .

Note that the sequence S,41 := 0,5,,5,-1,...,52 is a Markov chain. The
approximating ancestral process {A,(t),t > 0} is a non-homogeneous pure
death process on [n] with A,,(0) = n whose transition rates are determined
by

(DA +o(h), j=i-1
P(An(t + 1) = jlAu(t) =i) = § 1= () A(t)h + o(h), j =i (2.4.7)
0 otherwise

b

The time change representation

Denote the process that counts the number of ancestors at time t of a sample
of size n taken at time 0 by { A% (¢),t > 0}, the superscript ¥ denoting variable
population size. We have seen that A% (-) is now a time-inhomogeneous Markov
process. Given that AY(t) = j, it jumps to j — 1 at rate j(j — 1)A(¢)/2. A
useful way to think of the process A% (+) is to notice that a realization may be
constructed via

AV () = Ap(A(t)), t >0, (2.4.8)

where A,,(+) is the corresponding ancestral process for the constant population
size case. This may be verified immediately from (2.4.7). We see that the vari-
able population size model is just a deterministic time change of the constant
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population size model. Some of the properties of AY(-) follow immediately
from this representation. For example,

P(AL(H) = J) = gni(A®)), j=1,...,n
where ¢,;(t) is given in (2.3.1), and so

EA? (t) = Zefj(jfl)A(t)/Qm’t > 0.
- ")
j=1

It follows from (2.4.8) that A,(s) = A%(A71(s)), s > 0. Hence if A, (")
has a jump at time s, then AY(-) has one at time A71(s). Since A, () has
jumps at S, =T, Sn-1=Tn +Th_1,...,5 =T, + -+ Ty, it follows that
the jumps of A} (-) occur at A=1(S,),..., A7!(S2). Thus, writing T} for the
time the sample from a variable-size population spends with j ancestors, we
see that

TV = A74(S,) (2.4.9)
,‘ij :Ail(Sj)—Ail(SjJrl), j:n—l,...,?.
This result provides a simple way to simulate the times 77,77 _,,...,Ty.

Let U,,...,Us be independent and identically distributed random variables
having the uniform distribution on (0,1).

Algorithm 2.1 Algorithm to generate T)7,..., T3 for a variable size process
with intensity function A:

1. Generate t; = —2;8.{[{;), j=2,3,...,n

2. Form s, =t,,5; =t;+---+t,, j=2,...,n—1
3. Compute tf, = A~ (s,), t4 = A7 (s;) = A7 (sj41), j=n—1,...,2.
4. Return TP =¢7,7=2,...,n.

There is also a sequential version of the algorithm, essentially a restatement
of the last one:

Algorithm 2.2 Step-by-step version of Algorithm 2.1.

1. Sett=0,j=n

o _210g(Uj)
2. Generate t; = -1
3. Solve for s the equation

At +5) — A(t) = t; (2.4.10)

4. Set t7 = st =t+s,j=j—1L1Ij > 2 goto2 Elsereturn 7] =
v, 1Y =18,
ny s 42 2
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Note that ¢; generated in step 2 above has an exponential distribution
with parameter j(j — 1)/2. If the population size is constant then A(t) = ¢,
and so t7 = t;, as it should.

Ezample For an exponentially growing population f(z) = e ?*, so that
A(t) = (et —1)/p. Tt follows that A= (y) = p~tlog(1 + py), and

B 1/ 14 pS; .
TV = p~Mog(1 + pT,), TP = = | — 2L =2 ....n—1. (24.11
w=p log(1+pTy), T; p<1+psj+1)’3 T ( )

In an exponentially growing population, most of the coalescence events occur
near the root of the tree, and the resulting genealogy is then star-like; it
is harder to find common ancestors when the population size is large. See
Section 4.2 for further illustrations.
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3 The Ewens Sampling Formula

In this section we bring mutation into the picture, and show how the genealog-
ical approach can be used to derive the classical Ewens sampling formula. This
serves as an introduction to statistical inference for molecular data based ob-
tained from samples.

3.1 The effects of mutation

In Section 2.1 we looked briefly at the process of random drift, the mechanism
by which genetic variability is lost through the effects of random sampling. In
this section, we study the effect of mutation on the evolution of gene frequen-
cies at a locus with two alleles.

Now we suppose there is a probability p4 > 0 that an A allele mutates
to a B allele in a single generation, and a probability up > 0 that a B allele
mutates to an A. The stochastic model for the frequency X,, of the A allele
in generation n is described by the transition matrix in (2.1.1), but where

i

; <N“‘*”y+<“‘%)“3' (3.1.1)

The frequency m; reflects the effects of mutation in the gene pool. In this
model, it can be seen that p;; > 0 for all i,j € 8. It follows that the
Markov chain {X,} is irreducible; it is possible to get from any state to
any other state. An irreducible finite Markov chain has a limit distribution

p= (P0>P17-~-7PN)1
lim P(X, =k) =px >0,

for any initial distribution for Xy. The limit distribution p is also invariant
(or stationary), in that if X, has distribution p then X,, has distribution p for
every n. The distribution p satisfies the balance equations

p = pk,

where pg +--- 4+ pny = 1.
Once more, the binomial conditional distributions make some aspects of
the process simple to calculate. For example,

E(Xn) = ]EE(Xn|Xn—1) = Npup+ (1 — A — ,UB)]E(Xn—l)-
At stationarity, E(X,,) = E(X,,—1) = E(X), so

Nugp

EX)= ——.
&) HnaA+ 1B

(3.1.2)

This is also the limiting value of E(X,,) as n — oc.
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Now we investigate the stationary distribution p when N is large. To get
a non-degenerate limit, we assume that the mutation probabilities ua and up
satisfy
lim 2Npua =64 >0, lim 2Nug =6 > 0, (3.1.3)
N—o0 N—o00

so that mutation rates are of the order of the reciprocal of the population size.
We define the total mutation rate 6 by

0=04s+0p.

Given X,, = i, X, 41 is binomially distributed with parameters N and 7; given
by (3.1.1). Exploiting simple properties of the binomial distribution shows that
the diffusion approximation for the fraction of allele A in the population has

wz) = —204/2+ (1 —2)05/2, o*(z)=z(1-x), 0<z<1. (3.1.4)
The stationary density 7(y) of Y(-) satisfies the ordinary differential equation

—u(y)m(y) + %%ﬁjw(y)} =0,

and it follows readily that

my) UzL(y)exp (/yzggj) du> .

Hence 7(y) o< y271(1 — y)?4~! and we see that at stationarity the fraction
of A alleles has the beta distribution with parameters g and 6 4. The density
7 is given by

_ Op—1 Oa—1
m(Yy) = ————=—— 1-— , 0<y<1.
() ROVEOSL (1-y) y
In particular,
OB _ 0a0p

Remark. An alternative description of the mutation model in this case is as
follows. Mutations occur at rate /2, and when a mutation occurs the resulting
allele is A with probability m4 and B with probability 7. This model can be
identified with the earlier one with 4 = 07 4,0 = Onpg.

Remark. In the case of the K-allele model with mutation rate /2 and mu-
tations resulting in allele A; with probability =, > 0,7 = 1,2,..., K, the
stationary density of the (now (K — 1)-dimensional) diffusion is

. F(a) Omr—1 O —1
7T(y17...7yK)_ F(e’ﬂ'l)r(eﬂ'[{)yl Yk )

fory; >0,i=1,.... K, 1 +---+yxg = 1.
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3.2 Estimating the mutation rate

Modern molecular techniques have made it possible to sample genomic vari-
ability in natural populations. As a result, we need to develop the appro-
priate sampling theory to describe the statistical properties of such samples.
For the models described in this section, this is easy to do. If a sample of n
chromosomes is drawn with replacement from a stationary population, it is
straightforward to calculate the distribution of the number N4 of A alleles in
the sample. This distribution follows from the fact that given the population
frequency Y of the A allele, the sample is distributed like a binomial random
variable with parameters n and Y. Thus

P(Ns=k)=E ((Z) YR — Y)"‘k> .

Since Y has the Beta(6p,04) density, we see that N4 has the Beta-Binomial
distribution:

k=0,1,....n.  (3.2.1)

P(Na=k) = (n) L) I(k+0p)(n—k+04)

k I'@p)l'(0a)'(n+0)

It follows from this that

N ~ n(n+0)040p
IE(NA) —’rl?, Var(NA)— 92(9+1) .

(3.2.2)

The probability that a sample of size one is an A allele is just p = 05/0.
Had we ignored the dependence in the sample, we might have assumed that
the genes in the sample were independently labelled A with probability p.
The number N4 of As in the sample then has a binomial distribution with
parameters n and p. If we wanted to estimate the parameter p, the natural
estimator is p = Na/n, and

Var(p) = p(1 —p)/n.

Asn — oo, this variance tends to 0, so that p is a (weakly) consistent estimator
of p. Of course, the sampled genes are not independent, and the true variance
of Na/n is, from (3.2.2),

0 0405
Var(Na/n) = (1 + E) Z010)
It follows that Var(N4/n) tends to the positive limit Var(Y) as n — oo.
Indeed, N4/n is not a consistent estimator of p = 64/6, because (by the
strong law of large numbers) N4 /n — Y, the population frequency of the A
allele. This simple example shows how strong the dependence in the sample
can be, and shows why consistent estimators of parameters in this subject are
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the exception rather than the rule. Consistency typically has to be generated,
at least in principle, by sampling variability at many independent loci.

The example in this section is our first glimpse of the difficulties caused
by the relatedness of sequences in the sample. This relatedness has led to a
number of interesting approaches to estimation and inference for population
genetics data. In the next sections we describe the Ewens sampling formula
(Ewens (1972)), the first systematic treatment of the statistical properties of
estimators of the compound mutation parameter 6.

3.3 Allozyme frequency data

By the late 1960s, it was possible to sample, albeit indirectly, the molecular
variation in the DNA of a population. These data came in the form of allozyme
frequencies. A sample of size n resulted in a set of genes in which differences
between genes could be observed, but the precise nature of the differences
was irrelevant. Two Drosophila allozyme frequency data sets, each having 7
distinct alleles, are given below:

e D. tropicalis Esterase-2 locus [n = 298]
934,524, 4,2, 1, 1

e D. simulans Esterase-C locus [n = 308]
91,76, 70, 57, 12, 1, 1

It is clear that these data come from different distributions. Of the first set,
Sewall Wright (1978, p303) argued that

... the observations do mot agree at all with the equal frequencies ex-
pected for neutral alleles in enormously large populations.

This raises the question of what shape these distributions should have
under a neutral model. The answer to this was given by Ewens (1972). Because
the labels are irrelevant, a sample of genes can be broken down into a set of
alleles that occurred just once in the sample, another collection that occurred
twice, and so on. We denote by C;(n) the number of alleles represented j
times in the sample of size n. Because the sample has size n, we must have

Ci(n) +2C2(n) + - - + nChr(n) = n.

In this section we derive the distribution of (C1(n),...,Cyr(n)), known as the
Ewens Sampling Formula (henceforth abbreviated to ESF). To do this, we
need to study the effects of mutations in the history of a sample.

Mutations on a genealogy

In Section 3 we will give a detailed description of the ancestral relationships
among a sample of individuals. For now, we recall from the last section that
in a large population, the number of distinct ancestors at times ¢ in the past
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is described by the ancestral process A, (t). It is clear by symmetry that when
the ancestral process moves from k to k — 1, the two ancestors chosen to
join are randomly chosen from the k possibilities. Thus the ancestral relation-
ships among a sample of individuals can be represented as a random rooted
bifurcating tree that starts with n leaves (or tips), and joins random pairs
of ancestors together at times T,,, T, + Tp—1, ..., Wy, = T, +--- + T5. All
the individuals in the sample are traced back to their most recent common
ancestor at time W,.

Next we examine the effects of mutation in the coalescent tree of a sample.
Suppose that a mutation occurs with probability u per gene per generation.
The expected number of mutations along a lineage of g generations is therefore
gu. With time measured in units of N generations, this is of the form tNu
which is finite if u is of order 1/N. Just as in (3.1.3), we take

0 =2Nu

to be fixed as N — oo. In the discrete process, mutations arise in the ancestral
lines independently on different branches of the genealogical tree. In the limit,
it is clear that they arise at the points of independent Poisson processes of
rate 6/2 on each branch.

We can now superimpose mutations on the genealogical tree of the sample.
For allozyme frequency data, we suppose that every mutation produces a type
that has not been seen in the population before. One concrete way to achieve
this is to label types by uniform random variables; whenever a mutation oc-
curs, the resulting individual has a type that is uniformly distributed on (0,1),
independently of other labels. This model is an example of an infinitely-many
alleles model.

3.4 Simulating an infinitely-many alleles sample

As we will see, the reason that genealogical approaches have become so useful
lies first in the fact that they provide a simple way to simulate samples from
complex genetics models, and so to compare models with data. To simulate a
sample, one need not simulate the whole population first and then sample from
that — this makes these methods extremely appealing. Later in these notes we
will see the same ideas applied in discrete settings as well, particularly for
branching process models. This top down, or ‘goodness-of-fit’, approach has
been used extensively since the introduction of the coalescent by Kingman
(1982), Tajima (1983) and Hudson (1983) to simulate the behavior of test
statistics which are intractable by analytical means.

To simulate samples of data following the infinitely-many-alleles model
is, in principle, elementary. First simulate the genealogical tree of the sam-
ple by simulating observations from the waiting times T,,,Ty,—1,...,1> and
choosing pairs of nodes to join at random. Then we superimpose mutations
according to a Poisson process of rate 6/2, independently on each branch.
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The effects of each mutation are determined by the mutation process. In the
present case, the result of a mutation on a branch replaces the current la-
bel with an independently generated uniform random variable. An example
is given in Figure 3.1, and the types represented in the sample are labelled
[]57 UQ, Ug, Ug, U3 respectively.

Fig. 3.1. A coalescent tree for n = 5 with mutations

U
U, 0
Uz
Us
Ug
Us
Uz U, Us U, U,

3.5 A recursion for the ESF

To derive the ESF, we use a coalescent argument to find a recursion satisfied
by the joint distribution of the sample configuration in an infinitely-many-
alleles model. Under the infinitely-many-alleles mutation scheme, a sample of
size n may be represented as a configuration ¢ = (cy, ..., ¢, ), where

¢; = number of alleles represented ¢ times

and |e| = ¢1 + 2¢2 + -+ + ne, = n. It is convenient to think of the con-
figuration b of samples of size j < n as being an n-vector with coordinates
(b1,b2,...,b4,0,...,0), and we assume this in the remainder of this section.

We define e; = (0,0,...,0,1,0,...,0), the ith unit vector.
We derive an equation satisfied by the sampling probabilities ¢(c),n =
|c| > 1 defined by

q(c) = IP(sample of size |c| taken at stationarity has configuration ¢),
(3.5.1)
with ¢g(e1) = 1. Suppose then that the configuration is e. Looking at the
history of the sample, we will either find a mutation or we will be able to
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trace two individuals back to a common ancestor. The first event occurs with

probability
nd /2 0

nd/2 +n(n — 1)/2 0+n—1’
and results in the configuration c if the configuration just before the mutation
was b, where

(i) b= ¢, and mutation occurred to one of the ¢; singleton lines (probability
c/n);

(ii) b= c— 2ey + ez, and a mutation occurred to an individual in the 2-class
(probability 2(ca + 1)/n);

(iii) b= c—e1 — ej_1 + e; and the mutation occurred to an individual in a
j-class, producing a singleton mutant and a new (j — 1)-class (probability
j(ej +1)/n).

On the other hand, the ancestral join occurred with probability (n—1)/(6+
—1), and in that case the configuration b = ¢+ e; — e;4+1, and an individual
in one of ¢; + 1 allelic classes of size j had an offspring, reducing the number
of j-classes to ¢;, and increasing the number of ( + 1)-classes to cj41. This
event has probability j(c; +1)/(n —1),j = 1,...,n — 1. Combining these
possibilities, we get

0 a1 "L jle; + 1)
q(c) = Otn—1 EQ(C) + Z ]TQ(C —e1—ej_1+e€j)
j=2
n—1 j ci + 1
L " n]_ Talete; —ej) (3.5.2)

where we use the convention that g(c) = 0 if any ¢; < 0. Ewens (1972)
established the following result.

Theorem 3.1 In a stationary sample of size n, the probability of sample
configuration c is

where (as earlier) we have written x(j;y = x(x+1)---(x+j—1),j=1,2,...,
and |e] = ¢1 +2¢c2 + -+ - + ney,.

Proof. This can be verified by induction onn = |¢| and k = ||¢|| := c1+- -+
in the equation (3.5.2) by noting that the right-hand side of the equation has
terms with |b| =n — 1 and ||b|| < k, or with |b] = n and ||b|| < k.
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Remark. Watterson (1974) noted that if Z;, Z, ... are independent Poisson
random variables with EZ; = /3, then

L(Cy(n),Ca(n),...,Cn(n)) =L (Zl,Zg, s Zn| Y 2 = n> . (3.5.4)
i=1

where £(X) means ‘the distribution of X.’

The ESF typically has a very skewed distribution, assigning most mass to
configurations with several alleles represented a few times. In particular, the
distribution is far from ‘flat’; recall Wright’s observation cited in the intro-
duction of this section. In the remainder of the section, we will explore some
of the properties of the ESF.

Remark. The ESF arises in many other settings. See Tavaré and Ewens (1997)
and Ewens and Tavaré (1998) for a flavor of this.

3.6 The number of alleles in a sample

The random variable K,, = Cy(n)+---+Cy(n) is the number of distinct alleles
observed in a sample. Its distribution can be found directly from (3.5.3):

k Cj k| Qk
P(Kn,=k)= > q(c):e—n! > (1> i:w, (3.6.1)

1
c:||c||=k (n) cille||=k J C]. Q(n)
where |S¥| is the Stirling number of the first kind,
|S¥| = coefficient of z* in z(x +1)---(x +n — 1),

and the last equality follows from Cauchy’s formula for the number of permu-
tations of n symbols having & distinct cycles.

Another representation of the distribution of K, can be found by noting
that

z": JOUSL (08)ny  Os(Bs+1)---(0s+n—1)

Pt Q(n) Q(n) o 9(9+1)-~-(9+1’L—1)

1 0 n—1
AR S &
s<9+1+9+1s> (9+n—1+0—|—n—1> HES

where the &; are independent Bernoulli random variables satisfying

j=1,...,n. (3.6.2)

It follows that we can write
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Kp=8&+ - +&, (3.6.3)

a sum of independent, but not identically distributed, Bernoulli random vari-
ables. Therefore

n n—1
0
E(Kn) =) B =) o7 (3.6.4)
j=1 j=0 J
and
Vita) = Yovats) = 3 - s = S s e
r( r _— = — = —. .6.
Vom0t m 045 o (0+))

For large n, we see that EK,, ~ flogn and Var(K,) ~ 6logn. It can be
shown (cf. Barbour, Holst and Janson (1992)) that the total variation distance
between a sum W = &; + - - + &, of independent Bernoulli random variables
& with means p;, and a Poisson random variable P with mean p; + --- 4 p,
satisfies

2 2
TV( ( ) ( ))— L N

It follows from the representation (3.6.3) that there is a constant ¢ such that

c

dry (L(Ky), L(P,)) <

3.6.6
~ logn’ ( )

where P, is a Poisson random variable with mean EK,. As a consequence,

K, —EK, N
v/ VarK,,

and the same result holds if the mean and variance of K, are replaced by
flogn.

N(0, 1), (3.6.7)

3.7 Estimating 0

In this section, we return to the question of inference about 6 from the sample.
We begin with an approach used by population geneticists prior to the advent
of the ESF.

The sample homozygosity

It is a simple consequence of the ESF (with n = 2) that

IP(two randomly chosen genes are identical) = T34

In a sample of size n, define for i # j



Ancestral Inference in Population Genetics 39

5 1 if genes i and j are identical
710 otherwise

and set )
Fr=——"— 0ij-
" nn-1) ; "
We call F} the homozygosity of the sample; it is the probability that two
randomly chosen distinct members of the sample of size n have identical types.
It is elementary to show that

i 1

E(F) =10 (3.7.1)

The variance of F}¥ is more difficult to calculate, but it can be shown that

2 1 2 8(n —2) (n—2)(n—3)(6+0)
E(£2) (1+9+(1+9)(2+9)+(1+9)(2+9)(3+9)>'
(3.7.2)
The results in (3.7.1) and (3.7.2) can be combined to calculate Var(F).
We see that as n — oo,

n(n—1)

20

Var(F)) — (1+60)22+6)(3+6)

(3.7.3)

as found by Stewart (1976). It turns out that F,* converges in distribution as
n — oo to a limiting random variable F'* having variance given in (3.7.3).
If there are [ types in the sample, with p; of type j,7 =1,...,[, then

l

Fr = ; % (3.7.4)

We note that the homozygosity is often calculated as

l

F,=Y (%)2 . (3.7.5)

Jj=1

The difference between F,, and F}; is of order n~1: F, is the probability that
two genes taken with replacement are identical, F;¥ the probability that two
genes sampled without replacement are identical.

We have seen that E(F*) = 1/(1+0). This suggests a method of moments
estimator for # obtained by equating the observed sample homozygosity to its

expectation:
1

g

é:

The right hand side of (3.7.4) shows that 6 depends largely on the partition
of the data into types, and not on the number of types. We will see that the
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latter is sufficient for 6, so standard statistical theory suggests that 6 might
not be a good estimator — it is based largely on those parts of the data which
are uninformative for #. To examine this issue further, we used a coalescent
simulation to generate 10,000 samples of size 100 from the infinitely-many-
alleles process for different values of the target 8, and computed the estimator
6 for each of them. In Table 1 below are some summary statistics from these
simulations.

Table 1. Simulated properties of 0 in samples of size n = 100

0=010=1060=5.060=10.0

mean 0.15 1.38 6.00 11.38
std. dev. 0.32 1.03 2.60 4.15
RMSE+} 0.32 1.10 2.79 4.37
median 0.00 1.19 5.73 11.01
5th %ile 0.00 0.09 2.21 5.25
95th %ile 0.94 3.36  10.73 18.80

tRMSE: root mean square error. 10,000 replicates used.

It can be seen that the estimator 6 is biased upwards. This might be
anticipated, because

E(f) = E(1/F; — 1) > 1/E(F}) —1 =0,

the inequality following from an application of Jensen’s Inequality. We note
that the estimator 6 has a non-degenerate limit as n — oo, precisely because

E* does. Thus 0 is not a consistent estimator of §. However, a consistent
estimator can be derived by using the number of types observed in the sample,
as we now show.

Estimation using the number of types in the sample

Notice from (3.5.3) and (3.6.1) that the conditional distribution of ¢, given
that K,, =k, does not depend on 6:

P(c|K, = k) = q(c) /IP(K,, = k)

_ nlo* ﬁ (l)cj L/e’“lsii
O(n) 3/ gl Ow)

Jj=1

EHIOE S

Jj=1
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It follows that K, is a sufficient statistic for 0; it contains all the information
useful for estimating #. The maximum likelihood estimator of  may be found
from (3.6.1). If k alleles are observed in the sample, then the log-likelihood is

n—1

log L(6) = log(|S*|) + klog 6 — Zlog(@ + 7).

J=0

Differentiating with respect to 6 shows that the maximum likelihood estimator
0 of 8 may be found by solving the equation

n—1
0
k= —_— 3.7.7
S @7.)

As can be seen from (3.6.4), this is also the moment estimator of 6. The
Fisher information may be calculated readily from the log-likelihood, and we
find that the asymptotic variance of 6 is

Var(0) ~ 6% /Var(K,,). (3.7.8)

Therefore 6 is consistent for 6. Indeed, asymptotically 0 has a Normal distribu-
tion with mean 6 and variance 6/ logn. We used the simulated data described
above to assess the properties of the estimator 6. Some results are given in
Table 2. It can be seen that the distribution of 6 is much more concentrated
than that of 6, and § seems to be somewhat less biased than 6. Histograms
comparing the two estimators appear in Figure 3.2.

It is worth relating these two approaches to estimating 6. If we were given
the values of each §;;,1 < i < j < n, then we would be able to calculate the
value of K,,, and each of the allele frequencies. We can see that summarizing
the 0;; in the form of F}; throws away a lot of information — for example, the
summary statistic results in an inconsistent estimator of §. We shall meet this
phenomenon again when we investigate estimation in the infinitely-many-sites
model.

3.8 Testing for selective neutrality

One might try to perform a “goodness of fit” test on genetic data to see
whether the Ewens sampling formula is appropriate. If the fit is rejected,
it may be evidence of selection (or of geographical structure, variation in
population sizes, other mutation mechanisms or other unnamed departures
from the model). Watterson (1977) suggested using the sample homozygosity
F,, defined in (3.7.5) as a test statistic. Under neutrality, the conditional
distribution of the counts is given by (3.7.6), from which the null distribution
of F,, follows. F,, will tend to have larger values when the allele frequencies
are skewed, and smaller values when the allele frequencies are more equal.
When testing for heterosis, small values of the test statistic lead to rejection
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Table 2. Simulated properties of 6 in samples of size n = 100.

0=010=1060=5.060=10.0

mean
std. dev.
RMSE
median
5th %ile

0.11
0.15
0.15
0.00
0.00

95th %ile| 0.43

1.03
0.54
1.03
0.95
0.20
1.87

5.12
1.57
1.57
5.14
2.95
7.82

10.17
2.70
2.71
9.70
6.15

15.00

Fig. 3.2. Histograms of 10,000 replicates of estimators of § based on samples of size
n = 100. Left hand column is MLE 6, right hand column is 6. First row corresponds
to 0 = 0.1, second to # = 1.0, third to # = 5.0, and fourth to 6 = 10.0.
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of neutrality. For the D. tropicalis data in the introduction we have Fhgg =
0.6475, while for the D. simulans data we have F3gg = 0.2356. Significance
points of the distribution under neutrality were given in Watterson (1978),
but they can be simulated rapidly. One approach, with ties to combinatorics,
is outlined in the complements. Using this method, the P-value for the first
set is 0.87, while for the second set it is 0.03. Thus, in contrast to Wright’s
expectation, the D. simulans do not fit neutral expectations. We will not focus
further on tests of neutrality in these notes. An up-to-date discussion about
detecting neutrality is given in Kreitman (2000).
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4 The Coalescent

In the last two sections we studied the behavior of the genealogy of a sam-
ple from a Wright-Fisher model when the population size N is large. We
introduced the ancestral process A, (t) that records the number of distinct
ancestors of a sample of size n a time ¢ earlier, and we studied some of its
properties. In this section we describe in more detail the structure of King-
man’s coalescent, a continuous time process whose state space is the set of
equivalence relations on the set [n] = {1,2,...,n}. We also give an alternative
representation as a bifurcating tree, and we discuss the robustness of these
approximations to different models of reproduction.

4.1 Who is related to whom?

We record information not only about the number of ancestors at various
times in the past, but also information about which individuals are descended
from which ancestors. For some fixed time ¢, one way of doing this is by
labelling the individuals in the sample from the set {1,...,n} and defining a
(random) equivalence relation ~ on [n] by

1 ~ 7 if and only if individuals ¢ and j share a common ancestor at time ¢.

It is often easiest to describe the equivalence relation by listing the equivalence
classes. Note that each equivalence class corresponds to a particular ancestor
of the sample at time ¢, and that the individuals in the equivalence class are
exactly those who are descended from the ancestor of the class.

More formally, we could label the individuals in the sample from the set [n].
If at time ¢ there are A, (t) = k ancestors of the sample, we could list the mem-
bers of the sample descended from each particular ancestor. This would give

us an unordered collection Ey = {i11, -« i1, }, P2 = {io1, - ,4215},- -+, Bk =
{ik1,-+ i, } of sets which would partition [n], i.e. E; N E; = 0 i # j and
E,U---UE}) = [n]. We often refer to the sets En, ..., Ey as classes, or equiv-

alence classes.

Denote by C(t) the (random) partition (or equivalently, equivalence rela-
tion) which is obtained from the genealogy in this way. What are the dynamics
of the process {C(t) : ¢ > 0}? Suppose that C(t) = « for some partition «
with k classes (we write |a| = k). As ¢ increases and we go further into the
past, the process will remain constant until the first occasion that two of the &k
individuals who are the ancestors of the classes are involved in a coalescence.
When this happens, those two individuals and hence all their descendants in
the two equivalence classes will share a common ancestor. The effect is to
merge or coalesce the two classes corresponding to these two individuals. The
rate at which this happens to a particular pair of individuals (and hence to
a particular pair of classes) is 1. Note that this argument and the fact that
population events happen at the points of a Poisson process ensures that the
process C(-) is Markovian.
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In summary, denote by &, the set of equivalence relations on [n]. The
process {C(t) : ¢t > 0} is a continuous-time Markov chain on &,, with

C0)=A={(,9), i=1,2,...,n}
= {{1{2}.. {n}},

the state in which “nobody is related to anyone else”, and transition rates
{qap, @, € &,} given by

%) ifa=p,la=k
Gapg =141 ifa<p (4.1.1)
0 otherwise

where the notation o < 8 means that the partition § may be obtained from
a by merging two of the classes in a. The observation that the sample may
eventually be traced back to a single common ancestor means that almost
surely

lim C(t) = € = {(i.), i, =1,2,...,n}
={{1,2,...,n}}

so that everybody is related to everybody else and there is just one class.

The process {C(t),t > 0} is known as the n—coalescent, or coalescent. To
calculate its distribution, it is convenient to study the discrete time (em-
bedded) jump chain {Cx; ¥ = n,n — 1,...,1} obtained by watching the
continuous-time process C(-) only at those times when it changes state. This
chain starts from C,, = A and has transition probabilities

ol B
P(Cr1 =PBICk =) = {(2) if o< B, |af =k

0 otherwise.

Thus C(-) moves through a sequence A = €, < C,—1 < -+ < G = 6,
spending (independent) exponential amounts of time in each state G, € &,
with respective parameters (5), k=n,n—1,...,2, before being absorbed in
state O.

Notice that in C(-) transition rates from a state a (and hence the time
spent in «) depend on « only through |«|, and that

[C()] = An(t),

since classes in C(t) correspond to ancestors of the sample. Thus the joint
distributions of {A4,(t);t > 0} conditional on the sequence C,,...,C; are
just the same as its unconditional distributions. Hence {Cx} and {A,(¢)} are
independent processes. Thus

C(t) = GAn(t), t>0
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and

The distribution of A, (¢) has been given earlier. That of C; is given in the
following theorem of Kingman (1982a).

Theorem 4.1 For the jump chain of the n-coalescent,

P& = a) = & _n,]()?;]'_(Jl)_' DU

e

where |a| = j and A1, ..., \; are the sizes of the equivalence classes of a.

Proof. Use backward induction. The result is clearly true when j = n. Then

PC 1 =8 =pi1(8) = Y pi(@P(C; 1 =pIC; =a)

a€l,

2
= 2 pe

a=<p

Write Aq,...,\j_1 for the sizes of the equivalence classes of 3. Then those of
oare A\p, ..., N—1,mM, A\ —m, Nj41,...,Aj—1 forsome ], [ =1,...,5—1 and
some m, m=1,2,...,A\; — 1. Using the inductive hypothesis, we have

j—1Xx-1

pi—1(B) = Z Z iG—1) ( nlj()nj—(Jl)! :

=1 m=1

1/A
X Al Acatml( = m)ga e Aaly (Wi)

n— )G — 1 —2)! -
_ ])nffn_i)(!] ))\1!...)\]._1!; le
- (H_HI)(Z!(_njz!(f)l_1)!(j_2)!A1!~-~Aj—1!

as required. a

Note that the distribution of € and hence C(-) depends only on the sizes of
the equivalence classes rather than on which individuals are in these classes.
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4.2 Genealogical trees

Knowledge of a sample path of the n-coalescent, the value of C'(¢) for all ¢ > 0,
specifies the time for which there are n distinct ancestors of the sample, which
two individuals share an ancestor when the number of ancestors drops by 1,
the time for which there are n—1 distinct ancestors, which two ancestors share
an ancestor when the number drops from n—1 to n— 2, and so on. Eventually
we have information about the times between coalescences and knowledge of
which ancestors coalesce. Another, perhaps more natural, way of representing
this information is as a genealogical tree. The lengths of the various branches
are proportional to the times between the various events.

It is convenient to think of the n-coalescent as a random, rooted, binary
tree, with lengths attached to the edges, instead of its original form as a
stochastic process where values are partitions of [n]. The structure of the
genealogical process translates easily to the random tree: the leaves of the
tree represent the n sequences in the sample. The first join in the tree occurs
at time T},, and results in the joining of two randomly chosen sequences. There
are now n — 1 nodes in the tree, and the next coalescence event occurs a time
T, —1 later, and results in the joining of two nodes chosen at random from the
n — 1. This structure is continued until the final two nodes are joined at the
most common ancestor, at time W,,.

Some simulated genealogical trees for a sample of size 5 from a constant
population are shown in Figure 4.1. It is instructive derive the values of the
coalescent process from such a tree.

In Figure 4.2 coalescent trees for samples of size 6 and 32 from a constant
size population are shown, and in Figure 4.3 trees for samples of size 6 in both
constant and exponentially growing populations are shown. One of the most
striking qualitative properties, which is evident in Figure 4.2, is the extent
to which the tree is dominated by the last few branches. The mean time for
which the tree has two branches is 1. The mean time for which the tree has
more than two branches, namely (1 — 2/n), is smaller: for much of the time
since its common ancestor, the sample has only two ancestors. Further, for any
sample size n, the variability in the time 75 for which there are two branches
in the tree accounts for most of the variability in the depth of the whole tree.
These observations reinforce the theoretical results given earlier in Section 2.3.
The simulated tree with exponential growth in Figure 4.3 clearly displays the
star-like nature of the tree alluded to in Section 2.4.

4.3 Robustness in the coalescent

We have seen that the genealogy of the Wright-Fisher model can be described
by the coalescent when the population size is large. In this section, we outline
how the coalescent arises as an approximation for a wide variety of other
reproduction models having constant population size.
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Fig. 4.1. Six realizations, drawn on the same scale, of coalescent trees for a sample
of n = 5. (In each tree the labels 1,2,3,4,5 should be assigned at random to the
leaves.)

i | —— T

We noted earlier that in the Wright-Fisher model individuals have indepen-
dent Poisson-distributed numbers of offspring, conditioned on the requirement
that the total population size be fixed at N. Let v; be the number of offspring
born to individual 4,4 = 1,2,..., N. We saw in (2.2.1) that v = (v1,...,vN)
has a multinomial distribution:

N 1\"
Pl = =) = = (1)

provided my + - -+ +mpy = N. In particular the v; are identically distributed
(but not of course independent), and
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Fig. 4.2. Coalescent trees for samples of size 6 and 32 from a population of constant
size

I B

—L — [ ML mm

Fig. 4.3. The coalescent tree of a sample of size 6 (constant population size in left
panel, exponentially growing population in right panel )

—— == ]

1
E@Q:LaﬁzVM@g:1—N. (4.3.1)
Next we consider two other reproduction models that capture some of the
features of the Wright-Fisher case. Suppose first that v = (1,1,...,1), so
that each individual has precisely one offspring. For this model,

E(v1) =1, 0% = 0.

Now consider the opposite extreme, in which precisely one individual has all
the offspring. Then v = Ne; = N(0,...,1,0,...,0) for some ¢ = 1,..., N.
For this case,

E(v1) =1, 0% = N — 1. (4.3.2)

Our interest focuses on the asymptotic behavior of the genealogy as N —
00. In the second model the individuals in the sample never share common
ancestors, and in the third the sample can be traced back to a single individual
in one generation. Clearly neither of these models has an interesting genealogy!
We shall see that the way to distinguish the three models can be based on the
behavior of o%: for the Wright-Fisher model, 0% — 1, for the second model
0% =0, and for the third model 0%, — oco. If time is to be rescaled in units
proportional to N, then we get a non-degenerate genealogy if 0% — 02 €
(0, 00).
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General reproduction models with reproductive symmetry, introduced by
Cannings (1974), can be formulated as follows.

(i) Constant population size requires that v1 + -+ vy = N.

(ii) The collection of random variables 11, . .., vy is exchangeable. That is, the
distribution of offspring numbers does not depend on the way in which
the individuals are labelled.

(iii) The distribution of (v4,...,vy) is the same in each generation. This is
time stationarity.
(iv) The joint distribution of (14, ..., vy ) is independent of family sizes in other

generations. This is neutrality: offspring numbers for particular individuals
do not depend on ancestral offspring numbers.

Some properties of this general model are elementary to obtain. For ex-
ample, since

and the v; have identical distributions it follows that
E(l/l) =1.
Squaring (4.3.3) and taking expectations shows that

—02,
N-1

Cov(vy, 1) = (4.3.4)

Any particular distribution for (v, ...,vy) which satisfies the conditions
above specifies a model for the reproduction of the population. The main
result is that under minor additional conditions, the n-coalescent provides a
good approximation of the genealogy of such a model when the population
size is large, and time is measured in units proportional to N generations.

We begin by studying the ancestral process in a sample of size n from a
population model of size N. The analog of (2.2.3) is given in the next lemma;
cf. Cannings (1974) and Gladstien (1978).

Lemma 4.2 For 1 < k <n, we have
N\ /N 1 Vi
_ E (Y 4.3.5
w=(0) () e() () ws9
beA?
where

A=y, ) LeEN, i=1,...,5; lh+---+1; =k}

J

Proof. Conditional on the offspring numbers v = (v1,...,vx) we have
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-1 J
N 14
IP(k have j distinct parents|v) = ™.
(k have j p v) > (k) II (bm)
11,005 be Ak m=1
distinct €[N] J

Taking expectations and using the exchangeability assumption completes the
proof. O

Kingman’s celebrated result gives conditions under which the genealogy of
a sample is approximated by the coalescent. He showed (Kingman (1982b))
that if

(i) 0% = Var(v1) — 02 € (0,00) as N — o0;
(ii) supy E(vf) < o0 k=3,4,....

and time is measured in units of No~2 generations, then in the limit as
N — o0, the genealogical structure of the sample is well approximated by the
coalescent. Thus any result which follows from the fact that sample genealogies
are described by an n-coalescent will be approximately true for any large
population evolving according to an exchangeable model. The assumption of
large population is reasonable in many genetics applications.

Note that the variance of the offspring distribution plays a role in the
approximation of genealogy by the coalescent. If time is scaled in units of NV
generations, then the ancestral process appropriate for the sample is given by
Ay (*t),t > 0. On this time scale, the waiting time T} while the sample has
j distinct ancestors has an exponential distribution with mean

2

ET, = ———
702G - 1)

in coalescent units, or

2N
0%j(j —1)
in units of generations. It should be clear that when inferring properties of
the ancestral tree from data, the parameter o2 has to be estimated.

Remark. As noted in Kingman (2000)), his attempt to understand the struc-
ture of the Ewens sampling formula led directly to his development of the
coalescent. Kingman (1982¢) derives the Ewens Sampling Formula in (3.5.3)
directly from the effects of mutation in the coalescent. Define a relation R € &,
which contains (4, j) if, on watching the equivalence classes of C(¢) contain-
ing ¢ and j until the time they coincide, we observe no mutations to either.
Kingman gives the distribution of R as

k

k
P(R=¢) = 99— [T =y, (4.3.6)

(n) j=1
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where A1,..., \; are the sizes of the equivalence classes of R. If we multiply
this by the number of £ that have the given sizes, namely

n!
Al Aler! e’

where c; is the number of the A; equal to j, we obtain the ESF. Thus the ESF
is indeed a consequence of mutation in the coalescent.

4.4 Generalizations

Since the introduction of Kingman’s coalescent several authors have studied
related approximations. For populations of constant size, Mohle (1998) has
phrased the approximations in terms of the parameter

. ~ Var(ry)
N — N_17

which is the probability that two individuals chosen at random without re-
placement from the same generation have the same parent; cf. (4.3.4). The
natural time scale is then in units of ch,lj generations.

We assume in what follows that ¢y > 0 for sufficiently large N, and that,
for integers ky > --- > k; > 2 the limits

E((v) k] (¥) ;1)

ij(kh ) k]) = ]\}Enoo Nki+-Fki—icy (441)
exist, and that
c= lim ¢y (4.4.2)

N—o0
exists.
A complete classification of the limiting behavior of the finite population
coalescent process (run on the new time scale) is given by Mohle and Sagitov
(2001). In the case

CZO7 ¢j(k1,...,kj):Oforj22

the limiting process is Kingman’s coalescent described earlier.
More generally, when ¢ = 0 the limiting process is a continuous time
Markov chain on the space of equivalence relations &,, with transition rates

given by
— ¢a(b1,--.7ba) lfagﬁ7
o = { 0 otherwise (4.4.3)
In (4.4.3), a is the number of equivalence classes in a, by > by > -+ > b,

are the ordered sizes of the groups of merging equivalence classes of 3, and b
is the number of equivalence classes of 3. Note that ¢1(2) = 1, so this does
indeed reduce to the transition rates in (4.1.1) in the Kingman case. For rates
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of convergence of such approximations see Mdhle (2000), and for analogous
results in the case of variable population size see Mdhle (2002).

When ¢ > 0, the limit process is a discrete time Markov chain on &,,
with transition matrix P given by P = I + ¢(@), where @ has entries given in
(4.4.3). This case obtains, for example, when some of the family sizes are of
order N with positive probability. In these limits many groups of individuals
can coalesce at the same time, and the resulting coalescent tree need not be
bifurcating. Examples of this type arise when a small number of individuals
has a high chance of producing most of the offspring, as is the case in some
fish populations. For related material, see also Pitman (1999), Sagitov (1999)
and Schweinsberg (2000).

4.5 Coalescent reviews

Coalescents have been devised for numerous other population genetics set-
tings, most importantly to include recombination (Hudson (1983)), a subject
we return to later in the notes. There have been numerous reviews of aspects
of coalescent theory over the years, including Hudson (1991, 1992), Ewens
(1990), Tavaré (1993), Donnelly and Tavaré (1995), Fu and Li (1999), Li and
Fu (1999) and Neuhauser and Tavaré (2001). Nordborg (2001) has the most
comprehensive review of the structure of the coalescent that includes selfing,
substructure, migration, selection and much more.
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5 The Infinitely-many-sites Model

We begin this section by introducing a data set that will motivate the de-
velopments that follow. The data are part of a more extensive mitochondrial
data set obtained by Ward et al. (1991). Table 3 describes the segregating
sites (those nucleotide positions that are not identical in all individuals in the
sample) in a collection of sequences of length 360 base pairs sampled from the
D-loop of 55 members of the Nuu Chah Nulth native American Indian tribe.
The data exhibit a number of important features. First, each segregating site
is either purine (A, G) or pyrimidine (C, T); no transversions are observed
in the data. Thus at each segregating site one of two possible nucleotides is
present. The segregating sites are divided into 5 purine sites and 13 pyrimi-
dine sites. The right-most column in the table gives the multiplicity of each
distinct allele (here we call each distinct sequence an allele). Notice that some
alleles, such as e and j, appear frequently whereas others, such as ¢ and n
appear only once. We would like to explore the nature of the mutation process
that gave rise to these data, to estimate relevant genetic parameters and to
uncover any signal the data might contain concerning the demographic his-
tory of the sample. Along the way, we introduce several aspects of the theory
of the infinitely-many-sites model.

The mutations represented on a tree

In our example, there are n = 14 distinct sequences, and each column con-
sists of two possible characters, labelled 0 and 1 for simplicity. In order to
summarize these data, we compute the numbers I1(7, j) giving the number of
coordinates at which the ith and jth of the n sequences differ. IT(i,5) is the
Hamming distance between sequences ¢ and j. This results in a symmetric
n X n matrix II with 0 down the diagonal. For our example, the off-diagonal
elements of IT are given in Table 4

It is known (cf. Buneman (1971), Waterman (1995) Chapter 14, Gusfield
(1997) Chapter 17) that if an n x s data matrix representing n sequences each
of k binary characters, satisfies the four-point condition

For every pair of columns, not more than three
of the patterns 00,01, 10,11 occur (5.0.1)

then there is an unrooted tree linking the n sequences in such a way that the
distance from sequence i to sequence j is given by the elements of the matrix
D. Our example set does indeed satisfy this condition.

If the character state 0 corresponds to the ancestral base at each site, then
we can check for the existence of a rooted tree by verifying the three-point
condition

For every pair of columns, not more than two
of the patterns 01,10, 11 occur (5.0.2)
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Table 3. Segregating sites in a sample of mitochondrial sequences

11223 11111222233
Position|0 9 5 9 4|8 9246 6 9 3 6 7 7 1 3allele
60164814926 43715 9 9]lfregs.

Site |1 23 45|67 891011121314 15161718

allele

a AGGAATCCTCTTCTCTTC| 2
b AGGAAITCCTTTTCTCTTC| 2
c GAGGAlICcCcTCcCTTCCCTTT| 1
d GGAGA|CCcccTTCCCOCTTC| 3
e GGGAAITCCTCTTCTCTTC| 19
f GGGAGTCCTCTTCTCTTC| 1
g GGGGAICCcTCCcccccecTTT] 1
h GGGGACcCcTCcCccTCcCTTT| 1
7 GGGGA|ICCcTCTTCCCCCT| 4
ki GGGGA|CCcTCTTCCCCTT| 8
k GGGGAlCCcTCTTCCCTTC| 5
l GGGGA|CCcTCTTCCCTTT| 4
m GGGGA|CCTTCTTCCCTTC| 3
n GGGGAlICTCTCTTCCTTTOC C| 1

Mitochondrial data from Ward et al. (1991). Variable purine and pyrimidine
positions in the control region. Position 69 corresponds to position 16,092
in the human reference sequence published by Anderson et al. (1981)

It is known that if the most frequent type at each site is labelled 0 (ancestral),
then the unrooted tree exists if and only if the rooted tree exists. Gusfield
(1991) gives a O(ns) time algorithm for finding a rooted tree:

Algorithm 5.1 Algorithm to find rooted tree for binary data matrix

1. Remove duplicate columns in the data matrix.

2. Consider each column as a binary number. Sort the columns into decreas-
ing order, with the largest in column 1.

3. Construct paths from the leaves to the root in the tree by labelling nodes
by mutation column labels and reading vertices in paths from right to left
where 1s occur in rows.
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Table 4. Distance between sequences for the Ward data

abcdefghijklmn

1
67

674

1255

23661

783567
8946781
78356745
672456341
4522343432
56134523211
563345454312
6744565654233

33“‘@“‘“"3‘Qkﬁm QL O QR

Figure 5.1 shows the resulting rooted tree for the Ward data, and Figure
5.2 shows corresponding unrooted tree. Note that the distances between any
two sequences in the tree is indeed given by the appropriate entry of the matrix
in Table 4. We emphasize that these trees are equivalent representations of
the original data matrix.

In this section we develop a stochastic model for the evolution of such
trees, beginning with summary statistics such as the number of segregating
sites seen in the data.

5.1 Measures of diversity in a sample

We begin our study by describing some simple measures of the amount of
diversity seen in a sample of DNA sequences. For a sample of n sequences of
length s base pairs, write y; = (yi1, Yi2, - - - , Yis) for the sequence of bases from
sequence i, 1 < i < n, and define I1(7, j) to be the number of sites at which
sequences ¢ and j differ:

S

(i,5) =Y Wya # yj), i # J. (5.1.1)

=1

The nucleotide diversity II, in the sample is the mean pairwise difference
defined by

1 .
I, = P ;H(m), (5.1.2)

and the per site nucleotide diversity is defined as
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Fig. 5.1. Rooted tree for the Ward data found from Gusfield’s algorithm

57

Fig. 5.2. Unrooted tree for the Ward data found from Figure 5.1. The numbers on

the branches correspond to the number of sites on that branch.
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n=1I,/s.

Suppose that each position in the sequences being compared is from an
alphabet A having « different letters (so that o = 4 in the usual nucleotide
alphabet), and write ny, for the number of times the letter a appears in site
[ in the sample. Then it is straightforward to show that

Hn: n—l ZZman—nla = IZHZ, (5.1.3)

=1 a€A

where H; is the heterozygosity at site [, defined by
Nia Nia
H = (1-22).
=2 (-
acA

Thus, but for the correction factor n/(n — 1), the per site nucleotide diversity
is just the average heterozygosity across the region; that is,

The sampling distribution of II,, depends of course on the mutation mech-
anism that operates in the region. In the case of the infinitely-many-sites
mutation model, we have

1 ..
EII, = mgﬂ(ld)

=EI(1,2) ( by symmetry)
= E(# of segregating sites in sample of size 2)
= OE(T»),

where T5 is the time taken to find the MRCA of a sample of size two. In the
case of constant population size, we have

EIT, = 0. (5.1.4)
The variance of IT,, was found by Tajima (1983), who showed that

1 2n?
Var(i,) = L g 24 nt3)

30— 1) on(n = 1) 62. (5.1.5)

The nucleotide diversity statistic is a rather crude summary of the vari-
ability in the data. In the next section, we study pairwise difference curves.
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5.2 Pairwise difference curves

The random variables I1 (i, j) are identically distributed, but they are of course
not independent. Their common distribution can be found from the observa-
tion, exploited several times already, that

P(I1(1,2) = k) = EP(II(1,2) = k|T),

Conditional on Ts, IT(1, 2) has a Poisson distribution with parameter 2756/2 =
0T5, so that for a population varying with rate function A(t),

P(I1(1,2) = k) = /OOO e-“%x(t)e%wdt. (5.2.1)

In the case of a constant size, when A(t) = 1 and A(t) = ¢, the integral can
be evaluated explicitly, giving

1 %

Thus I7(1,2) has a geometric distribution with mean 6.
The pairwise difference curve is obtained by using the empirical distribu-
tion of the set IT(4,7),1 <14 # j < n} to estimate the probabilities in (5.2.1).

Define
1

e > (I (i, §) = k), (5.2.3)

n(n—1) 5

the fraction of pairs of sequences separated by k segregating sites. By sym-
metry, we have

an =

E(Il;) =P(II(1,2) =k),k=0,1,.... (5.2.4)

5.3 The number of segregating sites

The basic properties of the infinitely-many-sites model were found by Watter-
son (1975). Because each mutation is assumed to produce a new segregating
site, the number of segregating sites observed in a sample is just the total
number of mutations S,, since the MRCA of the sample. Conditional on L,
Sy, has a Poisson distribution with mean 6L,, /2. We say that S,, has a mized
Poisson distribution, written S,, ~ Po(6L,/2). It follows that

—E(0L./2)

By BN o (5.3.1)
27500 =T >

Jj=2
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Notice that for large n, E(S,) ~ 0log(n).

We can write S, = Y2 4+ --- + Y, where Y} is the number of mutations
that arise while the sample has j ancestors. Since the 7} are independent,
the Y; are also independent. As above, Y; has a mixed Poisson distribution,
Po(05T}/2). It follows that

E(s"7) = E(E(s"|T}))
= E(exp(—[05T;/2](1 - s)))
j—1

e e (5.3.2)

showing (Watterson (1975)) that Y; has a geometric distribution with param-
eter (j—1)/(j—1+06):

0 R
]P()fj_k)_(9+j_1) (9+j_1> k=0,1,... (5.3.3)

Since the Y; are independent for different j, it follows that
n n—1 1 n—1 1

Var(Sn) =Y Var(Y;) =0 —+6>) —. (5.3.4)
j=2 =1 =1

The probability generating function of .S,, satisfies

E(s) = [[EGs*) =[] T 11‘9(11 - (5.3.5)

Jj=2 Jj=2

from which further properties may be found. In particular, it follows from this

that for m =0,1,...
n—1 m—+1
B ~n—1 —1fn—2 0
(S, =m) = — l;( 1) (Z—1>(1+9> . (5.3.6)

Estimating 6

It follows from (5.3.1) that
n—1 1
Ow =S, /) = (5.3.7)
=17

is an unbiased estimator of §. From (5.3.4) we see that the variance of Oy is

-2

Var(fw) = [0 % +02> 1 i % . (5.3.8)
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Notice that as n — oo, Var(fy) — 0, so that the estimator Oy is weakly
consistent for 6.

An alternative estimator of 6 is the moment estimator derived from (5.1.4),
namely

O = IT,. (5.3.9)

The variance of O follows immediately from (5.1.5). In fact, I, has a non-
degenerate limit distribution as n — oo, so that 87 cannot be consistent. This
parallels the discussion in Section 3 about estimating 6 on the basis of the
number K, of alleles or via the sample homozygosity F,,. The inconsistency
of the pairwise estimators arises because these summary statistics lose a lot
of information available in the sample.

We used the coalescent simulation algorithm to assess the properties of
the estimators Ay and 67 for samples of size n = 100. The results of 10,000
simulations are given in Tables 5 and 6 for a variety of values of §. It can be
seen that the distribution of Ay, is much more concentrated than that of 6.
Histograms comparing the two estimators appear in Figure 5.3.

Table 5. Simulated properties of Oy in samples of size n = 100.

0=010=106=5.060=10.0

mean 0.18 1.10 5.03 9.99
std dev 0.23 0.48 1.53 2.75
median 0.00 0.97 4.83 9.66
5th %ile 0.00 0.39 2.90 6.18
95th %ile 0.39 1.93 7.73 15.07

Table 6. Simulated properties of 07 in samples of size n = 100.

0=010=1060=5.060=10.0

mean 0.10 1.00 4.95 9.97
std dev 0.19 0.75 2.65 4.98
median 0.00 0.84 4.35 8.91

5th %ile 0.00  0.08 1.79 4.13
95th %ile| 040 2.42 10.16 19.48
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Fig. 5.3. Histograms of 10,000 replicates of estimators of 6 based on samples of size
n = 100. Left hand column is 0w, right hand column is Or. First row corresponds
to 8 = 0.1, second to # = 1.0, third to # = 5.0, and fourth to 6 = 10.0.
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How well can we do?

The estimators Oy and 61 are based on summary statistics of the original
sequence data. It is of interest to know how well these unbiased estimators
might in principle behave. In this section, we examine this question in more
detail for the case of constant population size.

If we knew how many mutations had occurred on each of the j branches

of length T}, j = 2,...,n in the coalescent tree, then we could construct a
simple estimator of 6 using standard results for independent random variables.
Let Yji,k=1,...,4;5 = 2,...,n denote the number of mutations on the k%

branch of length 7} and set Y; = > 7_, Yji. Y; is the observed number of
mutations that occur during the time the sample has j distinct ancestors.
Since each mutation produces a new segregating site, this is just the number
of segregating sites that arise during this time. Since the T} are independent,
so too are the Y;. We have already met the distribution of Y; in equation
(5.3.3), and it follows that the likelihood for observations Y;, j =2,...,nis
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ﬁ(J_He)Yj(jiIie)

"(n—1)! H]—1—|—9 (YJ"H),

where S, = Z 5 Y; is the number of segregating sites. The maximum likeli-
hood estlmator based on this approach is therefore the solution of the equation

~ Y +1
9=25, il (5.3.10)
— J—1+0
Furthermore,
»logL, Sy i (Y;+1)
062 62 = (j—1+0)2
so that

21: s (5.3.11)

Hence the variance of unbiased estimators 6;; of 8 satisfies

n—1 1

Var(6y) > 0 Z.—,
T j+0

as shown by Fu and Li (1993). The right-hand side is also the large-sample
variance of the estimator 0 in (5.3.10).
How does this bound compare with that in (5.3.8)? Certainly

Var(6r) < Var(fw), (5.3.12)

and we can see that if 6 is fixed and n — oo then

Var(ﬁp)

—F— — 1.
Var(6w)

If, on the other hand, n is fixed and @ is large, we see that

2
Var(67) =1 =1
i~ (£5) JoE

1
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so that there can be a marked decrease in efficiency in using the estimator 8y,
when 6 is large. We cannot, of course, determine the numbers Y; from data;
this is more information than we have in practice. However, it does suggest
that we explore the MLE of # using the likelihoods formed from the full data
rather than summary statistics. Addressing this issue leads us to study the
underlying tree structure of infinitely-many-sites data in more detail, as well
as to develop some computational algorithms for computing MLEs.

5.4 The infinitely-many-sites model and the coalescent

The infinitely-many-sites model is an early attempt to model the evolution
of a completely linked sequence of sites in a DNA sequence. The term ‘com-
pletely linked’ means that no recombination is allowed. Each mutation on the
coalescent tree of the sample introduces a mutant base at a site that has not
previously experienced a mutation. One formal description treats the type
of an individual as an element (z1,z2,...) of E = U,>1[0,1]". If a mutation
occurs in an offspring of an individual of type (z1,x2,...,z,), then the off-
spring has type (21, 22, ..., 2, U), where U is a uniformly distributed random
variable independent of the past history of the process.

Figure 3.1 provides a trajectory of the process. It results in a sample of
five sequences, their types being (U1, Us), (U1, Us), (U1, Uz, U4, Us), (Ug, Us),
(Uo, Us) respectively.

There are several other ways to represent such sequences, of which we
mention just one. Consider the example above once more. Each sequence
gives a mutational path from the individual back to the most recent common
ancestor of the sample. We can think of these as labels of locations at which
new mutant sites have been introduced. In this sample there are six such
sites, each resulting in a new segregating site. We can therefore represent
the sequences as strings of 0s and 1s, each of length six. At each location, a 1
denotes a mutant type and a 0 the original or ‘wild’ type. Arbitrarily labelling
the sites 1, 2, ..., 6 corresponding to the mutations at Uy, Uy, ..., Us, we can
write the five sample sequences as

(U1, Us, Uy, Us) = 011011
(U1, Us) = 011000
(U1, Us) = 011000
(Uo, Us) = 100100
(U, Us) = 100100

These now look more like aligned DNA sequences! Of course, in reality we
do not know which type at a given segregating site is ancestral and which is
mutant, and the ordering of sites by time of mutation is also unknown.
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5.5 The tree structure of the infinitely-many-sites model

We have just seen that in the infinitely-many-sites model, each gene can be
thought of as an infinite sequence of completely linked sites, each labelled 0
or 1. A 0 denotes the ancestral (original) type, and a 1 the mutant type. The
mutation mechanism is such that a mutant offspring gets a mutation at a
single new site that has never before seen a mutation. This changes the 0 to
a 1 at that site, and introduces another segregating site into the sample. By
way of example, a sample of 7 sequences might have the following structure:

genel...10100010100...
gene2...10100000000...
gene3...10010100001 ...
gene4...10010101000...
gene5...10010101000 ...
gene6...10010101000 ...
gene7...01001000010...

the dots indicating non-segregating sites. Many different coalescent trees can
give rise to a given set of sequences. Figure 5.4 shows one of them.

Fig. 5.4. Coalescent tree with mutations

f

¢ 5

8

7

The coalescent tree with mutations can be condensed into a genealogical
tree with no time scale by labelling each sequence by a list of mutations up
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to the common ancestor. For the example in Figure 5.4, the sequences may
be represented as follows:

gene 1 (9,7,3,1,0)
gene 2 (3,1,0)
gene 3 (11,6,4,1,0)
gene 4 (8,6,4,1,0)
gene 5 (8,6,4,1,0)
gene 6 (8,6,4,1,0)
gene 7 (10,5,2,0)

The condensed genealogical tree is shown in Figure 5.5. The leaves in the tree

Fig. 5.5. Genealogical tree corresponding to Figure 5.4

Root

are the tips, corresponding to the sequences in the sample. The branches in
the tree are the internal links between different mutations. The Os in each
sequence are used to indicate that the sequences can be traced back to a
common ancestor.

Thus we have three ways to represent the sequences in the sample: (i) as a
list of paths from the sequence to the root; (ii) as a rooted genealogical tree; and
(iii) as a matrix with entries in {0, 1} where a 0 corresponds to the ancestral
type at a site, and a 1 the mutant type. In our example, the 0-1 matrix given
above is equivalent to the representations in Figures 5.4 and 5.5. Finally, the
number of segregating sites is precisely the number of mutations in the tree.
In the next section, we discuss the structure of these tree representations in
more detail.
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5.6 Rooted genealogical trees

Following Ethier and Griffiths (1987), we think of the ith gene in the sample as
a sequence x; = (Z;0, T;1, . ..) where each z;; € Z,. (In our earlier parlance,
the type space E of a gene is the space Z°.) It is convenient to think of
T;0, %1, ... as representing the most recently mutated site, the next most
recently, and so on. A sample of n genes may therefore be represented as n
sequences i, Xz, ..., L,. LThe assumption that members of the sample have
an ancestral tree and that mutations never occur at sites that have previously
mutated imply that the sequences 1, ..., x, satisfy:

(1) Coordinates within each sequence are distinct

(2) If for some i,i € {1,...,n} and j,7' € Z4 we have x;; = x4, then
Tij+k = i 5/ +k> k= 1,2,...

(3) there is a coordinate common to all n sequences.

Rules (2) and (3) above say that the part of the sequences inherited from
the common ancestor appears at the right-hand end of the sequences. In prac-
tice we can discard from each x sequence those entries that are common to
all of the sequences in the sample; these are the coordinates after the value
common to all the sequences. It is the segregating sites, and not the non-
segregating sites, that are important to us. In what follows, we use these
representations interchangeably.

Trees are called labelled if the sequences (tips) are labelled. Two labelled
trees are identical if there is a renumbering of the sites that makes the labelled
trees the same. More formally, let T, = {(x1,...,x,) is a tree}. Define an
equivalence relation ~ by writing (z1,...,2,) ~ (Y1,...,Yn) if there is a
bijection & : Z; — Z with y;; = &(z;),¢ = 1,...,n, j = 0,1,.... Then
T/ ~ corresponds to labelled trees. Usually, we do not distinguish between
an equivalence class and a typical member.

An ordered labelled tree is one where the sequences are labelled, and con-
sidered to be in a particular order. Visually this corresponds to a tree di-
agram with ordered leaves. An wunlabelled (and so unordered) tree is a tree
where the sequences are not labelled. Visually two unlabelled trees are iden-
tical if they can be drawn identically by rearranging the leaves and corre-
sponding paths in one of the trees. Define a second equivalence relation ~ by
(£1,...,2n) = (Y1,...,Yn) if there is a bijection & : Zy — Z, and a per-
mutation o of 1,2,...,n such that y,;); = &{(z4), i =1,...,n, j=0,1,....
Then T,/ ~ corresponds to unlabelled trees.

Usually trees are unlabelled, with sequences and sites then labelled for
convenience. However it is easiest to deal with ordered labelled trees in a
combinatorial and probabilistic sense, then deduce results about unlabelled
trees from the labelled variety. Define

(Ta/ ~)o={T € Tyq/ ~: x1,...,2zq all distinct}
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and similarly for (Ty/ ~)o. T € Ug>1(T4/ ~)o corresponds to the conventional
graph theoretic tree, with multiple tips removed. There is a one-to-one corre-
spondence between trees formed from the sequences and binary sequences of
sites. Let @1, ..., zq be distinct sequences of sites satisfying (1), (2) and (3),
and let J be the incidence matrix of segregating sites. If uj,...,u; are the
segregating sites (arranged in an arbitrary order) then

jij:1 if uj € Ty, t=1,....,d, 7=1,... k.

The sites which are not segregating do not contain information about the tree.

Deducing the tree from a set of d binary sequences is not a priori simple,
because sites where mutations occur are unordered with respect to time and
any permutation of the columns of J produces the same tree. In addition,
binary data often have unknown ancestral labelling, adding a further compli-
cation to the picture. However, these trees are equivalent to the rooted trees
discussed in the introduction. It follows that we can use the three-point condi-
tion in (5.0.2) to check whether a matrix of segregating sites is consistent with
this model, and if it is, we can reconstruct the tree using Gusfield’s algorithm
5.1. We turn now to computing the distribution of such a rooted tree.

5.7 Rooted genealogical tree probabilities

Let p(T,n) be the probability of obtaining the alleles T € (Ty/ ~)o with
multiplicities n = (n1,...,nq) and let n = Zf n;. This is the probability of
getting a particular ordered sample of distinct sequences with the indicated
multiplicities. Ethier and Griffiths (1987) and Griffiths (1989) established the
following:

Theorem 5.1 p(T,n) satisfies the equation

n(n—1+0p(T,n)= > np(ng — p(T,n - e)
king>2

+0 > (81T, m) (5.7.1)

king=1, TR0 distinct,
SmpFAw; YV j

+0 N > p(RT, Ri(n + €5)).
knp=1,  j:8xp=x;
z),o distinct.

In equation (5.7.1), e; is the jth unit vector, 8§ is a shift operator which deletes
the first coordinate of a sequence, 83T deletes the first coordinate of the k'
sequence of T, RiT removes the k" sequence of T, and ‘zio distinct’ means
that xrxo # xi; for all (x1,...,2q) and (i,7) # (k,0). The boundary condition
is p(T1, (1)) = 1.

Remark. The system (5.7.1) is recursive in the quantity {n — 1+ number of
vertices in T'}.
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Proof. Equation (5.7.1) can be validated by a simple coalescent argument, by
looking backwards in time for the first event in the ancestry of the sample.
The first term on the right of (5.7.1) corresponds to a coalescence occurring
first. This event has probability (n — 1)/(0 +n — 1). For any k with nj > 2,
the two individuals who coalesce may come from an allele with nj copies, and
the tree after the coalescence would be (T',n— ey,). The contribution to (T, n)
form events of this sort is therefore

n—1 ne (N —1
-_— — T n— .
T <n_1)p< e )

g 22

The second terms on the right of (5.7.1) correspond to events where a mu-
tation occurs first. Suppose then that the mutation gave rise to sequence xy.
There are two different cases to consider, these being determined by whether
or not the sequence Sxj, that resulted in xj is already in the sample, or not.
These two cases are illustrated in the tree in Figure 5.6. The sequences are

Fig. 5.6. Representative tree

x; = (0)

x5 =(510)
xz3 = (30)
zy=(240)
x5 = (10)

Note that 8x3 = (1 0) = x5, so the ancestral type of x5 is in the sample.
This corresponds to the third term on the right of (5.7.1). On the other hand,
S8x4 = (4 0), a type not now in the sample. This corresponds to second term on
the right of (5.7.1). The phrase ‘zx distinct’ that occurs in these two sums is
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required because not all leaves with ni = 1 can be removed; some cannot have
arisen in the evolution of the process. The sequence x5 provides an example.
Combining these probabilities gives a contribution to p(T,n) of

0 1 1
Grn_1 {Z Ep(SkT7 n)+ Z Z EP(RkTv Ri(n + ej))} .
and completes the proof. g

It is sometimes more convenient to consider the recursion satisfied by the
quantities p° (T, n) defined by

p°(T,n) is the probability of the labelled tree T', without regard to the order
of the sequences in the sample. Using (5.7.1), this may be written in the form

n(n—140)p°(T,n) = > n(nx— Dp(T,n — ex)

king>2

+ 6 > P°(8xT,m) (5.7.3)
king =1, zpq distinct,
SepAw; V j

+0 Y >+ )P (ReT, Re(n + €)).

knp=1,  j:8xp=x;
x40 distinct.

Let p*(T,n) be the probability of a corresponding unlabelled tree with
multiplicity of the sequences given by n. p* is related to p° by a combinatorial

factor, as follows. Let Sy denote the set of permutations of (1,...,d). Given a
tree T and o € Sy, define Ty = (T5(1), - -+ s To(ay) a0d Ny = (Ng(1); - - - Nor(d))-
Letting
a(T,n)={c € Sq:T, =T,n, =n}|, (5.7.4)
we have 1
“(T,n) = ———p°(T,n). 5.7.5
P (T = s (Tm) (57.5)

Informally, the number of distinct ordered labelled trees corresponding to the

unlabelled tree is
n!

ni!ngla(T,n)’

In the tree shown in Figure 5.5, a(T,n) = 1. A subsample of three genes
(9,7,3,1,0), (11,6,4,1,0), (10,5, 2,0), forming a tree T’ with frequencies n’ =
(1,1,1), has a(T’,n’) = 2, because the first two sequences are equivalent in
an unlabelled tree.

These recursions may be solved for small trees, and the resulting genealogi-
cal tree probabilities used to estimate 6 by true maximum likelihood methods.
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One drawback is that the method depends on knowing the ancestral type at
each site, an assumption rarely met in practice. We turn now to the tree
structure that underlies the process when the ancestral labelling is unknown.

5.8 Unrooted genealogical trees

When the ancestral base at each site is unknown there is an unrooted ge-
nealogical tree that corresponds to the sequences. In these unrooted trees, the
vertices represent sequences and the number of mutations between sequences
are represented by numbers along the edges; see Griffiths and Tavaré (1995).
It is convenient to label the vertices to show the sequences they represent.
The unrooted tree for the example sequences is shown in Figure 5.7.

Fig. 5.7. Unrooted genealogical tree corresponding to Figure 5.4

O~ Oa =

O

an 1
©

Given a single rooted tree, the unrooted genealogy can be found. The
constructive way to do this is to put potential ancestral sequences at the
nodes in the rooted tree (ignoring the root). There are three such nodes in
the example in Figure 5.5. The ancestral sequence might be represented in the
sample (as with sequence 2 in that figure), or it may be an inferred sequence
not represented in the sample.

Given a rooted genealogy, we have seen how the corresponding unrooted
tree can be found. Conversely, the class of rooted trees produced from an
unrooted genealogy may be constructed by placing the root at one of the
sequences, or between mutations along an edge. This corresponds to picking
up the unrooted tree at that point and shaking it. Two examples are given in
Figure 5.8. In the first, the root corresponds to the third sequence, and in the
second it is between the two mutations between the two inferred sequences.
The unrooted tree constructed from any of these rooted trees is of course
unique.
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Fig. 5.8. Moving the root

Tree with root the third sequence

If there are v sequences (including the inferred sequences), with mq,mo, ...
mutations along the edges, and s segregating sites, then there are

at+d (mj—1)=s+1 (5.8.1)

rooted trees when the sequences are labelled. There may be fewer unlabelled
rooted trees, as some can be identical after unlabelling the sequences. In the
example there are 11 segregating sites, and so 12 labelled rooted trees, which
correspond to distinct unlabelled rooted trees as well.
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The class of rooted trees corresponds to those constructed from toggling
the ancestor labels 0 and 1 at sites. The number of the 2° possible relabellings
that are consistent with the sequences having come from a tree is

m;—1
a+t mj>=a+ 2ms _9), 5.8.2
S (1)=ersen - (552
This follows from the observation that if there is a collection of m segregating
sites which correspond to mutations between sequences, then the correspond-
ing data columns of the 0-1 sequences (with 0 the ancestral state) are identical
or complementary. Any of the (7,':) configurations of k identical and m—k com-
plementary columns correspond to the same labelled tree with a root placed
after the kth mutation. The correspondence between different rooted labelled
trees and the matrix of segregating sites can be described as follows: in order
to move the root from one position to another, toggle those sites that occur
on the branches between the two roots.
The upper tree in Figure 5.8 has incidence matrix

gene 100110010100
gene200110000000
gene300000100001
gene4 00000101000
gene 500000101000
gene 600000101000
gene 711011000010

whereas the lower tree in Figure 5.8 has incidence matrix

gene1 00110110101
gene200110100001
gene 300000000000
gene400000001001
gene 500000001001
gene 600000001001
gene711011100011

It can readily be checked that the sites between the two roots are those num-
bered 6 and 11, and if these are toggled then one tree is converted into the
other.

5.9 Unrooted genealogical tree probabilities

A labelled unrooted genealogical tree of a sample of sequences has a vertex
set V' which corresponds to the labels of the sample sequences and any in-
ferred sequences in the tree. Let @ be the edges of the tree, described by
(mij,1,7 € V), where m;; is the number of mutations between vertices ¢ and
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j. Let n denote the multiplicities of the sequences. It is convenient to include
the inferred sequences ¢ € V with ny = 0. Then the unrooted genealogy is
described by (Q,n).

Define p(Q,n), p°(Q,n), p*(Q,n) analogously to the probabilities for T'.
The combinatorial factor relating p*(Q,n) and p°(Q,n) is

a(@Q,n)={c € Sy : Qs =Q,n, =n}| (5.9.1)

The quantities p(Q,n) and p°(Q,n) satisfy recursions similar to (5.7.1) and
(5.7.3), which can be derived by considering whether the last event back in
time was a coalescence or a mutation. The recursion for p(Q, n) is

n(n—1+0)p@Q.n)= > np(nk—1)p(Q,n — ex)

k:nk 22

+0 Y p@Q-exm) (5.9.2)

king=1, |k|=1,
k—j, mp;>1

+0 > pQ-—ern+e;—ep),

king =1, |k|=1,

k—j, m’kal
where |k| = 1 means that the degree of the vertex k is 1 (that is, k is a leaf),
and k — j means that vertex k is joined to vertex j. In the last term on
the right of (5.9.2), vertex k is removed from Q. The boundary conditions in

(5.9.2) for n = 2 are
1
p((0),2e1) = T30

and

0 o1
p((m)ael+62)—(m) m,m—l,Q,....

The probability of a labelled unrooted genealogical tree Q is

p(@Qmn)= > p(T,n), (5.9.3)

TeC(Q)

where C(Q) is the class of distinct labelled rooted trees constructed from Q.
The same relationship holds in (5.9.3) if p is replaced by p°.

5.10 A numerical example

In this example we suppose that the ancestral states are unknown, and that
the sequences, each with multiplicity unity, are:

1000
0001
0110
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For convenience, label the segregating sites 1, 2, 3, and 4 from the left. When
0 is the ancestral state, a possible rooted tree for these sequences has paths
to the root of (1,0), (2,3,0), and (4,0). It is then straightforward to con-
struct the corresponding unrooted genealogy, which is shown in Figure 5.9.
The central sequence is inferred. There are five possible labelled rooted trees

Fig. 5.9. Unrooted Genealogy

© O,

(

constructed from the unrooted genealogy, corresponding to the root being at
one of the sequences, or between the two mutations on the edge. These five
trees are shown in Figure 5.10, together with their probabilities p(T', ), com-
puted exactly from the recursion (5.7.1) when 6 = 2.0. p(Q, n) is the sum of
these probabilities, 0.004973. The factor in (5.9.1) is 2, and the multinomial
coefficient 3!/1!1111! = 6 so p*(Q,n) = 3 x 0.00497256 = 0.014919. Note that
the trees (b) and (e) are identical unlabelled rooted trees, but are distinct
labelled rooted trees, so are both counted in calculating p*(Q, n).

In this small genealogy, the coalescent trees with four mutations can be
enumerated to find the probability of the genealogy. The trees which produce
the tree in Figure 5.9 are shown in Figure 5.11, with the correspondence to
the trees in Figure 5.10 highlighted.

Let T5 be the time during which the sample has three ancestors, and 75 the
time during which it has two. T3 and T5 are independent exponential random
variables with respective rates 3 and 1. By considering the Poisson nature of
the mutations along the edges of the coalescent tree, the probability of each
type of tree can be calculated. For example, the probability p(41) of the first
tree labelled (al) is

2
p(al) = F l(eOTg/Qezﬁ) 670T2/2 670(T2+T3)/2%(9(T2 +T3)/2)2

0t 1
~ =E |7 OCTATITY(T, 4 Ty)?
~0*(176% 4 466 + 32)

27(0+1)3(0 4+ 2)5 °

In a similar way the other tree probabilities may be calculated. We obtain
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Fig. 5.10. Labelled rooted tree probabilities

4
2
1 4 2
3 1 3

0.00291 0.00026 0.00210

0.00034 0.00026

Fig. 5.11. Possible coalescent trees leading to the trees in Figure 5.10

(al) (a2) €] ©) @ (c) (d)

o4 _
Plaz) = EE {26 9(3T3/2+T2)T§(T2 +T3)/2}

204(110 + 14)
27(6 + 1)2(0 + 2)5”
g —0(3T5/2+T2) 3
Pe) = Ple) = 15E {6 T3 Tz/ﬂ
94
9(0 + 1)2(0 + 2)¢°
g —0(3T3/2+T2) 2
Die) = I_GE [6 (Tx + Tg)T3 T21|
64(26 + 3)
9(0 +1)3(0 + 2)¢°

or
Py = 1E {6 OBTs/2A T TITS /2}

B 26
T90+ 130+ 28
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depending on whether 1 coalesced with 3 first, or 2 did. When 6

these probabilities reduce to p,1) = 0.004115,p(a2) = 0.004630, pp),(e)
0.000772,p(ey = 0.003601,pg = 0.001029. From these we deduce that
p(T(a),n) = (0.004115 + 0.004630)/3 = 0.002915, p(T'(b),n) = p(T(e),n) =
0.000772/3 = 0.000257, p(T'(c),n) = 0.003601/3 = 0.001203, and p(T'(d),n) =
0.001029/3 = 0.000343, so that p(Q,n) = 0.004973, in agreement with the
recursive solution.

Note that there are two coalescent trees that correspond to case (a2),
= 27

5.11 Maximum likelihood estimation

For the example in the previous section, it can be shown that the likelihood

1S
464(50° + 1460 + 10)

P = a0
This has the value 0.004973 when 6 = 2, as we found above. The maximum
likelihood estimator of 6 is 6 = 3.265, and the approximate variance (found
from the second derivative of the log-likelihood) is 8.24. The likelihood curves
are plotted in Figure 5.12.

Fig. 5.12. Likelihood p(Q, n) plotted as a function of 6, together with log-likelihood.

0.006 — -5 —

0.005 —

0.004 —

0.003 —

p(Q,n)
log p(Q,n)
|

0.002 —

0.001 —

0.000 —| 15 4

As might be expected, there is little information in such a small sample.
Now consider a data set with 20 sequences, 5 segregating sites and multiplic-
ities given below. The reduced genealogical tree is given in Figure 5.13.

01010 : 8
01110 : 3
00000 : 1
01001 : 1
11000 : 7

Assuming that the ancestral labels are known, the probabilities p*(T,n)
may be found using the recursion in (5.7.1), and they give a value of the MLE
as 0 = 1.40.
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Fig. 5.13. Rooted genealogical tree for example data set. [Here, leaf labels refer to
multiplicities of sequences|

To develop a practical method of maximum likelihood we need to be able
to solve the recursions for p® for large sample sizes and large numbers of
segregating sites. A general method for doing this is discussed in the next
section.
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6 Estimation in the Infinitely-many-sites Model

In this section we describe some likelihood methods for the infinitely-many-
sites model, with a view to estimation of the compound mutation parameter 6.
The method described here originated with Griffiths and Tavaré (1994), and
has since been revisited by Felsenstein et al. (1999) and Stephens and Don-
nelly (2000). As we saw at the end of the previous section, exact calculation
using the recursion approach is possible for relatively small sample sizes. For
larger samples a different approach is required. We begin this section with
Monte Carlo-based method for approximating these sampling probabilities
by simulation backwards along the sample paths of the coalescent. Later in
the section we relate this approach to importance sampling and show how to
improve the original approach.

6.1 Computing likelihoods

Griffiths and Tavaré’s approach is based on an elementary result about Markov
chains given below.

Lemma 6.1 Let {Xy;k > 0} be a Markov chain with state space S and
transition matrix P. Let A be a set of states for which the hitting time

n=inf{k>0: X, € A}
is finite with probability one starting from any state x € T =S\ A. Let f >0
be a function on S, and define

n

ue(f) =By [ £(Xk) (6.1.1)

k=0

for all Xog =z € S, so that

up(f) = f(z),z € A

Then for allz €T
ue(f) = f(@) D Payuy(f)- (6.1.2)

yeS
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Proof.

I)Ex(ﬁ f(Xk))
s (E:([] /60) 1))

= (IEXl (H f(X )) (by the Markov property)
k=0
= f(z)Epu(X1)

= f(z) prvuu

yeSs

O

This result immediately suggests a simulation method for solving equations
like that on the right of (6.1.2): simulate a trajectory of the chain X starting
at 2 until it hits A at time 7, compute the value of the product [T}_, f(Xx),
and repeat this several times. Averaging these values provides an estimate of

One application of this method is calculation of the sample tree probabili-
ties p°(T,n) for the infinitely-many-sites model using the recursion in (5.7.3).
In this case the appropriate Markov chain { Xy, k > 0} has a tree state space,
and makes transitions as follows:

. . (ng — 1)
(T,n) — (T,n — e;) with probability Tt =1 (6.1.3)
. . 6
— (84T, n) with probability FT i+ 0—1) (6.1.4)
O(n; +1
— (R T, R (n + e;)) with prob. (n; +1) (6.1.5)

fTm)n(n+6—1)

The first type of transition is only possible if ny > 1, and the second or
third if ni = 1. In the last two transitions a distinct singleton first coordinate
in a sequence is removed. The resulting sequence is still distinct from the
others in (6.1.4), but in (6.1.5) the shifted kth sequence is equal to the jth
sequence. The scaling factor is

d

_ nk—l) om
f(T,n) = feTn—Z; 01 nmif_1)

where m is given by
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m = |{k :ng =1, xpo distinct, Sxy # x; V j}|

+ > > (nj+1).

knp=1, xp o distinct j:8xp=ax;

The idea is to run the process starting from an initial tree (7, n) until the
time 7 at which there are two sequences (x19, .. .,21;) and (z20, ..., Z2;) with
x1; = T2; (corresponding to the root of the tree) representing a tree T5. The
probability of such a tree is

=0t () ] o

The representation of p°(T,n) is now

T—1
ﬁ@MZEmwﬂﬂﬂ&WDﬁ%L (6.1.6)
=0

where X (1) = (T'(1),n(1)) is the tree at time [. Equation (6.1.6) may be used to
produce an estimate of p(T, n) by simulating independent copies of the tree

process {X(1),l = 0,1,...}, and computing [H;_Ol F(T1),n()| p°(Ts) for

each run. The average over all runs is then an unbiased estimator of p°(7T', n).
An estimate of p*(T,n) can then be found by dividing by a(T, n).

6.2 Simulating likelihood surfaces

The distribution p®(T,n) provides the likelihood of the data (T,n), and so
can be exploited for maximum likelihood approaches. One way to do this is
to simulate the likelihood independently at a grid of points, and examine the
shape of the resulting curve. In practice, this can be a very time consuming
approach. In this section we describe another approach, based on importance
sampling, for approximating a likelihood surface at a grid of points using just
one run of the simulation algorithm.

The method uses the following lemma, a generalization of Lemma 6.1. The
proof is essentially the same, and is omitted.

Lemma 6.2 Let {Xy;k > 0} be a Markov chain with state space S and
transition matriz P. Let A be a set of states for which the hitting time

n=na=inf{k>0: X, € A}

is finite with probability one starting from any state v € T =S\ A. Let h > 0
be a given function on A, let f > 0 be a function on S x S and define

n—1

s (f) = Eoh(Xy) [] £(Xks Xis) (6.2.1)
k=0
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for all Xog =z € S, so that
ug(f) = h(z),z € A.

Then for allx € T
=D F@y)payuy(f)- (6.2.2)

yes

It is convenient to recast the required equations in a more generic form,
corresponding to the notation in Lemma 6.2. We denote by gg(x) the proba-
bility of the data = when the unknown parameters have value 6, which might
be vector-valued. Equations such as (5.7.3) can then be recast in the form

r) = Z fo(@)pe(z,y)q0(y) (6.2.3)

for some appropriate transition matrix pg(x,y). Now suppose that 6y is a
particular set of parameters satisfying

fo(@)pe(z,y) > 0= py,(z,y) > 0.

We can recast the equations (6.2.3) in the form
Z folz )) poo (2-y) qo(y) (6.2.4)

so that from Lemma 6.2

6(x) = Eqqo(X H Jo.00(X(5), X(5+1)) (6.2.5)
where {X (k),k > 0} is the Markov chain with parameters §, and

_ oy Po@Y)
fo.00(z,y) = fol )peo(x’y)- (6.2.6)

It follows that gg(x) can be calculated from the realizations of a single
Markov chain, by choosing a value of 6y to drive the simulations, and evaluat-
ing the functional ¢(X (1)) ;7;3 Jo.6,(X(5), X (j + 1)) along the sample path
for each of the different values of 6 of interest.

6.3 Combining likelihoods

It is useful to use independent runs for several values of 6§y to estimate gg(z)
on a grid of #-values. For each such 6, the estimates for different 6y have the
required mean gp(z), but they have different variances for different 6y. This



Ancestral Inference in Population Genetics 83

raises the question about how estimated likelihoods from different runs might
be combined. Suppose then that we are approximating the likelihood on a set
of g grid points, 6,,...,60,, using r values of §p and ¢ runs of each simula-
tion. Let g;; be the sample average of the ¢ runs at the jth grid point for the
ith value of y. For large t, the vectors g; = (di1,...,Gig),¢ = 1,...,r have
independent and approximately multivariate Normal distributions with com-
mon mean vector (g, (2),...,qs,(x)) and variance matrices t 1 Xy, ..., ¢~ X,
respectively. The matrices X1, ..., Y. are unknown but may be estimated in
the conventional way from the simulations. Define the log-likelihood estimates

l; = ([7.]7.] = 172,-”79) by

lij=logqij, j=1,...,9, i=1,...,7

By the delta method, the vectors ii,i =1,...,r are independent, asymptoti-
cally Normal random vectors with common mean vector I = (I1,...,1,) given
by

l; = IOg qo; (x)v

and covariance matrices ¢t~ XF determined by

O ) 1
(), = e @ q;m @ (6.3.1)

If the X ; were assumed known, the minimum variance unbiased estimator of

! would be )

=) XEn (6.3.2)

j=1 j=1

If the observations for different ©; are not too correlated, it is useful to con-
sider the simpler estimator with ¥ = diag X} replacing X in (6.3.2). This
estimator requires a lot less computing than that in (6.3.2). In practice, we
use the estimated values ¢;; and ¢, from the ith run to estimate the terms
in the denominator of (6.3.1).

6.4 Unrooted tree probabilities

The importance sampling approach can be used to find the likelihood of an
unrooted genealogy. However it seems best to proceed by finding all the pos-
sible rooted labelled trees corresponding to an unrooted genealogy, and their
individual likelihoods. Simulate the chain {(T'(1),n(l)),l = 0,1,...} with a
particular value 6y as parameter, and obtain the likelihood surface for other
values of 0 using the representation

T—1

W) =B | T AT @), (70 + 1), n( +1))| pY(T2),  (6.4.1)
=0
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where (T'(1),n(l)) is the tree at time [, and h is determined by

hwnmxﬂn—ew%=hwﬂm%z%f%7
and 0 Op — 1
h((T7 n)7 (T/> ’I’Ll)) = fQO(TI7 n')%

where the last form holds for both transitions (6.1.4), when (T",n’) =
(8xT,n), and (6.1.5), when (T7,n') = (R T, Ri.(n + €;)).

Example

To illustrate the method we consider the following set of 30 sequences, with
multiplicities given in parentheses:

0010001 (
0000001 (
0000000 (
1001000 (11)
1000000 (
0100000 (
0000101 (

(

3
4
4
1
1
2
2
0000111(3

)
)
)
1
)
)
)
)

Simulations of the process on a grid of #-values § = 0.6(0.2)3.0 for 6y =
1.0, 1.8, and 2.6 were run for 30,000 replicates each. The curves of log p° were
combined as described earlier. This composite curve is compared with the true
curve, obtained by direct numerical solution of the recursion, in Figure 6.1.

6.5 Methods for variable population size models
The present approach can also be used when the population size varies, as

shown by Griffiths and Tavaré (1996, 1997). The appropriate recursions have
a common form that may be written

q(t,z) = /too Zr(s;%y)q(s,y)g(t,x; s)ds (6.5.1)

where r(s;z,y) > 0 and g(t, x; s) is the density of the time to the first event
in the ancestry of the sample after time ¢:

g(t,m;8) = (s, x) exp (— /tsv(u,x)du> . (6.5.2)
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Fig. 6.1. Log-likelihood curves. Dashed line: exact values. Solid line: Monte Carlo
approximant.

log-likelihood

0.5 1 L5 2 25 3 35

Mutation rate

Define

(6.5.3)

and rewrite (6.5.1) as
att.) = [ flsi) 5 Plsiaphats) o(t.aio)ds (6.5.4)

We associate a non-homogeneous Markov chain {X (¢),¢ > 0} with (6.5.4) as
follows: Given that X (¢) = z, the time spent in state x has density g(¢, z; s),
and given that a change of state occurs at time s, the probability that the
next state is y is P(s;z,y). The process X () has a set of absorbing states,
corresponding to those z for which ¢(-, z) is known. X (-) may be used to give
a probabilistic representation of (¢, z) analogous to the result in Lemma 6.1
in the following way: Let 71 < 72--+ < 7, = 7 be the jump times of X (),
satisfying 7o = ¢ < 71, where 7 is the time to hit the absorbing states. Then

q(t,x) = Eg zyq(r, X (7 [ X (15-1)), (6.5.5)

H'Ew

where E(; ;) denotes expectation with respect to X (t) = x.
Once more, the representation in (6.5.5) provides a means to approximate
q(z) = ¢(0, z): Simulate many independent copies of the process { X (t),t > 0}
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starting from X (0) = z, and compute the observed value of the functional
under the expectation sign in (6.5.5) for each of them. The average of these
functionals is an unbiased estimate of ¢(z), and we may then use standard
theory to see how accurately ¢(x) has been estimated.

We have seen that it is important, particularly in the context of variance
reduction, to have some flexibility in choosing the stopping time 7. Even in the
varying environment setting, there are cases in which ¢(-, z) can be computed
(for example by numerical integration) for a larger collection of states z, and
then it is useful to choose 7 to be the hitting time of this larger set.

The probability ¢(¢, z) is usually a function of some unknown parameters,
which we denote once more by 0; we write gg(¢, ) to emphasize this depen-
dence on 6. Importance sampling may be used as earlier to construct a single
process X (-) with parameters 6y, from which estimates of gg(t,2) may be
found for other values of 8. We have

qg(t,l‘) = / Zfg,go(t,l';S,y)Pgo(S;LL‘7y)QQ(S,y) g9o(t>x; s)ds (656)
t
Yy

e fols: Dol :9)Po(s:2.9)
0\S;L)go\l, L5 5)9(8; L, Y
t7 x; 57 =
f9790( y) 990(t>x; S)P90 (5;3772/)
and fy(s;z) and Py(s; z,y) are defined in (6.5.3). The representation analogous
to (6.5.5) is

k
qe(ta I) = ]E(t7w)q(7a X(T)) H feﬂo (ijla X(ijl); L X(Tj))7 (657)
j=1
and estimates of gg(¢, ) may be simulated as described earlier in the Section.

6.6 More on simulating mutation models

The genetic variability we observe in samples of individuals is the consequence
of mutation in the ancestry of these individuals. In this section, we continue
the description of how mutation processes may be superimposed on the co-
alescent. We suppose that genetic types are labelled by elements of a set F,
the ‘type space’. As mutations occur, the labels of individuals move around
according to a mutation process on E.

We model mutation by supposing that a particular offspring of an individ-
ual of type « € E has a type in the set B C E with probability I'(z, B). The
mutation probabilities satisfy

/F(:U,dy)zl, for all x € E.
E

When FE is discrete, it is more usual to specify a transition matrix I" = (v;5),
where 1;; is the probability that an offspring of an individual of type 7 is of
type j. Such a mutation matrix I" satisfies
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Yij =0, Z’Yij =1 for each i.
JEE

We assume that conditional its parent’s type, the type of a particular ofi-
spring is independent of the types of other offspring, and of the demography
of the population. In particular, the offspring of different individuals mutate
independently.

In Section 3.4 we described a way to simulate samples from an infinitely-
many-alleles model. This method can be generalized easily to any mutation
mechanism. Generate the coalescent tree of the sample, sprinkle Poisson num-
bers of mutations on the branches at rate /2 per branch, and superimpose
the effects of the mutation process at each mutation. For discrete state spaces,
this amounts to changing from type i € I to jinkE with probability v;; at each
mutation. This method works for variable population size, by running from
the bottom up to generate the ancestral history, then from top down to add
mutations.

When the population size is constant, it is possible to perform the simu-
lation from the top down in one sweep.

Algorithm 6.1 To generate a stationary random sample of size n.

1. Choose a type at random according to the stationary distribution 7 of I".
Copy this type, resulting in 2 lines.

2. If there are currently k lines, wait a random amount of time having ex-
ponential distribution with parameter k(k + 6 — 1)/2 and choose one of
the lines at random. Split this line into 2 (each with same type as parent
line) with probability (k —1)/(k+ 6 — 1), and otherwise mutate the line
according to I

3. If there are fewer than n + 1 lines, return to step 2. Otherwise go back to
the last time at which there were n lines and stop.

This algorithm is due to Ethier and Griffiths (1987); See also Donnelly and
Kurtz (1996). Its nature comes from the ‘competing exponentials’ world, and
it only works in the case of constant population size. For the infinitely-many-
alleles and infinitely-many-sites models, the first step has to be modified so
that the MRCA starts from an arbitrary label.

6.7 Importance sampling

The next two sections are based on the papers of Felsenstein et al. (1999),
and Stephens and Donnelly (2000). The review article of Stephens (2001) is
also useful. In what follows, we assume a constant size population.

The typed ancestry A of the sample is its genealogical tree G, together
with the genetic type of the most recent common ancestor (MRCA) and the
details and positions of the mutation events that occur along the branches of
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G. An example is given in Figure 6.2. Algorithm 6.1 can be used to simulate
observations having the distribution of A.

The history H is the typed ancestry A with time and topology infor-
mation removed. So H is the type of the MRCA together with an ordered
list of the split and mutation events which occur in A (including the de-
tails of the types involved in in each event, but not including which line
is involved in each event). The history H contains a record of the states
(H_pmyH_ppiy1,...,H_1, Hy) visited by the process beginning with the type
H_,, € E of the MRCA and ending with genetic types Hy € E™ of the
sample. Here m is random, and the H; are unordered lists of genetic types.
Think of H as (H_.,, H— 41, - - ., H_1, Hp), although it actually contains the
details of which transitions occur between these states. In Figure 6.2, we have
H = ({A}, {A A}, {A, G}, {AA,GY {A,C.G} {A,C,G,G} {A,C,C,GY,
{A,C,C,C,G}, {A,C,C,G,G}).

Fig. 6.2. Genealogical tree G, typed ancestry A and history H

- AtoG

T- AtoC

-+ GtoC

CtoG

If H; is obtained from H;_; by a mutation from « to 3, write H; =
H;_1 — a+ (3, whereas if H; is obtained from H;_; by the split of a line of
type «, write H; = H;_1+a. The distribution Py(H) of H is determined by the
distribution 7 of the type of the MRCA, by the stopping rule in Algorithm 6.1,
and by the Markov transition probabilities
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Ny 0

— T gift H;=H;_1 —
nn—1+6 g1 1matf
nn—1+6 ¢ ¢

0 otherwise

where n,, is the number of chromosomes of type o in H;_; and n =Y n,.

We want to compute the distribution gg(-) of the genetic types D, =
(a1,...,a,) in a random ordered sample. A sample from H provides, through
Hy, a sample from ¢y. To get the ordered sample, we have to label the elements
of Hy, so that

(ITae g mal)/ntif Hy is consistent with D,

90(Dn | H) = {0 otherwise. (6.7.2)

We regard L(0) = qo(D,,) as the likelihood of the data D,,. The Griffiths-
Tavaré method uses the representation

HF )| Bo=D, |, (6.7.3)

where By, By, ... is a particular Markov chain and 7 a stopping time for the
chain; recall (6.1.6). Using (6.7.2), we can calculate

L) = [ a(Dn | 50Pu(3)5¢ (6.7.4)

This immediately suggests a naive estimator of L(6):

:U |

R
Z Do | H;) (6.7.5)

where H;,i = 1,..., R are independent samples from Py(J). Unfortunately
each term in the sum is with high probability equal to 0, so reliable estimation
of L(#) will require enormous values of R.

The importance sampling approach tries to circumvent this difficulty. Sup-
pose that Qp(-) is a distribution on histories that satisfies {H : Qg(H) > 0} D
{H : Py(H) > 0}. Then we can write

B (%)
Qo ()
R

Ly Py(3; 1
~ = ;q@(Dn | H) QZ((U'Q)) =z Zwi, (6.7.7)

i=1

L) = / oD, 1302299 0 a0)a0c (6.7.6)
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where Hi, ..., Hg are independent samples from Qp(-).

We call the distribution Qg the IS proposal distribution, and the w; are
called the IS weights. The idea of course is to choose the proposal distribution
in such a way that the variance of the estimator in (6.7.7) is much smaller
than that of the estimator in (6.7.5). The optimal choice @} of Qg is

Qp(H) = Pyp(3C | Dy); (6.7.8)
in this case Py(30)
q0(Dr | J{)Qe( 70) = L(9),

so the variance of the estimator is 0. Unfortunately, the required conditional
distribution of histories is not known, so something else has to be tried.

In Section 6.2 we mentioned that estimating L(6) on a grid of points can be
done independently at each grid point, or perhaps by importance sampling,
which in the present setting reduces to choosing the driving value 6y, and
calculating

qu Dy, | H) Qe(( )) (6.7.9)

where Hy, ..., Hp are independent samples from Qg, (-).

6.8 Choosing the weights

A natural class of proposal distributions on histories arises by consider-
ing randomly reconstructing histories backward in time in a Markovian
way, from the sample D,, back to an MRCA. So a random history H =
(H_m, ..., H_1,Hp) may be sampled by choosing Hy = D,,, and successively
generating H_1, ..., H_,, according to prespecified backward transition prob-
abilities pg(H;—1 | H;). The process stops at the first time that the configura-
tion H_,, consists of a single chromosome.

In order for (6.7.6) to hold, we need to look at the subclass M of these
distributions for which, for each 7, the support of pg(- | H;) is the set

{Hi—1:pe(H; | Hi—1) > 0}

where py is given in (6.7.1). Such a py then specifies a distribution Qg whose
support is the set of histories consistent with the data D,,.

Felsenstein et al. (1999) showed that the Griffiths-Tavaré scheme in (6.7.3)
is a special case of this strategy, with

The optimal choice of @} turns out to be from the class M. Stephens and
Donnelly (2000) prove the following result:
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Theorem 6.3 Define 7(- | D) to be the conditional distribution of the type of
n (n + 1)th sampled chromosome, given the types D of the first n sampled

chromosomes. Thus (D, a})
qe , &

m(a| D) = ——=.
(@) ==, m)

The optimal proposal distribution Qy is in the class M, with

a8 7Bl Hi—a), .
Clong——">——LTg,if H_, = H; — ,
2" m(a | H; — ) fo 1 ! ath
py(Hio1 [ Hi) = ¢ ~-1(Ta 1 FH L —H —
2 (o | H; — ) i
0 otherwise,

(6.8.2)
where ng is the number of chromosomes of type o in H;, and C = n(n—1+0)/2
where n is the number of chromosomes in H;.

It is clear that knowing pj is equivalent to knowing @}, which in turn
is equivalent to knowing L(6). So it should come as no surprise that the
conditional probabilities are unknown for most cases of interest. The only
case that is known explicitly is that in which I,g = Iz for all a, 5. In this
case L or

ng 8
m(B1D) =5 (6.8.3)

Donnelly and Stephens argue that under the optimal proposal distribution
there will be a tendency for mutations to occur towards the rest of the sample,
and that coalescences of unlikely types are more likely than those of likely
types. This motivated their choice of approximation 7 (- | D) to the sampling
probabilities 7(- | D). They define 7 (- | D) by choosing an individual from
D at random, and mutating it a geometric number of times according to the
mutation matrix I". So

R O 6 m™on m
acE m=0
Na n
= 7M;ﬁ). (6.8.5)
acl

7 has a number of interesting properties, among them the fact that when
I'np = I'g for all a, 8 we have #(- | D) = n(- | D) and the fact that 7(- | D) =
m(-| D) when n =1 and I is reversible.

The proposal distribution Q;, an approximation to @y, is defined by sub-
stituting 7 (- | D) into (6.8.2):
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40 #(B]| H;i—a) )
O ng P i Y i H = Hy — o+ B,
2" la | H; — @) po 1 ! atf
Po(Hi1 | Hi) = 1 (e 1 £
i H, ,=H —a,
2 J7(a| H; — ) ' ! @
0 otherwise,

(6.8.6)
In order to sample from py efficiently, one can use the following algorithm.

Algorithm 6.2

1. Choose a chromosome uniformly at random from those in H;, and denote
its type by a.

2. For each type § € E for which I'z, > 0, calculate #(8 | H; — o) from
equation (6.8.5).

3. Sample H; by setting

o Hi—a+fwp x07(8|H; —a)lga
LTV H —awp. xng—1.

Example

Stephens and Donnelly give a number of examples of the use of their proposal
distribution, including for the infinitely-many-sites model. In this case, the
foregoing discussion has to be modified, because the type space E is uncount-
ably infinite. However the principles behind the derivation of the proposal
distribution Qg can be used here too. Namely, we choose a chromosome uni-
formly at random from those present, and assume this chromosome is involved
in the most recent event back in time. As we have seen (recall Theorem 5.1),
the configuration of types H; is equivalent to an unrooted genealogical tree,
and the nature of mutations on that tree means that the chromosomes that
can be involved in the most recent event backwards in time from H; are lim-
ited:

(a) any chromosome which is not the only one of its type may coalesce with
another of that type;

(b) any chromosome which is the only one of its type and has only one neigh-
bor on the unrooted tree corresponding to H; may have arisen from a
mutation to that neighbor.

So their proposal distribution chooses the most recent event back in time
by drawing a chromosome uniformly at random from those satisfying (a) or
(b). Notice that this distribution does not depend on 6. In Figure 6.3 are
shown a comparison of the Griffiths-Tavaré method with this new proposal
distribution.
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Fig. 6.3. (a) Likelihood surface estimate with +2 standard deviations from 100,000
runs of GT method, with 6y = 4. (b) the same using 100,000 runs of the SD IS
function. This is Fig. 7 from Stephens and Donnelly (2000).
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It is an open problem to develop other, perhaps better, IS distributions for
rooted and unrooted trees as well. The method presented here is also not ap-
propriate for variable population size models, where the simple Markov struc-
ture of the process is lost. The representation of the Griffiths-Tavaré method
as importance sampling, together with the results for the constant population
size model, suggest that the development of much more efficient likelihood
algorithms in that case. See Chapter 2 of Liu (2001) for an introduction to
sequential importance sampling in this setting. The paper of Stephens and
Donnelly has extensive remarks from a number of discussants on the general
theme of computational estimation of likelihood surfaces.
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7 Ancestral Inference in the Infinitely-many-sites Model

The methods in this section are motivated by the problem of inferring prop-
erties of the time to the most recent common ancestor of a sample given the
data from that sample. For example, Dorit et al. (1996) sequenced a 729 bp
region of the ZFY gene in a sample of n = 38 males and observed no vari-
ability; the number of segregating sites in the data is then S3g = 0. What can
be said about the time to the MRCA (TMRCA) given the observation that
Ssg =07

Note that the time to the MRCA is an unobservable random variable in
the coalescent setting, and so the natural quantity to report is the conditional
distribution of W,, given the data D, which in this case is just just the event
{S,, = 0}. In this section we derive some of properties of such conditional
distributions. In later sections we consider much richer problems concerning
inference about the structure of the coalescent tree conditional on a sample.
The main reference for the material in this section is Tavaré et al. (1997).

7.1 Samples of size two

Under the infinitely-many-sites assumption, all of the information in the two
sequences is captured in Sz, the number of segregating sites. Our goal, then,
is to describe 75, the time to the most recent common ancestor of the sample
in the light of the data, which is the observed value of Ss.

One approach is to treat the realized value of 75 as an unknown param-
eter which is then naturally estimated by Th = S2/6, since E(Ss|Tr) = 0T%.
Such an approach, however, does not use all of the available information. In
particular, the information available about T3 due to the effects of genealogy
and demography are ignored.

Under the coalescent model, when n = 2 the coalescence time 75 has an
exponential distribution with mean 1 before the data are observed. As Tajima
(1983) noted, it follows from Bayes Theorem that after observing Se = k, the
distribution of 75 is gamma with parameters 1 + k& and 1 + 6, which has
probability density function

1 0 1+k
Fr, (8] Sa=k) = %tke*“”)t, t>0. (7.1.1)
In particular,
1+ k
E(T3|So=k) = —— 7.1.2
(T2|S2=k) = 5> (7.1.2)
1+ k
Var(T2|52:k) = m (713)

The pdf (7.1.1) conveys all of the information available about T5 in the
light of both the data and the coalescent model.
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If a point estimate were required, equation (7.1.2) suggests the choice
Ty = (1455)/(146). Perhaps not surprisingly, the estimator Th, which is
based on all of the available information, is superior to T» which ignores the
pre-data information. For example, writing MSE for the mean square error of
an estimator, straightforward calculations show that

. 1 -
MSE(T,) = —— < - = MSE(13).
) =135 <7 (T2)
The difference in mean square errors could be substantial for small §. In
addition, the estimator 75 is clearly inappropriate when Sy = 0.

7.2 No variability observed in the sample

We continue to assume the infinitely-many-sites mutation model with param-
eter 6, and derive the distribution of W,, := T, 4+ --- + T3 given S,, = 0 for
the case of constant population size. Several authors have been motivated to
study this particular problem, among them Fu and Li (1996), Donnelly et al.
(1996) and Weiss and von Haeseler (1996). Because mutations occur accord-
ing to independent Poisson processes on the branches of the coalescent tree,
we see that

E(exp(—uW,)1(S, = 0)) = E[E(exp(—uW,)1U(S, =0) | Th, ..., To)]
= Elexp(—uW,)E(L(S,, =0) | T, ..., T2)]
= Elexp(—uW,,) exp(—6L,,/2)]

= H]Eexp(—(u +05/2)T;)

Since

we see that

j+0-1)/2
u+j(j+60-1)/2

E(exp(—uW,)|S, =0) = H

(7.2.1)

Let Wn denote a random variable with the same distribution as the conditional
distribution of W,, given S,, = 0. Equation (7.2.1) shows that we can write

Wop=T,+ -+ T (7.2.2)
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where the T} are independent exponential random variables with parameters

(2) + ﬁ respectively. Many properties of W, follow from this. In particular

n

E(W,|S, = 0) = Z ](ﬁ%l) (7.2.3)

J=2

The conditional density function of W,, may be calculated from a partial
fraction expansion, resulting in the expression

fw,, (t|Sn, =0) = ;2740 -1n;(0+ 1)) e IE+I=DY2 - (7.9.4)
! 2 26 - 210 +n)g,)
The corresponding distribution function follows from
P(W, > t[S, =0) = Z(—W’*Q( 2] +8 = Dngyy(0+ D) e—d(0+i=1)t/2,

= ]—2) (]+9—1)(9—|—n)()

Intuition suggests that given the sample has no variability, the post-data
TMRCA of the sample should be stochastically smaller than the pre-data
TMRCA. This can be verified by the following simple coupling argument.

Let Es, ..., E, be independent exponential random variables with parame-
ters 6, ...,n0/2 respectively, and let Ts,...,T, be independent exponential
random variables with parameters (3), ceey (g) respectively, independent of

the E;. Noting that T} = min(T;, E;), we see that

W,

T+ -+ T

min (Tn,En)+~-~+min(Tg,E2)
T, -4 To
W,

IN

establishing the claim.

7.3 The rejection method

The main purpose of this section is to develop the machinery that allows us to

find the joint distribution of the coalescent tree T conditional on the sample of

size n having configuration D. Here D is determined by the mutation process

acting on the genealogical tree T of the sample. Such conditional distributions

lead directly to the conditional distribution of the height W,, of the tree.
The basic result we exploit to study such quantities is contained in

Lemma 7.1 For any real-valued function g for which Elg(T)| < co, we have

E(¢(T)|D) = W. (7.3.1)
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Proof. We have

E(g(T) (D)) = E(E(g(T)L(D|7))
E(g(TE(L(D)[T))
= E(g(T)P(D|7)).

Dividing this by P(D) completes the proof. |

For most mutation mechanisms, explicit results are not available for these
expectations, but we can develop a simple simulation algorithm. The expec-
tation in (7.3.1) has the form

B0(7)1D) = [ o) o (0, (132

where f,,(t) denotes the density of T. The expression in (7.3.2) is a classical
set-up for the rejection method:

Algorithm 7.1 To simulate from the distribution of T given D.

1. Simulate an observation ¢ from the coalescent distribution of 7.
2. Calculate v = P(D|t).
3. Keep t with probability u, else go to Step 1.

The joint distribution of the accepted trees t is precisely the conditional dis-
tribution of T given D.

The average number of times the rejection step is repeated per output
observation is 1/P(D), so that for small values of P(D) the method is likely
to be inefficient. It can be improved in several ways. If, for example, there is
a constant ¢ such that

P(DJt) < ¢ for all values of t,

then u in Step 2 of the algorithm can be replaced by u/c.

Note that if properties of W,, are of most interest, observations having the
conditional distribution of W,, given D can be found from the trees generated
in algorithm 7.1. When the data are summarized by the number S, of seg-
regating sites, these methods become somewhat more explicit, as is shown in
the next section.

7.4 Conditioning on the number of segregating sites

In this section we consider events of the form

DEDk:{Sn:k},
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corresponding to the sample of size n having k segregating sites. Since each
mutation in the coalescent tree corresponds to a segregating site, it follows
that

P(D|T) = B(Dx| L) = Po(8L,/2){k},
where L,, = 2715 + --- + nl}, is the total length of the ancestral tree of the
sample and Po(\){k} denotes the Poisson point probability

k
Po(\){k} = e_)‘%, k=0,1,....

Therefore
E(g(W,)Po(0L,/2){k})
E(Po(0L,/2){k})

The simulation algorithm 7.1 then becomes

E(9(Wn)[Dr) = (7.4.1)

Algorithm 7.2 To simulate from the joint density of T5, ..., T, given Dy.

1. Simulate an observation t = (t,,...,t2) from the joint distribution of
T, =(T,,...,Ts). Calculate | = 2ty + - - - + nt,.

2. Calculate u = P(Dg|t) = Po(01/2){k}.

3. Keep t with probability u, else go to Step 1.

The joint distribution of the accepted vectors t is precisely the conditional
distribution of T',, given Dy.
Since
P(S, = k|t) = Po(0l,/2){k} < Po(k){k},

where we define Po(0,0) = 1, the modified algorithm becomes:

Algorithm 7.8 To simulate from the joint density of T5, ..., T, given S, = k.

1. Simulate an observation t = (t,,...,t2) from the joint distribution of
Tn = (Tna s aTZ)'
2. Calculate [ = 2t5 + - - - + nt,, and set

., Po18/2){k}
~ Po(k){k}

3. Keep t with probability u, else go to Step 1.

Values of w,, = to + --- + t, calculated from accepted vectors t have the
conditional distribution of W,, given S,, = k.

Notice that nowhere have we assumed a particular form for the distribution
of T',,. In particular, the method works when the population size is variable so
long as T',, has the distribution specified by (2.4.8). For an analytical approach
to the constant population size case, see Fu (1996).
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Remark. In these examples, we have simulated the ancestral process back
to the common ancestor. It is clear, however, that the same approach can be
used to simulate observations for any fixed time ¢ into the past. All that is
required is to simulate coalescence times back into the past until time ¢, and
then the effects of mutation (together with the genetic types of the ancestors
at time t) can be superimposed on the coalescent forest.

Example

We use this technique to generate observations from the model with variable
population size when the conditioning event is Dy. The particular population
size function we use for illustration is

f(z) = qmint/v1) (7.4.2)

corresponding to a population of constant relative size o more than (coales-
cent) time v ago, and exponential growth from time v until the present relative
size of 1.

In the illustration, we chose V' = 50,000 years, N = 108, a generation time
of 20 years and a = 10™%. Thus v = 2.5 x 107°. We compare the conditional
distribution of W,, given Dy to that in the constant population size case with
N = 10*. Histograms of 5000 simulated observations are given in Figures 7.1
and 7.2. The mean of the conditional distribution in the constant population
size case is 313,200 years, compared to 358,200 years in the variable case.
Examination of other summary statistics of the simulated data (Table 7)
shows that the distribution in the variable case is approximately that in the
constant size case, plus about V' years. This observation is supported by the
plot of the empirical distribution functions of the two sets in Figure 7.3.

The intuition behind this is clear. Because of the small sample size relative
to the initial population size IV, the sample of size n will typically have about n
distinct ancestors at the time of the expansion, V. These ancestors themselves
form a random sample from a population of size aNV.

Table 7. Summary statistics from 5000 simulation runs

constant variable
mean 313,170 358,200
std dev 156,490 158,360
median 279,590 323,210
5% 129,980 176,510
95% 611,550 660,260
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Fig. 7.1. Histogram of 5000 replicates for constant population size, N = 10*
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Fig. 7.2. Histogram of 5000 replicates for variable population size, N = 108, T =
50,000, v = 1074
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7.5 An importance sampling method

If moments of the post-data distribution of W, say, are required, then they
can be found in the usual way from observations generated by Algorithm 7.2.
As an alternative, an importance sampling scheme can be used. This is best
illustrated by an example. Consider then the expression in (7.4.1). We have

E(g(Wn)Po(0Ln/2){k})

Elg(Wa)lDr) = = gm0, 2t

Point estimates of this quantity can be found by simulating independent copies
(VV,S])7 Lgf)),j =1,2,..., R of the height and length of the ancestral tree and
computing the ratio estimator

L Sl PoOL /2){k} )

R = 7 . . 5.
S Po(dLY /2){k)

One application provides an estimate of the conditional distribution function
of W,, given Dy: Suppose that we have ordered the points W,(Lj ) and listed
them as Wy[ll] < WT[LQ} < e < Wy[lR]. Let Lg], .. .,LLlR] be the corresponding
L-values. The empirical distribution function then has jumps of height

o
e—0L1 /2

Z;?:l e—0LYl/2
at the points W, 1 =1,2,...,R.

This approach uses all the simulated observations, but requires either
knowing which g are of interest, or storing a lot of observations. Asymptotic
properties of the ratio estimator can be found from standard theory.

7.6 Modeling uncertainty in IN and p

In this section, we use prior information about the distribution of u, as well
as information that captures our uncertainty about the population size N.
We begin by describing some methods for generating observations from the
posterior distribution of the vector (W,,, N, 1) given the data D. We use this
to study the posterior distribution of the time W,, to a common ancestor,
measured in years:

WY =NxGxW,.
The rejection method is based on the analog of (7.3.1):

E(g(Tn, N, ))P(D|Tw, N, 1))

E(g(Tn, N, p)|D) = P(D)

(7.6.1)

This converts once more into a simulation algorithm; for definiteness we sup-
pose once more that D = {S,, = k}.



102 Simon Tavaré

Algorithm 7.4 To simulate from conditional distribution of T',, N, i given
Sn = k.

1. Generate an observation ¢, N,  from the joint distribution of T',, N, p.
2. calculate | = 2ty + - - - + nt,, and
~ Po(INp){k}

Po(k){k}
3. accept t, N, u with probability u, else go to Step 1.

Usually we assume that N and p are independent of T',,, and that N and u
are themselves independent.

Examples

Suppose that no variation is observed in the data, so that Dy. Suppose that
N has a lognormal distribution with parameters (10, 1), and that g has a
Gamma distribution with mean po and standard deviation Cug. A constant
size population is assumed. In the example, we took g = 2 x 1075 and
C =1/20 and C = 1.0. Histograms appear in Figures 7.4 and 7.5, and some
summary statistics are given in Table 8.

Fig. 7.4. Histogram of 5000 replicates C' = 1/20

1000

of
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Here we illustrate for the exponential growth model described earlier, with
initial population size N = 108, and o = 10~%. We took N lognormally
distributed with parameters 17.92, 1. (The choice of 17.92 makes the mean of
N = 108.) For u we took the Gamma prior with mean = jg, and standard
deviation Cpyg. In the simulations, we used C' =1 and C = 1/20. Histograms
of 5000 simulated observations are given in Figures 7.6 and 7.7. Some summary
statistics are given in Table 9.

The importance sampling method also readily adapts to this Bayesian
setting: apply the approach outlined in (7.5.1) to the expectation formula in
(7.6.1).
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Fig. 7.5. Histogram of 5000 replicates C' = 1
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Table 8. Summary statistics from 5000 simulation runs. Prior mean po = 2 x
1075,D = Dy

C=10C=1/20
mean 647,821 262,590
median 369,850 204,020
5% 68,100 52,372
95% 2,100,000 676,890

Fig. 7.6. Histogram of 5000 replicates. Variable size model. C' = 1/20
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Fig. 7.7. Histogram of 5000 replicates. Variable size model. C' =1
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Table 9. Summary statistics from 5000 simulation runs. Prior mean po = 2 x 107°,
D =Dy

C=1C=1/20
mean 292,000 186,000
median 194,000 141,490
5% 70,600 65,200
95% 829,400 462,000

7.7 Varying mutation rates

These rejection methods can be employed directly to study the behavior of
the infinitely-many-sites model that allows for several regions with different
mutation rates. Suppose then that there are r regions, with mutation rates
1, -, . The analysis also applies, for example, to r different types of mu-
tations within a given region. We sample n individuals, and observe k; seg-
regating sites in the first region, ks in the second, ..., and k, in the r".
The problem is to find the conditional distribution of 7, given the vector
(k1y ... kr).

When N and the p; are assumed known, this can be handled by a mod-
ification of Algorithm 7.2. Conditional on L,, the probability of (ki,...,k)
is

h(L,) = Po(k1, L,01/2) x -+ x Po(k,., L,0,./2),

where 6; = 2Np;,i = 1,2,...,r. It is easy to check that h(L,) < h(k/0),
where
k=ki+ 4k, 0=0++0,.

Therefore in the rejection algorithm we may take u = h(Ly)/h(k/6) which

simplifies to

Po(Ln0/2){k}
Po(k){k}

Equation (7.7.1) establishes the perhaps surprising fact that the conditional
distribution of W, given (k1,..., k) and (01, ...,0,) depends on these values
only through their respective totals: the total number of segregating sites k and
the total mutation rate #. Thus Algorithm 7.2 can be employed directly with
the appropriate values of k and €. This result justifies the common practice
of analyzing segregating sites data through the total number of segregating
sites, even though these sites may occur in regions of differing mutation rate.

If allowance is to be made for uncertainty about the p;, then this simpli-
fication no longer holds. However, Algorithm 7.3 can be employed with the
rejection step replaced by (7.7.2):

_ Po(Lnbi/2){k1}  Po(Lub:/2){k}
= Po(k) (k1) Polk, )k}

w=h(L,)/h(k/0) = (7.7.1)

(7.7.2)
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In this case, Step 2 requires generation of a vector of rates p = (u1,..., i)
from the joint prior m,. Furthermore, the algorithm immediately extends to
the case of variable population size.

7.8 The time to the MRCA of a population given data from a
sample

In this section, we show how the rejection technique can be used to study the
time T}, to the MRCA of a sample of m individuals, conditional on the number
of segregating sites in a subsample of size n. In many applications of ancestral
inference, the real interest is on the time to the MRCA of the population,
given data on a sample. This can be obtained by setting m = N below. See
Tavaré (1997) and Tavaré et al. (1997) for further details and examples.

The quantities of interest here are A,, (the number of distinct ancestors
of the sample), A, (the number of distinct ancestors of the subsample), and
W,, (the time to the MRCA of the subsample). The results of Saunders et al.
(1984) justify the following algorithm:

Algorithm 7.5 Rejection algorithm for fy, (¢S,=k).

1. Set A, =m,A, =n,W,, =0,L,, =0

2. Generate E, exponential of rate A,,(A,, —1)/2. Set W, =W, + W, L,, =
L,+ A, FE.

3. Set p = % Set A,,, = Ay, — 1. With probability p set A,, = A, —1.
If A, > 1 go to 2.

4. Set uw = Po(6L,,/2){k}/Po(k){k}. Accept (Am, W,) with probability u,
else go to 1.

5. If A, =1, set Ty, = 0, and return W,,, = W,,. Else, generate independent
exponentials E; with parameter j(j — 1)/2, for j = 2,3,..., Ay, and set
Tom =FEs+---+ E4, . Return Wy, = W, + Thp,.

Many aspects of the joint behavior of the sample and a subsample can be
be studied using this method. In particular, values of (A,,, W,,) accepted at
step 5 have the joint conditional distribution of the number of ancestors of
the sample at the time the subsample reaches its common ancestor and the
time of the MRCA of the subsample, conditional on the number of segregating
sites in the subsample. In addition, values of T}, produced at step 5 have
the conditional distribution of the time between the two most recent common
ancestors. It is straightforward to modify the method to cover the case of
variable population size, and the case where uncertainty in N and pu is mod-
eled. With high probability, the sample and the subsample share a common
ancestor and therefore a common time to the MRCA. However, if the two
common ancestors differ then the times to the MRCA can differ substantially.
This is explored further in the examples below.
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Examples

Whitfield et al. (1995) describe another Y chromosome data set that includes
a sample of n = 5 humans. The 15,680 bp region has three polymorphic nu-
cleotides that once again are consistent with the infinitely-many-sites model.
They estimated the coalescence time of the sample to be between 37,000 and
49,000 years. Again, we present several reanalyses, each of which is based on
the number of segregating sites in the data. The results are summarized in
Table 10 and illustrated in Figure 7.8.

Table 10. Results of re-analyses of the data of Whitfield et al. In each case the
data are S5 = 3. Line (a) gives the interval reported by the authors (but note that
they assigned no probability to their interval). Mean and 95% interval are estimated
from samples of size 10,000. Details of the gamma and lognormal distributions are
given in the text.

Model Mean of W5 (x10%) 95% Interval (x10%)
pre-data post-data pre-data post-data
(a) Whitfield et al. 37 -49
(b) N = 4,900 157 87 31 -429 30184
s =3-52x 1074
(c) N = 4,900 157 125 31-429 32321
(LS gamma
(d) N gamma 159 80 21 - 517 26 - 175
ps =3-52x107*
(e) N gamma 159 117 21- 517 25 —344
(LS gamma
(f) N lognormal 428 149 19 — 2,200 22 — 543
(LS gamma

In estimating the coalescence time, Whitfield et al. adopt a method which
does not use population genetics modeling. While the method is not sys-
tematically biased, it may be inefficient to ignore pre-data information about
plausible values of the coalescence time. In addition, the method substantially
underrepresents the uncertainty associated with the estimates presented. Here,
we contrast the results of such a method with those of one which does incor-
porate background information.

To determine the mutation rate, we use the average figure of 1-123 x 10~
substitutions per nucleotide position per year given in Whitfield et al., and a
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Fig. 7.8. Probability density curves for Ws. In each panel the three curves corre-
spond to: solid, pre-data; dashed, post-data, assuming us gamma; dotted, post-data
assuming ps = 3-52 x 10™%. The three panels correspond to (a) N = 4,900; (b) N
gamma; (c) N lognormal.
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generation time of 20 years, to give u = 15,680x1-123x1072x20 = 3-52x 104
substitutions per generation. For these parameter values, the post-data mean
of Wj is 87,000 years.

As noted in the previous section, the appropriate values of the parameters
are not known. Analysis (c) incorporates uncertainty about p, in the form of
a gamma distribution with shape parameter 2 and mean 3 - 52 x 10™%, while
continuing to assume that N is known to be 4,900. The effect is to greatly
increase the post-data mean of Ws5. Allowing N to be uncertain while ug is
known has, on the other hand, the effect of slightly reducing the post-data
estimates of W5, compared with the case that N and ug are both known. This
may be attributed to the data favoring values of N smaller than 4,900.

Analyses (e) and (f) incorporate uncertainty about both N and pg. They
use the same prior distributions as analyses (g) and (i) respectively of the
previous section. Note that, as should be expected, the uncertainty about T
is larger than when one or both of N and pg are assumed known exactly.

Whitfield et al. (1995) point to their estimated coalescence time as be-
ing substantially shorter than those published for the human mitochondrial
genome. In contrast, the ranges in each of our analyses (b) — (e) overlap with
recent interval estimates for the time since mitochondrial Eve. In addition, re-
call that the quantity W5 being estimated in Table 10 is the coalescence time
of the sample of 5 males sequenced in the study. This time may be different
from, and substantially shorter than, the coalescence time of all existing Y
chromosomes. Under the assumption that N = 4,900 and p = 3-52x 1074, Al-
gorithm 7.5 can be used to show that the mean time to the common ancestor
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of the male population, given S5 = 3, is 157,300 years, with a corresponding
95% interval of (58,900 — 409,800) years. These figures differ markedly from
the corresponding values for the sample, given at line (b) of Table 10. It is
the population values which are likely to be of primary interest.

7.9 Using the full data

The approach that conditions on the number of segregating sites in the data
is convenient primarily because the rejection methods are quick and easy to
program. However, it does not make full use of the data. In this section, we
discuss how we can approximate the conditional distribution of TMRCA given
the infinitely-many-sites rooted tree (7, m) that corresponds to the data, or
the corresponding unrooted tree (@, n). See Griffiths and Tavaré (1994, 1999)
for further details.

Consider first the rooted case. The probability ¢(¢,z) that a sample taken
at time ¢ has configuration z satisfies an equation of the form

q(t,z) = /too > r(si,y)als, v)g(t, x5 5)ds

for a positive kernel r. For the case of an unrooted tree, we have x = (T, n).
Now define

q(t,x,w) = P(sample taken at time ¢ has configuration x
and TMRCA <t +w)

By considering the time of the first event in the history of the sample, it can
be seen that ¢(t, z,w) satisfies the equation

q(t,z,w) = /too Z r(s;z,y)q(s,y,t +w — s)g(t, z; s)ds (7.9.1)

where we assume that ¢(¢,z,y) = 0 if y < ¢. Recursions of this type can be
solved using the Markov chain simulation technique described in Section 6.
The simplest method is given in (6.5.3): we define

flsia) = r(siz,y)

Yy
Plsiay) = "0,

and rewrite (7.9.1) in the form

q(t,z,w) = /too f(s;x) Z P(s;z,y)q(s,y, t +w —s)g(t,x;s)ds.  (7.9.2)

Y
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The Markov chain associated with the density g and the jump matrix P is
once again denoted by X (). The representation we use is then

k
q(t,z,w) = B zyq(1, X(7),t + w —7) H fr; X (15-1)), (7.9.3)
j=1
where t = 79 < 74 < -+ < T, = T are the jump times of X (-), and 7 is the

time taken to reach the set A that corresponds to a sample configuration x
for a single individual. For the infinitely-many-sites tree, this corresponds to
a tree of the form (T, ey).

The natural initial condition is

q(t,z,w) = Lw > 0), x € 4,
so that
Q(T>X(T)>t+w - T) = ]l(T < t—l—w)

The Monte Carlo method generates R independent copies of the X process,
and for the 7th copy calculates the observed value

ki
= H f(ﬁ? Xi(T;"—1))~

j=1
and estimates q(t, z, w) by

El L EA(r <t—|—w)
Zz 1F

The distribution function of TMRCA given the data (¢, ) can be therefore be
approximated by a step function that jumps a height Fi;)/ > F; at the point
7(1), where the 7;) are the increasing rearrangement of the times 7*, and the
F{;y are the corresponding values of the F;.

This method can be used immediately when the data correspond to a
rooted tree (T, m). When the data correspond to an unrooted tree (Q,n) we
proceed slightly differently. Corresponding to the unrooted tree (Q,n) are
rooted trees (T, n). An estimator of P(TM RCA < t+ w, (T,n)) is given by

R
Z T) <t+w),

the T denoting a particular rooted tree. Recalling (5.9.3), an estimator of
q(t, (Q,m),w) is therefore given by

Z ZF T) < t+w),

qA(t7 "I"7 w)

’;U |
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and the conditional probability ¢(¢, (Q,n),w)/q(t, (Q,n)) is estimated by

Sor S FA(T)Un(T) < t+w)
S Xily Fi(T)

The distribution of TMRCA given data (Q,n) taken at time ¢ is found by
ranking all the times 7;(T") over different T to get the increasing sequence
7(5), together with the corresponding values F{;), and then approximating the
distribution function by jumps of height F;)/ > F;) at the point 7(;y. Usually
we take t = 0 in the previous results.
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8 The Age of a Unique Event Polymorphism

In this section we study the age of an allele observed in a sample of chromo-
somes. Suppose then that a particular mutation A has arisen just once in the
history of the population of interest. This mutation has an age (the time into
the past at which it arose), and we want to infer its distribution given data
D. These data can take many forms:

e the number of copies, b, of A observed in a sample of size n. Here we
assume that 1 < b < n, so that the mutation is segregating in the sample.

e the number of copies of A together with other molecular information about
the region around A. For example, we might have an estimate of the
number of mutations that have occurred in a linked region containing A.

e in addition, we might also have molecular information about the individ-
uals in the sample who do not carry A.

The unique event polymorphism (UEP) assumption leads to an interesting
class of coalescent trees that we study in the next section.

8.1 UEP trees

Suppose that the mutation A is represented b times in the sample. The UEP
property means that the b sequences must coalesce together before any of the
non-A sequences share any common ancestors with them. This situation is
illustrated in Figure 8.1 for n =7 and b = 3.

Fig. 8.1. Tree with UEP. The individuals carrying the special mutation A are
labeled C', those not carrying the mutation are labeled c.

[\ MRCA of sample

\
N /\Mutation must occur

\ on this branch

\ MRCA of
\ mutation

2
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To understand the structure of these trees, we begin by studying the prop-
erties of trees that have the property € that a particular b sequences coalesce
together before any of the other n — b join their subtree. To this end, let
n > Jy_1 > -+ > Jp be the total number of distinct ancestors of the sample at
the time the b first have b—1, ..., 1 distinct ancestors, and let Jp (1 < Jy < Jp)
be the number of ancestors in the sample at the time the first of the other n—b
sequences shares a common ancestor with an ancestor of the b. In Figure 8.1,
we have J2 = 5,J1 = 4, Jo = 2.

It is elementary to find the distribution of Jy_1,..., Jy. Recalling that in
a coalescent tree joins are made at random, we find that

. [0 ) ()
s L e o
N B G B
(3) (57 (°37)
where we have defined j, = n, and where 1 < jp < j1 < -+ < jp—1 < n. This
expression can be simplified to give

2b1(b— 1) (n —b)l(n —b—1)l5
nl(n —1)!

P(J, = j,,r=b—1,...,0) = (8.1.1)

We can find P(€) by summing 1 < jg < j1 < -+ < jp—1 < n. Note that

SIS SRNEE S

Jo=1jo<g1 < <jgp—1<n Jo=1

= aen(nTi)

the last equality coming from the identity

S (1)

valid for integral ¢, d with ¢ = b,d = 2. It follows that

20!(b— Dl (n—=b)!(n—-—b—1)! n
) = PO ()

2 [n—1\"
ENCR

as found by Wiuf and Donnelly (1999).
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Now we can compute the conditional distribution of ‘everything’ given €.
For example it follows that for 1 < jo < j1 < - < Jp_1 <n

—1
. [ n
P(JT—jT,T—b—l,...,0|€)—jo(b+1) , (8.1.3)

while for 1 < jp < 71 <n,

, -1
. . . n—j;—1 n
P(J1 = j1,Jo=jo | €) —Jo( b9 )(b+1> (8.1.4)

and for 1 < j3 < jo -+ < jp_1 <m,

) ) . n—j—1\ "
P(Jr_jrar_b_17"'a2|<]1_.717‘]0_.]078)_< bj_12 ) . (815)

Having discussed the topological properties of UEP coalescent trees, we
move on to the age of the mutation itself.

The distribution of Ja

Suppose that A mutations occur at rate /2 on the branches of the coalescent
tree. The random variable Ja gives the number of ancestors of the sample of
size n when the mutation A occurs. Clearly, Jy < ja < Ji. Its distribution
can be found as follows. To get Jo = k, a single mutation must arise on the
branch of length T}, and no other mutations must occur in the remainder of
the coalescent tree. It follows from (8.1.4) that for 1 < jo < k < j; <n—b+1,

' ) B o (n—71—1 n \ "
]P’(J1:J1,JA:]€,J0:JO|T75):ng€ LW/QJO( b]_12 ><b+1) ’

where T' = (T, ...,T2) and L, = nT, + --- + 2T is the total length of the
tree. Using the fact that for integral k,

Zk: ctk—j—1\(d+j—-1\ [c+d+k—1
= k—j j B k

nfl n—ji—1\ (n—k
b—2 S \b—-1)’

ji=k

X () =G

Jo=1 ji=k

we see that

so that

Hence
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k(k=1) fn—k\ [/ n \ '
P(Ja=Fk|T,&) = nge—LW”%(b_ 1> (b+ 1) . (8.1.6)

and
-1
B B oy k(E—1) (n—k n
P =k =E(=T, L7 S )
(Ja = k| &) =E(GThe =5 -1 41
Letting U denote the event that there is indeed a UEP, we have

n—b+1
PU[E)= ) P(Ja=k]|&),

k=2

so that for k=2,...,n—b+1,

k(k — 1) (7-F)E [Tre Enr/?

P(Ja=k|UNE) = —— — . (8.1.7)
- 1)(;71)E [Tie~Lnu/?]
Remark. In the constant population size case, this gives
E—1)(0")——
P(JA =k | un 8) = n(7b+1 )(bil) k*ll+ﬂ )
= (= 1)(2—_1) ﬁ
“w
as given by Stephens (2000).
Similar arguments show that for k < j; < ja -+ < jp_1 < n,
-1
: ) n—=k
P(Jl =1y, Jp—1 :jb_1|JA:k,u08):<b_l) s (8.1.8)

so that given Jao = k, the places where the subtree has joins form a random
(ordered)(b — 1)— subset of the integers k,k+1,...,n— 1. Hence for 1 <i <
b—land k<ji < ---<ji<m—i+b,

. . n—73—1\/n—k -1
P(lejl,...,Ji:ji|J4:k,u08):(b_ji_l>(b_l) . (8.1.9)

8.2 The distribution of T'»

We let Ja be the number of ancestors of the sample at the time the unique
A mutation occurs. Clearly Jy < Ja < J;. We can find the conditional
distribution of the age Ta as follows. We have
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E(e T | &)
n—b+1
> E(e T 0(Ja=k) | &)
k=2
n—b+1
> BEE T = k) [ T.8)
k=2
n—b+1

S BT BJa =k | T,€))

k=2

n—b+1 —

i E(e ¢TuTku _L M/Q)k(k—l) n—=k n ! (8.2.1)
2 b—1/\b+1 o

TW =T, 4+ 4 Tyr + UTh, (8.2.2)

and U is uniformly distributed on (0,1), independent of T'. The penultimate
inequality comes from (8.1.6). This gives us:

where

Theorem 8.1 The Laplace transform of the conditional distribution of the
age Ta of a UEP observed b times in a sample of size n (where 0 < b < n) is
given by

E(e ?T2 |UNE)
ZZ DL g — 1)(2 )]E [e*‘f’T[k]Tke’L"“/Q}
io ' Kk = 1) (3-1)E [Tre—Lnn/?]

n—bt1 CoTE

E(e=*T" Tre L”“/z)
Y P(Ja=k|UNE) BTt (8.2.3)
k=2

where T is defined in (8.2.2).
Proof. This follows from the previous steps and (8.1.7).

Remark. The representation in (8.2.3) provides a useful way to simulate ob-
servations from Tx; this is exploited later. Note that the original random
variables T can be tilted by the size-biasing function e “»#*/2 so that

E(f(T,, ..., Ty)e Lnn/2
B, f(Ty...,T) = 2 ]E(e_Lni)/Q) )

In what follows we refer to this as u-biasing. The previous results can then be
written in terms of these p-biased times:

k(k — 1) (3N E, T
-0 e

P (Ja=Fk|UNE) = (8.2.4)
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and
n—b+1 _ Tk
B, (e~ ?TT,
E.(e™®™ |Un€&)= Y Pu(Ja=k|UNE) “(‘ZTTIC’“). (8.2.5)
k=2 ®

8.3 The case p =0

It is of great interest in practice to consider the limiting case in which the
mutation rate at the special locus is extremely small. In this case rather more
can be said about the age of a neutral mutation. An immediate specialization
of Theorem 8.1 provides a proof of Griffiths and Tavaré’s (1998) result:

Lemma 8.2 The Laplace transform of the conditional distribution of the age
TA of a UEP observed b times in a sample of size n has limit as p — 0 given
by
n—b+1 n— —oTI¥]
o P k(G — 1) (BT T
]E(e 4 ‘ un 8) = n—b+1 n—k

2 Kk — 1)(b—1)ETk

(8.3.1)

This result provides the distribution of Tx in reasonably explicit form. If
we define
Sk =Ta+-+Ti,

then

1
E(Tk6_¢(UTk+Tk+l+-..+Tn —F |:/ Te™ ¢udeue (Tk+1+"'+Tn):|
0

_ [¢1 e~ #Tk)e (Tk+1+---+Tn)}

[¢ 1o=¢(Thsr++Tn) _ ¢—16—¢(Tk+-~+Tn)]
= / TOHP(S), 1 < t) — P(S, < t)}dt

0
= / e P(A,(t) = k)dt,

0

the last equality following from the fact that the ancestral process A, (t) = k
if, and only if, Sj, > t and Si4+1 < t. Hence we have

Theorem 8.3 Assuming the times T; have continuous distributions, the den-
sity of the age Ta is given by

w2 (k= D) () P(AG(E) = k)
Shss k(k = 1) ((ZF)ET,

fa(t) = , t>0. (8.3.2)
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Moments of T'hcan be found in a similar way, and one obtains
ky_1 i+1 j+1
Sio k(b= 1)) (ST - sit
—k
e (k= 1) (50 E(T)

from which the mean and variance of T can be obtained. For example, in
the constant population size case, we obtain

E(T4) :2(”; 1)_1i (Z:i)% (8.3.4)

Jj=2

E(T)) = ),j =1,2..., (83.3)

The age of an allele in the population

To derive the population version of (8.3.3), we assume that {A,(t),t > 0}
converges in distribution to a process {A(t),t > 0} as n — oo, and that the
time taken for A(-) to reach 1 is finite with probability 1. Then as n — oo,
and b/n — x, 0 < x < 1, we see that

S k(e =) - 2) 2 AE (S - st
Yizs Kk — D(1 = 2)F ?E(T})

In this population limit the density of the age of a mutant gene that has
a relative frequency z is, from Theorem (8.2),

D pey bk = 1)(1 — 2)"?P(A(t) = k)
D oheo k(k = 1)(1 — 2)k—2E(T})

E(A(t)(A(t) (- :c)A(t)’Q)

T R k(k = D)1~ 2)FE(Tk)

The mean age of the mutation known to have frequency x in the population
follows from (8.3.4) by letting n — oo, b/n — :

E(T)) = ),j =1,2.... (8.3.5)

gaz(t) -

(8.3.6)

E(Ta) =

-2
1 _i log . (8.3.7)
Equation (8.3.4) is the well known formula derived by Kimura and Ohta

(1973). The density (8.3.6) is also known in various forms (e.g. Watterson
(1977) and Tavaré (1984).

Remark. There have been numerous papers written about the ages of alleles
over the years, mostly using diffusion theory and reversibility arguments. This
section sets the problem in a coalescent framework (although the results are
much more general than they seem!). Watterson (1996) discusses Kimura’s
contribution to this problem. A modern perspective is given by Slatkin and
Rannala (2000).
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8.4 Simulating the age of an allele

An alternative to the analytical approach is to simulate observations from
the joint conditional distribution of those features of the process that are of
interest, for example the age TA of the mutation A, and the time Thyrcan
to the MRCA of the individuals carrying A. In order to simulate such times,
we can use the following algorithm based on Theorem 8.2.3 and (8.1.7).

Algorithm 8.1 To simulate from conditional distribution of Th and ThrcaA-

1. Choose k according to the distribution of Ja in (8.1.7).

2. Choose j; from the conditional distribution of J; given Ja =k in (8.1.9)
with ¢ = 1.

3. Simulate an observation from the (unconditional) p-biased joint distribu-
tion of the coalescence times T}, ..., Tkt1.

4. Conditional on the results of step 3, simulate from the random variable
Z having the (standard) size-biased distribution of T}, and set T* = U Z,
where U is an independent U(0,1) random variable.

5. Return Tyyroan = T+ +Tj, 41, Ta = Tyyrcaa+Tj, +- -+ Ty +T.

Remark. Generating the appropriate size-biased distributions can be difficult
when the population size varies. Another way to implement this is to replace
steps 3 and 4 above with a rejection step:

3'. Generate T' = (T, ..., Ts) from the coalescent model, and compute L,, =
2T5 4 - -+ +nT,. Accept T with probability

%Q*T’v“ﬂe ¢~ Lnb/2, (8.4.1)

otherwise repeat.
4'. Set T* = UT}, where U is an independent U(0,1) random variable.
5. Return Tnyroan = Tn+- -+ Tj 41, Ta = Tvurcaa+Ty, +- -+ T + T

The extra factor of e comes from the fact that Po(Tyu/2){1} < Po(1){1}. In
the limiting case ¢ = 0 an independence sampler can be used.

8.5 Using intra-allelic variability

Rannala and Slatkin (1997) discussed a method for estimating the age of an
allele known to have frequency b in a sample of size n, given an estimate of the
number of mutations, m, that have arisen in the region around the mutation
locus. There are at least three versions of this problem, depending on where
these new mutations are assumed to occur. For example, we might sequence
in the region of the mutation A and find the number of additional segregating
sites in the region. We suppose once more that these additional mutations
occur at rate 6/2 on the branches of the coalescent tree.
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If one wants to simulate observations from the posterior distribution of
trees and times conditional on the number m of segregating sites appearing
in the b individuals carrying the mutation in a region completely linked to A,
then a modification of Algorithm 8.1 can be used:

Algorithm 8.2 To simulate from conditional distribution of age of mutation
and Thyyroan given m additional segregating sites in the A subtree.

1. Choose k according to the distribution of Ja in (8.1.7).

2. Choose j1, j2, - - -, jp—1 from the conditional distribution of Jy, Ja, ..., Jp—1
given Ja = k in (8.1.8).

3. Simulate an observation from the (unconditional) joint distribution of
the coalescence times T,,...,Tk+1, and use the indices in step 2 to com-
pute the coalescence times T}, ..., T5 in the A-subtree, together with the
length L,;, = Z?:z JT; of the A-subtree.

4. Accept these statistics with probability

Po(0Lnp/2){m}/Po(m){m},

else return to step 1.

5. Conditional on the results of step 3, simulate from the random variable
Z having the size-biased distribution of T} and set T* = UZ, where U is
an independent U(0,1) random variable.

6. Return Ty rcan = T+ +Tj 11, Ta = Tyroaa+Ty, +- - -+ Tp1 +T7.

Example

The conditional distribution of Th and Thsrcaa in the constant population
size case were simulated using 50,000 runs of Algorithm 8.2 for the case n =
200,b = 30,0 = 4.0 and m = 5 segregating sites observed in the subtree. The
mean age was 1.01 with standard deviation 0.91, while the mean subtree height
was 0.40 with a standard deviation of 0.25. Percentiles of the distributions
are given below, together with the estimated densities. For further details and
alternative simulation algorithms, see Griffiths and Tavaré (2003).

2.5% 25% 50% 75% 97.5%
age 0.156 0.412 0.721 1.289 3.544
subtree height 0.099 0.218 0.334 0.514 1.056
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Fig. 8.2. Density of age of mutation.

Fig. 8.3. Density of height of subtree.

9 Markov Chain Monte Carlo Methods

In this section we introduce some models for DNA sequence data, and explore
some computer intensive methods that can be used to estimate population
parameters. The main inference technique discussed here is Markov chain
Monte Carlo, introduced into this field by Kuhner et al. (1995, 1998).

We assume that mutations occur on the coalescent tree of the sample at
rate 6/2, independently in each branch of the tree. Here we study the case in
which the type space F is finite, and we suppose that the mutation process is
determined by

vi; = P(mutation results in type j | type was i)

We write I = (v;;), and we note that -;; may be non-zero.
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9.1 K-Allele models

One of the first models studied in any depth in this subject was the so-called
K-allele model, in which E = {A;,..., Ag} corresponding to K possible
alleles in the type space. Let X;(t) denote the fraction of the population that
has allele A; at time t. Many of the results concern the diffusion model for the
process {(X1(t),..., Xk (t)),t > 0} with mutations determined according to
the transition matrix I". The state space of the process is {x = (z1,...,2K) €
[0, 1)% : Z{{ x; = 1} and its generator has the form

A Sl g+ 3 ()
At 3 0% =\o “Y ) 0z’

11]1

where 9
R= (Tij) = §(F—I)

When the distribution of the type of a mutant is independent of its parental
type, so that
Yij =75, JEE
where m; > 0,3 . pm; = 1, we recover the process studied in Section 3.1.
The stationary distribution 7 of the diffusion is the Dirichlet distribution

F(e) Omr—1 O —1
T . 1.1
F(Qm)F(GwK)xl IK (9 )

ﬂ-(xla"wa) =

Surprisingly perhaps, the distribution is known for essentially no other mu-
tation matrices I'. Suppose now that we take a sample of n genes from the
stationary process with frequencies (Xi,...,Xk). The sample comprises n;
genes of type i,1 < i < K. Writing n = (n1,...,nk), the probability ¢(n)
that the sample has configuration n is

n!

qgn)=E XTI X (9.1.2)

ny!- - ng!

For the model (9.1.1), this gives

/ /nl Ny 11"'x}l(KW(IL...,LEK)dxl...deil
’I’L‘F (97'('1 + ’I’Ll) (97‘—[{ + nK)

Tl g T (0m) - (Gﬂ'K)F(G—Fn)

_ <9+Z— 1)1 ﬁ (ewj +no;j - 1)_ (0.13)

Jj=1

q(n)

In particular, the mean number of type ¢ in the sample of size n is
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E(number of allele A;) = nEX; = nm;.

It is worth pointing out that a sample from any two-allele model can be
described by (9.1.3), possibly after rescaling # and I". To see this, suppose the
matrix I" has the form

l-a «
F:
("5%1%)
Then the stationary distribution is 7w = (aLj_B, aLJrB) Hence
0
R=-(I-1
~(r-1)
0 l-a « (10
2 g 1-p 01
(5 5)
2\ 8 B
_ ~atp aip
=gla+pf | 5 T
a+p a+p

N D

&3 a
=25 543 10
(Oé+/6) ((aEB az: > - (O 1)) .
a+p a+p
We may therefore use the sampling formula (9.1.3) with 67, replaced by 64,
and Oms replaced by fa.

The number of real mutations

Suppose that mutations occur at rate /2 on the coalescent tree (the switch
from 6 to v will be explained shortly). At any mutation point, the current
allele is changed according to the transition matrix I'. We note that not
all potential substitutions have to result in changes to the existing allele, as
7v;; > 0is allowed. The effective mutation rate §/2 is defined to be the expected
number of mutations per unit time that result in a change of allele:

0 v &
§:§§:mu—ﬁﬁ% (9.1.4)
j=1
where 7;,5 = 1,..., K denotes the stationary distribution of I".

Felsenstein’s model

It is convenient to describe here one useful model for the case K = 4, cor-
responding to models for the base at a given site in a DNA sequence. Here,
E = {A,G,C,T}. Because many of our applications focus on mitochondrial
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DNA, in which transitions occur with much higher frequency than transver-
sions, we use a model which allows for transition-transversion bias.

Suppose then that mutations arise at rate v/2. When a potential substi-
tution occurs, it may be one of two types: general, in which case an existing
base j is substituted by a base of type k with probability 7,1 < j,k < 4; or
within-group, in which case a pyrimidine is replaced by C' or T with probabil-
ity proportional to m¢ and 7 respectively, and a purine is replaced by A or
G with probability proportional to m4 and mg respectively. The conditional
probability of a general mutation is defined to be 1/(1 + &), while the condi-
tional probability of a within-group mutation is defined to be x/(1+ ), where
k > 0 is the transition-transversion parameter. Thus the mutation matrix I"
is given by

K

1
'=s—1"0,+—1I 9.1.5
1+k 1+1—|—m > ( )

where I ;; = m;,j € E and

TA lufel
TA+TG TAt+TG 0 0
Iy = TA+TG TA+TG
2 0 0 T e
T+ Two+TT
fute] jute]

0 0

To+nmr wo+TT

In I} and I35, the states are written in order A, G, C,T. It is readily checked
that he stationary distribution of I' is 7w = (w4, 7o, 7@, 7). If we define

14

g = m, w = RYg, (916)

then k is the ratio of the within-class to general substitution rates. From
(9.1.4), the effective mutation rate is given by

0 TATG ToTT
—=gl1-) 7| +2w ( + 9.1.7
2 g ;ﬂ J TA+7mg  wo +Tr ( )

The transition matrix e of the mutation process with transition intensity
matrix R = v(I" — I)/2 is known. We denote the jk-th element by 7, (¢); this
is the probability that a base of type j has changed to a base of type k a time
t later. Thorne et al. (1992) show that

Tik(t) =
emFlp e (1) B (1= )m, j=k
eI~ ) Iy (Lo e, Ak, H) = H(R)
(1 — e 9)m, H(j) # H(k)

where mr = w4 + 7@, 7y = 7o + 7, and H (i) denotes whether base i is a
purine or a pyrimidine, so that H(A) = H(G) = R and H(C)=H(T) =Y.
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9.2 A biomolecular sequence model

Of particular interest to us is the case in which the types represent DNA
or protein sequences of length s, say. Then the type space F has the form
E = Ej, where Ej is the type space of a single position, or site, in the se-
quence. The sites of the sequence may be labeled in many ways. The DNA
alphabet Ey = {A,C,G, T} is one possibility, as is the 20 letter amino-acid
sequence alphabet, or the 64 letter codon alphabet. Also common are the
purine-pyrimidine alphabet, where Ey = {Y,R} and Y = {A, G} denotes
purines, R = {C, T} the pyrimidines. In many evolutionary studies, transver-
sions are not observed, and it might then be natural to think of sites as being
binary, with Ey = {A,G} or Ey = {C,T}. There are many possible models
for the mutation process I', depending on what is assumed about the effects
of mutation. Here we suppose that when a mutation occurs, it results in a
substitution, the replacement of one element of Ey by another one. The sim-
plest version of this model supposes that the substitution occurs at site 7 with
probability h;, where

hj >0, > hj=1. (9.2.1)
j=1

The h; are identical (and so equal to 1/s) if there are no mutational
hotspots, and h; may be 0 if site j is invariable. Thus the h; add some flex-
ibility in modeling variable mutation rates across the sequences. A muta-
tion occurring at site j produces substitutions according to transition matrix
P = (pl(frz) Thus substitutions change a sequence of type (i1,...,is) to one
of type (j1,...,7s) as follows:

(7:17"'3is) - (7:17...775171,.]'[77;[4»1,...,7:5)

(l)-l,l <l <s. We may write I" in the form

with probability A, Dij

r=Y mle--IePele oI (9.2.2)
=1

where I denotes the identity matrix, and ® denotes direct (or Kronecker)
product: A® B = (a;; B). Recall that if A, B,C, D are conformable matrices,
then (A® B)(C ® D) = AC ® BD. If 7r; denotes the stationary distribution
of P, and 7 denotes the stationary distribution of I', then it is easy to show
that t =71 ® -+ - ® 7.

Many properties of this process may be studied using the coalescent simu-
lation described in Section 6.6. The previous result shows that for simulating
sequences from a stationary population, the ancestral sequence may be gen-
erated by simulating independently at each site, according to the stationary
distribution of each site.
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9.3 A recursion for sampling probabilities

Return now to the K-allele model with mutation matrix I' = (v;5), and
R = g(F — I). Let ¢(n) be the probability that a sample of n genes has
a type configuration of n = (ni,...,nk), and define [K] = {1,2,...,K}. A
fundamental recursion is given in

Theorem 9.1

q(n) =
K
n+9—1 Z —7iiq(n | Z ‘ ‘T%-jq(n+ei—ej)
i=1 7]E[K],nj>07z;arﬁj
n—1 n; —1
_ —e€; 9.3.1
+n—|—9—1, Z n—lq(n €): ( )
]E[K]7nj>0

where {e;} are the K unit vectors. Boundary conditions are required to deter-
mine the solution to (9.3.1). These have the form

qei) =7}, i=1,... K, (9.3.2)

where T}

is the probability that the most recent common ancestor is of type i.
Proof. To derive (9.3.1) consider the first event back in time that happened
in the ancestral tree. Relative rates of mutation and coalescence for n genes
are nf/2 : n(n — 1)/2, so the probability that the first event is a mutation is
0/(n+6—1). To obtain a configuration of n after mutation the configuration
before must be either n, and a transition ¢ — 4 takes place for some i € [K]
(the mutation resulted in no observable change), or n+e; —e;, 1,5 € [K],n; >
0,7 # j and a transition ¢ — j take place. If a coalescence was the first event
back in time, then to obtain a configuration n the configuration must be
n — e; for some j € [K] with n; > 0 and the ancestral lines involved in the
coalescence must be of type j. a

The recursion in (9.3.1) is on n, the sample size. Given {g(m);m < n},
simultaneous equations for the ("}IE 1) unknown probabilities {g(m); m = n}
are non-singular, and in theory can be solved; cf. Lundstrom (1990). It is
common to assume that

i =m,i=1,..., K, (9.3.3)

where w = (71, ..., 7k) is the stationary distribution of I". With this assump-
tion, ¢(n) is the stationary sampling distribution.

It is worth emphasizing that the probability g(n) satisfying (9.3.1) is de-
termined solely by the rate matrix R. Indeed, (9.3.1) can be rewritten in the
form
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q(n) =
9 K
—_— Zn,r“q(n) + Z (ni + Drijgn +e; + €;)
nln=1) \ = i,JE[K]n;>0,i#]

+ ! Z (n; —1)(n —ej).

n—1
JE[K],n;>0

The point here is that different combinations of § and I" can give rise to the
same R matrix. Nonetheless, we prefer to think of the model in terms of an
overall rate # and a matrix of substitution probabilities I'. In practice, we
often assume that I" is known, and the aim might then be to estimate the
single parameter 6, which reflects both the effective population size N and
the mutation probability .

Remark. The recursion in (9.3.1) has appeared in a number of guises in
the literature, such as Sawyer et al. (1987) and Lundstrom et al. (1992). In
the latter references, a quasi-likelihood approach for estimation of 6 in the
finitely-many-sites model is developed. The recursion (9.3.1) is used to find
the probability distribution at each site, and the quasi-likelihood is computed
by assuming independence across the sites.

Griffiths and Tavaré (1994) used the recursion for the finitely-many-sites
model to find the likelihood. Conventional numerical solutions in this case are
difficult to obtain because of the large number of equations. This prompted
them to develop their Markov chain approach. See Forsythe and Leibler (1950)
for an early application of Monte Carlo approaches to matrix inversion. We
note here that early experience with the Griffiths-Tavaré method suggests it
is not feasible for analyzing large amounts of sequence data. In the remainder
of this section, we discuss a Markov chain Monte Carlo approach and give a
number of examples of its use.

9.4 Computing probabilities on trees

For definiteness, assume we are dealing with DNA sequence data D having s
aligned sites in a sample of size n. We will use A to denote the (labeled) coa-
lescent tree topology, and T' = (T, ..., T),) to denote the coalescence times in
the tree. For a given model of substitution at a particular site in the sequence,
we will need to compute the probability of the bases in the sample, given a
particular value of A and T'. This can be done using a recursive method, known
as the peeling algorithm, described by Felsenstein (1973, 1981). The idea is
to compute the probability of the bases b1,...,b, observed at a particular
position in sequences 1,...,n. Each node [ in the tree is assigned a vector of
length 4, the i-th entry of which gives the probability of the data below that
node, assuming node [ is base . The algorithm is initialized by assigning the
vector associated with a leaf 7 the vector with elements 6, ;,7 =1,...,4.
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The calculation now proceeds recursively. Imagine that the probability vec-
tors (Wy1, .« ., Wya) and (wy1, . . ., Wyq) have been computed for the descendant
nodes u and v respectively of node . To compute the vector (wyy, ..., w) at
node [, we need to calculate the time ¢;, along the branch from [ — wu, and
the time ¢;, from [ — v. Then we calculate

Wiz = (Z Tzw(tlu)wuw> . (Z rzy(tlv)wvy> 5

where 7;;(t) is the probability that base ¢ has mutated to base j a time ¢ later.

This scheme allows us to recurse up to the root of the tree. That node has
label [ = 2n — 1 and descendant nodes v and v. We finish the computation of
the probability L of the configuration at that site by computing

_ 0
L= E T, Wayz Wy
z

where 70,2 = 1,...,4 is the distribution of the ancestral base.

Once the hkehhood at a single base position is calculated, the likelihood of
the set of n sequences can be calculated using the fact that for the mutation
model in Section 9.2 the sites evolve independently, conditional on A and T'.
Hence if L; denotes the likelihood of the i-th site, the overall likelihood is

P(D | A,T) HL (9.4.1)

9.5 The MCMUC approach

Here we discuss a version of the Metropolis-Hastings algorithm, due originally
to Metropolis et al. (1953) and Hastings (1970) that will be exploited for infer-
ence on coalescent trees. Our presentation follows that of Markovtsova (2000).
The algorithm produces correlated samples from a posterior distribution 7 of
interest, in our case m(G) = f(G | D), where G = (A, T, M), M representing
the mutation parameters and D representing the sequence data. We use these
samples to make inferences about parameters and statistics of interest. Exam-
ples include the effective mutation rate 6, the time to the most recent common
ancestor, ages of a particular event in the sample, or population growth rates.
We can write

[(G|D)=P(D | G)g1(A)g2(T)gs(M)/ f (D). (9:5.1)

The first term on the right can be computed using the peeling algorithm
described in the last section and an appropriate model for mutation among the
sequences. The term g1 (A) on the right of (9.5.1) is the coalescent tree topology
distribution, g2(T") is the density of the coalescence times T', and g3(M) is the
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prior distribution for the mutation parameters M. The normalizing constant
(D) is unknown and hard to compute. The algorithm starts with an arbitrary
choice of A, T and M. New realizations of G are then proposed, and accepted
or rejected, according to the following scheme.

Algorithm 9.1 Basic Metropolis-Hastings method:

Denote the current state by G = (A, T, M).

Output the current value of G.

Propose G' = (A’,T', M") according to a kernel Q(G — G’).
Compute the Hastings ratio

W

b — min {17 m(G)RG" — G) } .

(G0 = &N (952)

5. Accept the new state G’ with probability h, otherwise stay at G.
6. Return to step 1.

Let X(t) denote the state of this chain after ¢ iterations. Once X (t)
has ‘reached stationarity’ its values represent samples from the distribution
m(G) = w(A, T, M). The nature of the algorithm is such that consecutive out-
puts will be correlated. For many problems this might be not a bad thing,
however one should be careful with using the output for calculating standard
errors. But in some cases it is desirable to simulate approximately indepen-
dent samples from the posterior distribution of interest, in which case we use
output from every mt" iteration, for a suitable choice of m.

Current methods

In this section we describe some methods of sampling genealogies. Most of
these algorithms are very similar and often differ only in tree representation
and useful tricks to speed up the computations. All of them start with an
initial genealogy (random or UPGMA) and make small modifications to it.
Choices among possible modifications may be random or deterministic.

The first is due to Kuhner et al. (1995). As before, the genealogy consists
of two parts: the tree topology and a set of times between coalescent events,
but time is rescaled in terms of the overall mutation rate in such a way that
in one unit of time the expected number of mutations per site is 1. Figure 9.1
shows the updating process: choosing a neighborhood (the region of genealogy
to be changed), rearranging the topology in that neighborhood, and choosing
new branch lengths within the neighborhood. This fundamental operation is
applied repeatedly. To make rearrangements, a node is chosen at random from
among all nodes that have both parents and children (i.e., are neither leaves
nor the bottom-most node of the genealogy). This node is referred to as the
target. The neighborhood of rearrangement consists of the target node, its
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child, parent, and parent’s other child. A rearrangement makes changes of
two types: reassorts the tree children among target and parent, and modifies
the branch length within the neighborhood. The lineages to be redrawn are
referred to as active lineages, and the lineages outside of the neighborhood as
inactive lineages.

The times of the target and parent nodes are drawn from a conditional
coalescent distribution with the given mutation rate, conditioned on the num-
ber of inactive lineages. For each time interval, the probability of coalescence
among the active lineages depends on the number of active and inactive lin-
eages present in the genealogy during that time interval. A random walk,
weighted by these probabilities, is used to select a specific set of times.

Fig. 9.1. Steps in rearranging a genealogy. Top left: selecting a neighborhood.
Top right: erasing the active lineages. Bottom: redrawing the active lineages.
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Yang and Rannala (1997) use a stochastic representation of the nearest
neighbor interchange (NNI) algorithm as a core of the transition kernel. This
algorithm generates two neighboring topologies for each internal branch (see
Figure 9.2). Consider an interior branch a — b, where a is the ancestral node
and b is the descendant node. Node ¢ is the other descendant of a, and nodes
d and e are descendants of b. The two neighbors of tree 1 are generated by
interchanging node ¢ with node d (tree 2), and node ¢ with node e (tree 3).

Equal probabilities are assigned to each of the neighboring topologies. The
NNTI algorithm modifies the topology but ignores the ordering of the nodes
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Fig. 9.2. NNI algorithm for a rooted binary tree topology.
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(i-e., labeled history). To modify the NNI algorithm so that the chain moves
between labeled histories, they assign an equal probability to each of the
possible labeled histories for a nominated topology. This involves enumerating
and recording all the labeled histories for that topology. The move to another
labeled history that belongs to the current tree topology is allowed with the
specified probability if the topology has more than one labeled history. Yang
and Rannala use this transition kernel in the study of species data; the time
to the MRCA is scaled to be 1 and times between speciation events have
different distributions than those specified by the coalescent.

Wilson and Balding (1998) designed an algorithm to deal with microsatel-
lite (or short tandem repeat) data. A step-wise model is chosen for the changes
in repeat number at each mutation event. Although calculation of the like-
lihood via peeling is feasible for problems of moderate size, increasing the
dimension of the parameter space by introducing the allelic state of the in-
ternal nodes permits much faster likelihood calculations. The algorithm uses
a very simple method for generating candidate trees. It involves removing
a branch from the tree at random and adding it anywhere in the tree, but
locations close to similar allelic types are preferentially chosen.

Larget and Simon (1999) use an algorithm for moving in a tree space that
is very close to the one developed by Mau et al. (1999). It uses the fact that
for a given choice of ordering all sub-trees from left to right there is a unique
in-order traversal of the tree. Each internal node is adjacent to two leaves in
this traversal, the right-most leaf of its left sub-tree and the left most leaf
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of its right sub-tree. Given the ordering of the nodes and distances between
adjacent nodes, the tree topology and branch lengths are uniquely determined.
Each taxon appears at a peak of the graph, and each internal node is a valley
(see Figure 9.3).

Fig. 9.3. A tree representation.
1 2 3 4 5 1 2 3 4 5

The transition kernel consists of two different moves: global and local.
For a global move one representation of the current tree is selected uniformly
at random by choosing left /right orientation of the two sub-trees with equal
probability for each internal node. Then the valley depths are simultaneously
and independently modified by adding to each a perturbation in either direc-
tion, keeping the depth between 0 and a specified maximum. The local move
modifies a tree only in a small neighborhood of a randomly chosen internal
branch, leaving the remainder of the tree unchanged. Let v and v be the nodes
joined by the randomly chosen edge (see Figure 9.4).

Fig. 9.4. A tree before and after a local move.

h3

h2

h1
max(x,y)

min(x,y)

Leaving positions of a, b, ¢, and w fixed, new positions for nodes u and v
are picked. Let hy < ho < hs be the distances between ¢ and w, a and w, and
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b and w correspondingly. In the local move, x is chosen uniformly at random
from [0, hs], and y is chosen uniformly at random from [0, h1]. Proposed nodes
u* and v* will be distances max(z,y) and min(z,y) from w, respectively. If
max(z,y) < h1, there are three possible tree topologies. One of the children,
a, b, and ¢, is randomly chosen to be joined to v*, with the others becoming
children of u*. If v is the root of the tree, the distances between v and the
children a, b, and ¢ are changed and the new location of u is chosen. The local
move is very similar in character to the method of Kuhner et al. (1995).

9.6 Some alternative updating methods

We have some freedom in choosing the proposal kernel Q(-,-). Ideally Q(-, ")
is relatively easy to calculate since the scheme above may need to iterated
many times in order to converge to stationarity. Furthermore we have to
demonstrate that the chain X (¢) satisfies the conditions of irreducibility and
positive recurrence in order to show that the ergodic theorem applies and so
the limiting distribution is indeed f(A, T, M | D).

We define level [ of the genealogy to be the first point at which there are [
distinct ancestors of the sample. The bottom of a genealogy of n individuals
is therefore referred to as level n, and the MRCA of the sample is level 1.
Recall that T; denotes the time between levels [ and [ — 1. To propose a new
graph (A’,T") we considered three different proposal kernels.

A bad sampler

Here is a simple algorithm:

1. Pick a level, I say (I =n,n—1,...,2), according to an arbitrary distribu-
tion F'.

2. Delete upper part of the tree starting from level [.

3. Attach a new top of the tree generated according to the coalescent prior
for a sample of [ individuals.

4. Generate a new time 77, to replace the old T; according to an exponential
distribution with parameter I(I — 1)/2.

This algorithm works poorly, mainly because the suggested changes were too
global. If we chose level [ close to the bottom of the tree and attach a random
top to it, then the new tree will be very different from the old one and has
small chance of being accepted. As a result our sample will consists of trees
with similar topologies and almost the same likelihood. But sometimes quite
a different tree might be accepted and our Markov chain would move to other
part of state space and stay there for long time. Figure 9.5 is an example of
such a chain. This algorithm seems not to be very efficient in exploring the
state space of trees.

The following algorithm looks simple and is easy to implement. It makes
changes which are more local than the algorithm described above.
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Fig. 9.5. Time series plot of log-likelihood
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1. Pick a level, I say (I =n,n—1,...,2), according to an arbitrary distribu-
tion F'.

2. Label the [ lines 1,2,...,1.

3. Let L; and L; be the two lines which coalesce.

4. With probability 1/2 replace this coalescence by one between L; and a
randomly chosen line (possibly resulting in the same topology as before).

5. Otherwise replace this coalescence by one between L; and a randomly
chosen line (also possibly resulting in the same topology as before).

6. Generate a new time T}, to replace the old T; according to an exponential
distribution with parameter [(I — 1)/2.

An example of a possible move, for a genealogy of five individuals, is shown
in Figure 9.6.

This algorithm also does not work well, primarily because it is relatively
hard to switch the order of two coalescence events. For example, we need
several iterations of the algorithm to move from G to G’ as illustrated in
Figure 9.7.

Theoretically, this kernel has all the required properties, but it is simply
not efficient. We might try other distributions for the choice of level I, or for
the new time 77, but it is doubtful these would help. Our experience was that
the algorithm became stuck in local maxima which required a re-ordering of
coalescences in order to escape.
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Fig. 9.6. A move in the sampler

Fig. 9.7. Change of order of two coalescences
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A good sampler

Lack of success with first two algorithms leads to the following approach,

described in Markovtsova et al. (2000).

Algorithm 9.2 Local updating method.

1. Pick a level, I say (I =n,n—1,...,3), according to an arbitrary distribu-

2.

For the chosen [ observe the pattern of coalescence at levels [ —1 and [ — 2.
This pattern falls into two cases, according to whether the coalescence at
level I — 2 involves the line which results from the coalescence at level
I — 1. These are illustrated in Figure 9.8. In Case A our kernel randomly
generates a new topology involving the same three lines of ancestry; this
new topology will also be Case A and may be the same topology with
which we began. These are illustrated in Figure 9.9. In Case B we change
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Fig. 9.8. Two possible coalescence patterns
Case A Case B

the order of the two coalescence events. So, for the example drawn above,
we move to the state shown in Figure 9.10.

3. Generate new times 7] and 7], according to an arbitrary distribution,
and leave other times unchanged. Thus we only alter the times correspond-
ing to the levels at which the topology has been changed. This ensures
that (A, T") is similar to (A, T) and therefore has a reasonable probability
of being accepted.

There are several variants of Step 2 of the above scheme. For example, one
can allow the topology to remain the same in Case B, but not in Case A. We
also tried a variant of Case B in which we proposed a new Case B topology
uniformly from the six possible choices in which the four lines are paired
randomly. None of these variations impacts significantly on the results.

Fig. 9.9. Possible moves in Case A
0] (i) (iii)

There are many possible choices for the updating times 7} and 7} ;. One
might propose new values of T]f from the pre-data coalescent distribution as
it was done in first two algorithms. Second, one might generate times from
a Normal distribution with mean equal to the currently accepted value T}.
We chose to truncate the Normal distribution in order to ensure that nega-
tive times were not proposed. The variances of the Normal distributions are
parameters that can be tuned to get good mixing properties. Unfortunately,
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Fig. 9.10. Possible moves in Case B
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the optimal choice of variance appears to be highly data-dependent. In prin-
ciple all choices are valid, but the rate of approach to stationarity, and the
correlation between consecutive iterations, can vary significantly. The second
approach might work better when trees are much shorter, or longer, than
would be expected a priori.

Finally, we update the mutation parameter M = (g) every k iterations.
There are several ways to do it. First one is to propose new value g’ from
prior distribution. This updating mechanism works well in the case when
the prior for g is very concentrated, i.e. a uniform with narrow support or a
Normal distribution with small variance. This approach might be used when
some external information is available. Second one is to generate new value g’
according to truncated Normal distribution with mean g. The variance of this
distribution requires some tuning to ensure well-behaved, i.e. uncorrelated,
output. This approach works fine in case of uninformative prior or prior with
wide support.

The Hastings ratio

Writing G = (A, T, M), the kernel @ can be expressed as the product of three
terms:

QG—-G)Y=Q1(A—=A) QT - T | A— A)Qs(M — M').
Consequently the Hastings ratio can be written in the form

P(D \ G/) 91(/1/) 92(T/) 93( /)
IP(D | G) gi(A) g2(T) gs(M

h= min{l7

% Ql(/l/—>/1) QQ(T/—>T|A/—>A) 3
Q1A= A) QT =T | A— A) Q3

)
%/_) M,; } . (96.1)

the unknown term f(D) cancelling. We can further simplify (9.6.1) by noting
that, since pairs of lines are chosen uniformly to coalesce, all topologies are,
a priori, equally likely. Hence ¢1(A’) = g1(A). Furthermore, our transition
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kernel changes only two of the times on the tree, T; and T;_; say. Finally, it
is easy to show that Q1(4 — A’) = Q1(A" — A), reducing (9.6.1) to

P(D | ') g2(T")g3(M’) fu(ts) fi-1(ti1) Qs(M’ — M) }
P(D[G) 0:@)gs) fill))ii(tjy) QoM —31) [
(9.6.2)

where f;(-) and f;_1(-) are the densities of the time updating mechanism at
levels [ and [ — 1.

If one uses a transition kernel which proposes new times that are expo-
nential with parameter (I — 1)/2 at level [, (i.e. the unconditional coalescent
distribution for times), then further cross-cancellation reduces (9.6.2) to

h = min {1 P(D | G") gs(M') Qs(M' — M>}
" P(D| G) gs(M) Qs(M — M)

h = min{l,

(9.6.3)

A similar simplification also follows if one proposes new mutation rates inde-
pendently of the currently accepted rate and

— i P(D | &)
h = min {1, m} . (9.6.4)

In order to test the algorithm for moving around tree space, we can use
a simple mutation model for which there are alternative algorithms. One ob-
vious choice is the infinitely-many-sites model, for which we have already
developed some theory in Section 7. The data take the form of the number
of segregating sites in the sample, and Algorithm 7.3 can be used to generate
observations from the posterior distribution of features of the tree, conditional
on the number of segregating sites observed.

9.7 Variable population size

The methods discussed in above can easily be adapted to model populations
which are not of a fixed constant size. As in Section 2.4, let N(¢) denote
the population size at time ¢, where time is measured in units of N = N(0)
generations, and write

N(t) = FON(0), A(t) = /0 ﬁdu.

If A, (t) is the ancestral process for a sample of size n evolving in a population
of constant size, AY(t) = A, (A(t)) is the coalescent process appropriate for
the population of varying size.

We let 1)) record the coalescent time spent with k lines of descent in
a growing population. The algorithm works by manipulating the underly-
ing coalescent times, {T;}, defined on the original coalescent time-scale, and
subsequently transforming them to times in the varying population while cal-
culating probability of data given tree.
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Define S; = Z;L:Z 41 T;. Si represents the amount of standard coalescent
time taken to get to a level with ¢ lines of descent present. Similarly, S =
Z?:H_l T} in the varying population. We transform the S; to the S via
SY = min{s: A(s) = S;}. The proposal kernel works by manipulating the
underlying coalescent times, {7T;}. Assuming we have picked level ! in our
updating step, new times Tf/7 Tf_ll are proposed as follows. We begin by
generating new times 7/ = ¢; and T}/, = ¢;_,. Having done so, we recalculate

Sk for all k < [. From these values we derive the new {Sf/}7 noting that
5 =8V fori > 1.

9.8 A Nuu Chah Nulth data set

We illustrate our approach with a sample of mitochondrial sequences from
the Nuu Chah Nulth obtained by Ward et al. (1991). The data D are 360
bp sequences from region I of the control region obtained from a sample of
n = 63 individuals. The observed base frequencies are (7wa,7q,7c,nr) =
(0.3297,0.1120,0.3371, 0.2212). The data have 26 segregating sites and a mean
heterozygosity of 0.0145 per site. There are 28 distinct haplotypes with a
haplotype homozygosity of 0.0562. We fit two models to these data, both of
which are variants of Felsenstein’s model described in Section 9.2:

Model 1. All sites mutate at the same rate, so that g; = g for all sites i.
Here M = (g, k).

Model 2. The special case of Model 1 in which & is assumed known, so
that M = (g).

Model 2 above serves as the simplest description of mutation in hypervariable
region I of mtDNA. It was used by Kuhner et al. (1995) in their analysis of
the same data set.

We implemented the MCMC approach described in Algorithm 9.2. One
should begin to sample from the process X (-) once it has “reached stationar-
ity”. There are many heuristic tests for this, none of which is infallible. For
a critique see Gilks et al. (1996). Some simple diagnostics are functions of
the statistics of interest such as autocorrelations and moving averages. It is
also valuable to run the chain from several different, widely spaced, starting
points, and compare the long-term behavior.

The output typically appeared to be non-stationary for up to 200,000
iterations of the algorithm. We sampled every 10,000th iteration in order
to approximate a random sample from the stationary distribution. In a bid
to be very conservative, and since the algorithms run rapidly, we generally
discarded the first 2500 samples. After this, our output is typically based
on 5000 samples. The acceptance rate was typically around 80%. For runs
in which, for example, we needed to tune the variance parameter, the burn-
in length varied but the estimated parameter values were unchanged for the
different variances we tried.
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Figure 9.11 shows the resultant time series for the log-likelihood, the muta-
tion parameter 6, the time to the MRCA and their associated autocorrelation
functions. These appear fine, with the proviso that the time series of log-
likelihoods is correlated for several lags. While this is not in itself a problem
it means one must interpret standard errors with care. As a further check for
convergence to stationarity we used the package of diagnostics provided in
CODA (Best et al. (1995)). All tests were passed.

Fig. 9.11. Example diagnostics
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Some time can be saved by starting the process from a genealogy (A, T) for
which P(A, T | D) is relatively high. The rationale for this is that it is sensible
to start from a region of the state-space which is well supported by the data.
As an example of this one might use the UPGMA tree for the data-set, as
described in Kuhner et al. (1995). However, we prefer to start from random
tree topologies since convergence from different starting points is potentially
a useful diagnostic for stationarity.

The analysis of Model 1 gave a median for « of 65.1, with 25th and 75th
percentiles of 32.7 and 162.7 respectively. Note that the data are consistent
with no transversions having occurred during the evolution of the sample.
Consequently, the posterior distribution for  has a very long right tail and
statistics for the mean, which are strongly influenced by outliers, are poten-



140 Simon Tavaré

tially misleading and are therefore not presented. The median value of g was
6.87 x 10~* and the median value for w was 4.47 x 10~2. These results show
that the data are consistent with a value of k = 100, as assumed by Kuhner
et al. (1995).

In what follows we also took k = 100, and a uniform prior on (0, 100) for 6.
The posterior distribution of the effective mutation rate has a median of 0.038,
mean 0.039 and 25th and 75th percentiles of 0.033 and 0.045 respectively.
Figure 9.12 shows the posterior distribution of 6.

Fig. 9.12. Posterior density of per site effective mutation rate 6
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Since the posterior density of 8 is proportional to the likelihood in this
case, we may use an estimate of the posterior density to find the maximum
likelihood estimate of 8. From the density shown in Figure 9.12, we obtained
an MLE of § = 0.038. Kuhner et al. (1995) obtained the value § = 0.040
for these data, using the same value of k. Presumably the difference in the
estimates arises from both the parameters chosen for the density estimation,
and the different approaches to the optimization. From an estimate of the
curvature of the log-density we get an estimate of the standard error of 6 of
0.010, resulting in an approximate 95% confidence interval of (0.018, 0.058).

Remark. Estimates of standard errors based on curvature of the log-density
should be treated as heuristic. In problems such as these, 6 cannot be esti-
mated consistently so the standard theory does not apply.

For comparison, the Watterson estimator (5.3.7) of 6, based on 26 segre-
gating sites in the data, is 0.015 with an estimated standard error of 0.005; the
95% confidence interval for 6 is then (0.005, 0.025). The lower MLE obtained
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using the Watterson estimator is expected, because multiple mutations at the
same site are ignored.

The prior distribution of the time to MRCA of a sample of n = 63 has
a mean of 2(1 - 1/63) = 1.97. With an effective size of N = 600, a 20 year
generation time and a value of 02 = 1 for the variance of the offspring dis-
tribution, this is about 23,600 years. The posterior distribution of the time
Twvrca to the MRCA (in years) has median 7700, mean 8100 and 25th and
75th percentiles of 6500 and 9300 respectively. The corresponding posterior
density appears in Figure 9.13. The joint posterior density of Tyirca and 6
is given in Figure 9.14. For a frequentist approach to inference about Tyrca,
see Tang et al. (2002).

Fig. 9.13. Posterior density of time to MRCA
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Testing goodness-of-fit

The adequacy of the fit of models like these can be assessed using the Bayesian
posterior predictive distribution. To implement this, we use a variant of the
parametric bootstrap. The idea is to simulate observations from the posterior
distribution of (A, T, M), and then for each of the trees (A, T) to simulate
the mutation process with parameters specified by M. The distribution of
certain summary statistics observed in the simulated data is found, and the
values of the statistics actually observed in the data are compared to these
distributions. We chose to use the number of haplotypes, the maximal haplo-
type frequency, the haplotype homozygosity, the number of segregating sites
and a measure of nucleotide diversity. In practice, we use the output from
the MCMC runs to generate the observations on (A, T, M). In Table 11 we
give the results of this comparison for Model 2 using 4000 values from each
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Fig. 9.14. Joint posterior density of TMRCA and 6
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posterior distribution. There is some evidence that the constant rate model
does not fit well, particularly regarding the haplotype distribution. The total
number of segregating sites observed in the bootstrap samples gives some ev-
idence of lack-of-fit; the model predicts more segregating sites than are seen
in the data. One explanation for this apparent discrepancy might be that the
model is not allowing for rate heterogeneity, and therefore does not typically
produce enough recurrent mutations. This will lead to a tendency for the mu-
tations which do occur to be spread over a greater number of sites. A model
that allows for multiple classes of rates appears in Markovtsova et al. (2000b).

Remark. For an implementation of Bayesian methods for the coalescent

(and many other species tree problems), using Metropolis-coupled MCMC,

see Huelsenbeck and Ronquist’s MrBayes program, at
http://morphbank.ebc.uu.se/mrbayes/info.php

9.9 The age of a UEP

In this section we provide an MCMC approach that can be used to find the
posterior distribution of the age of a unique event polymorphism (UEP). As
in the introduction of Section 8, there are several versions of this problem.
For the most part, we assume that we have sequenced a region of DNA, and
have determined for each of them whether or not the UEP is present. The
key figure is given in Figure 8.1. Let U denote the single event that causes
the UEP mutation A. The scaled mutation rate at the UEP locus is p/2. The
event that the coalescent tree has the UEP property is, once again, denoted
by €. For definiteness we assume that the sequences are evolving according to
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Table 11. Assessing goodness-of-fit of Model 2

Model 2
Fraction of
Observed| simulations <
Statistic value |observed value
# haplotypes 28 0.83
max. haplotype
frequency 9 0.36
homozygosity | 0.0562 0.12
heterozygosity
per site 0.0145 0.36
# segregating
sites 26 0.05

Felsenstein’s model. The material in this section comes from Markovtsova et
al. (2000a).

Modification of Markov chain Monte Carlo method

The event U corresponds to a single mutation arising on the branch indicated
in Figure 8.1 and no other mutations on the rest of the coalescent tree. Let
A denote the age of the UEP, and denote the mutation parameters by M =
(g9, K, 1t). In what follows we assume a prior distribution for M, and apply
an MCMC method for generating observations from the conditional density
FAG|D,ENU) of Aand G = (A, T, M) given D, € and U. To do this we
express the required conditional density as a product of simpler terms and
describe how each can be calculated.
First we note that

FAG|DUNE) = F(A| G, D,UNEF(G | DUNE). (9.9.1)

The first term on the right of (9.9.1) can be evaluated by considering Figure 8.1
once more. Given that a single mutation occurs on the indicated branch, the
Poisson nature of the mutation process for the UEP means that the location of
the mutation is uniformly distributed over that branch. Thus we can simulate
observations from the conditional distribution of A by simulating from the
second term on the right of (9.9.1), reading off the length of the branch on
which the UEP mutation occurs, and adding a uniformly distributed fraction
of that length to the height of the subtree containing all the chromosomes
carrying the UEP. Our task is therefore reduced to simulating from the second
term on the right of (9.9.1).

Let g1(A | €) denote the conditional distribution of the coalescent tree A
given &, g2(T') the density of the coalescence times T, and gs(M) the prior
for the mutation rates M = (g, k, ). We can then write
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HGIDUNE) =P(D, UG, E)gi(A] €)ga(T)gs(M)/P(D, U E). (9.9.2)
The term IP(D, U | G, &) is the product of two terms,
P(D,U|G, &) =P(D|G,EPU|G,E).

The first of these, the likelihood of D, can be computed using the peeling
algorithm and the mutation model described above, while the second is

?e—MS/Q w e H(In=5)/2 _ %6_“[’”/2, (9.9.3)

where S is the length of the branch on which the single UEP mutation must
occur, and L, = Y1 ,4T; is the total length of the tree. The normalizing
constant IP(D, U N &) is unknown, and hard to compute. As a consequence,
we use a version of the Metropolis-Hastings algorithm to simulate from the
required conditional distribution.

Proposal kernel

We make a minor modification to Algorithm 9.2 in order to ensure that new
trees are also consistent with the event €. If, when we pick a level, we find
we are in case A, and exactly two of the lines carry the UEP, then we cannot
change the order in which the two coalescences occur, since such a change
would produce a new tree topology which is inconsistent with €. In such a
situation we leave the topology unchanged.

Having constructed a new topology, which may be the same as the existing
topology, we generate a new set of times in the same way as it was described
in Section 9.5. We found that a kernel which proposes new values of 7} and
Tl’_1 having the pre-data coalescent distribution worked well.

Finally, we update M = (g, k, 1), where g and k are the rate parameters for
the sequence model and p is the rate parameter for the UEP. The parameters
g and k were updated every tenth iteration, and p was updated on each
iteration for which g was not updated. These were updated using truncated
Normals, whose variances require some tuning.

The Hastings ratio

Writing G = (A, T, M), the kernel @ can be expressed as the product of three
terms:

QG - G)=Q1(AN = AN) QT =T | A" — A) Q3(M' — M).

Using (9.9.1), (9.9.2) and (9.9.3), the Hastings ratio (the probability with
which we accept the new state) can be written in the form
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PO |G E)PU |G E) gi(A | E) go(T") gs(M')
P(D|G,€) PU|G,E) gi(A]€) g2(T) g3(M)
QA" = A) Qo(T" > T | A — A) Qs(M' — M)}
QA= A) QAT - T | A— N)Qs(M — M') |

h= min{l7

the unknown term P(D, UN €) cancelling. For our choice of transition kernel
Q, it can be shown that g (A’ | &) = g1(A | €). We also have Q1(A — A') =
Q1(A" — A), and we note that @ changes only two of the times associated
with T or T”. Hence h reduces to

PD |G, E)PU|G,E) g2(T")gs(M')
P(D|G,€) P(U|G,E) g2(T)gs(M)
o filt) i (o) Q3(M' — M)}

ft) fiea(t_y) Qa(M — M) |7

h= rnin{l7

(9.9.4)

where f;(-) and f;_1(-) are the densities of the time updating mechanism given
that changes occur to the tree A at levels [ and [ — 1.

In Section 8 we derived a number of theoretical results concerning the
age of a UEP given its frequency in the sample in the limiting case y —
0. In order to compare these results with those obtained by including the
sequence information, we modified our algorithm to allow p = 0. Assuming
k is known, the mutation parameter M is now one-dimensional: M = (g).
The other change occurs to the conditional probability in (9.9.3), since now
P(U| G, &) x S, the length of the branch on which the UEP mutation must
occur. This change appears in the Hastings ratio (9.9.4), where

PU|G,E) S

PU|GE S’

In order to check tree moves, we can again use the infinitely-many-sites
model of mutation. We compare distributions of time to the most recent com-
mon ancestor of the group of individuals carrying a specific mutation, the
length of the corresponding sub-tree and the time to the mutation generated
by the rejection method described in Algorithm 8.2 for the y = 0 case, and
the modified version of our general MCMC scheme.

9.10 A Yakima data set

To illustrate the method we find the conditional distribution of the age of the
9 basepair mitochondrial region V deletion in a sample of Yakima described
by Shields et al. (1993) The sample comprise n = 42 individuals, of whom
b = 26 have the deletion. The data D comprise 360 basepairs from hyper-
variable region I of the control region, sequenced for all 42 individuals. The
observed base frequencies are (w4, g, 7o, 7r) = (0.328,0.113,0.342,0.217).
We note that all individuals having a given control region sequence had the
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same deletion status, as might be expected if the deletion arose once quite
recently.

For the analysis discussed here, the output typically appeared to be non-
stationary for at least 200,000 iterations of the algorithm. We generally dis-
carded the first 25 million iterations. After this, we sampled every 5,000th
iteration. Our output is typically based on 5000 samples from our stationary
process. The acceptance rate was generally around 70%.

Preliminary analysis of the sequence data (without regard to presence
or absence of the deletion) was performed using the approach outlined in
Section 9.5. For the present mutation model, we took uninformative priors (in
the form of uniform densities having wide but finite support) for the mutation
rates g and w and examined the posterior distribution of x = w/g. The
posterior median was 65.9, the distribution having 25th percentile of 34.0 and
75th percentile of 160.2. The data are certainly consistent with the value of
k = 100 we used in the Nuh Chah Nulth example in Section 9.8. We therefore
treat k = 100 as fixed in the subsequent analyses; from (9.1.7) we find that
0 = 88.17g.

We repeated the analysis with an uninformative prior, uniform on (0, 0.1),
for the single parameter g. This resulted in the posterior density for 6 given
in Figure 9.15. Summary statistics are shown in Table 12. Our approach also
provides a way to find the maximum likelihood estimator of €, since with a
flat prior the posterior is proportional to the likelihood. From a kernel density
estimate we obtained an MLE of 6 = 0.039 with an estimated standard error
of 0.010. This is consistent with the estimate of 6 we found for the Nuu Chah
Nulth data. Since the base frequencies in both data sets are similar and the
mutation rates are likely to be the same, we conclude that the effective sizes
of the two populations are also approximately equal. The effective population
size of the Nuu Chah Nulth was estimated from anthropological data by Ward
et al. (1991) to be about N = 600, a number we take for the Yakima as well.

Under the pre-data coalescent distribution, the mean time to the MRCA of
a sample of n = 42 is 2(1 - 1/42) = 1.95. With an effective size of N = 600 and
a 20 year generation time, this is about 23,500 years. The posterior density of
the time to the MRCA given the control region data D is shown in Figure 9.16.
The posterior mean is 0.72, or about 8,600 years. Summary statistics are given
in Table 13. The posterior distribution of the total tree length Lo = Z;iz 3T
has mean 5.68.

We turn now to the deletion data. We ran our MCMC algorithm using
a uniform (0, 10) prior for u, and a uniform (0, 0.1) prior for g. The poste-
rior density of # is shown in Figure 9.15. Summary statistics are presented
in Table 12. The distribution is qualitatively the same as that obtained by
ignoring the deletion data. The posterior distribution of the deletion param-
eter 1 has mean is 0.75 and median 0.61; the 25th percentile is 0.34 and the
75th percentile is 0.99. The posterior density of the time to the MRCA of the
group carrying the deletion is shown in Figure 9.17. The summary statistics
are found in Table 14.
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Fig. 9.16. Posterior density of TMRCA

Table 12. Summary statistics for 6

0 no deletion |y variable|y = 0
mean 0.044 0.045 ]0.041
median 0.042 0.043 ]0.040
25th percentile|  0.036 0.037 ]0.034
75th percentile| 0.050 0.051 {0.047
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Table 13. Summary statistics for time to MRCA of the sample.

Time to MRCA | no deletion | u variable u=0
mean 0.72 0.70 0.76
(8,600 yrs) |(8,400 yrs)| (9,200 yrs)
median 0.69 0.67 0.73
(8,300 yrs) |(8,000 yrs)| (8,800 yrs)
25th percentile 0.57 0.56 0.61
(6,800 yrs) |(6,700 yrs)| (7,300 yrs)
75th percentile 0.84 0.81 0.88
(10,100 yrs)|(9,700 yrs)|(10,600 yrs)

Fig. 9.17. Posterior density of TMRCA of deletion

The deletion arises uniformly on the branch indicated in Figure 8.1, so that
the age of the mutation is the time to the MRCA of the deletion group plus
a uniform fraction of the mutation branch length. The posterior distribution
of the age is given in Figure 9.18, and summary statistics in Table 15.

We also looked at the time to the MRCA of the entire sample when the
deletion status of each sequence is included. The posterior density of this
time is shown in Figure 9.16, with summary statistics given in Table 13. For
these data the inclusion of deletion status has little effect on the posterior
distribution.

The output from the MCMC runs can be used to assess whether the UEP
assumption is reasonable. We first generated 5000 observations of the tree
length L4o conditional on the data D; as noted above, the sample mean is
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Table 14. Summary statistics for the time to MRCA of the group carrying the
deletion.

Time to MRCA |p variable| p =0
mean 0.20 0.21
(2400 yrs)|(2600 yrs)
median 0.19 0.20
(2300 yrs)|(2400 yrs)
25th percentile 0.15 0.16
(1800 yrs)|(1900 yrs)
75th percentile 0.24 0.25
(2900 yrs)|(3100 yrs)

Fig. 9.18. Posterior density of age of deletion

5.68. The modal posterior value of u is 0.30, a value that we treat as a point
estimate of p. The expected number of deletions arising on the coalescent
tree is then 0.30 E(L42|D)/2, which we estimate from the posterior mean tree
length as 0.30 x 5.68/2 = 0.85. We can also use this value of p and the
simulated values of L4o to estimate the probability that exactly one mutation
would occur on such a tree; we obtained an estimate of 0.36. Similarly, we
estimated the probability of at least one mutation occurring as 0.57, so that
the conditional probability that the mutation occurred once, given it occurred
at least once, is estimated to be 0.63. Thus it is not unreasonable to assume
that the deletion arose just once.

When p = 0, the posterior density of 8 is shown in Figure 9.15, with sum-
mary statistics given in Table 12; there is little difference from the case where
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Table 15. Summary statistics for age of the deletion.

Age of deletion|p variable|] p =0
mean 0.34 0.36
(4100 yrs)|(4400 yrs)
median 0.31 0.33
(3700 yrs)|(4000 yrs)
25th percentile 0.23 0.25
(2800 yrs)|(3000 yrs)
75th percentile 0.41 0.44
(5000 yrs)|(5300 yrs)

1 is allowed to vary. The posterior density of the time to the MRCA is given
in Figure 9.16, with summary statistics in Table 13. The mean time of 0.76
(or about 9,100 years) stands in marked contrast to the value of 2.68 (about
32,200 years) obtained from Griffiths and Marjoram (1996). The summary
statistics for the posterior distribution of the time to the MRCA of the group
carrying the deletion are given in Table 14. The results are qualitatively the
same as the case of variable u. The posterior density of the age of the deletion
appears in Figure 9.18, with summary statistics shown in Table 15. The pos-
terior mean is 0.36 (or about 4,400 years), compared to the value of 1.54 (or
about 18,500 years) obtained from equation (8.3.4) when the sequence data
are ignored. As expected, the mean age is higher than it is when p is non-zero.
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10 Recombination

In this section we study the generalization of the coalescent to the case of
recombination. The basic groundwork of the subject comes from the seminal
paper of Hudson (1983) and the ancestral recombination graph described by
Griffiths (1991). We study the two locus model first, and then generalize to
a model with arbitrary recombination rates. Later in the section we discuss
methods for estimating the recombination rate, the behavior of measures of
linkage disequilibrium, and uses of the coalescent for fine-scale mapping of
disease genes.

10.1 The two locus model

Consider two linked loci, A and B, in a population of fixed size N chromo-
somes; neutrality, random mating and constant population size are assumed
as before. For convenience, suppose the population reproduces according to a
Wright-Fisher model with recombination: independently across offspring, in
the next generation

(i) with probability 1 — » the individual chooses a chromosome from the
previous generation and inherits the genes at the A and B loci.

(ii) with probability r the individual chooses 2 chromosomes from the previous
generation and inherits the gene at the A locus from one and the gene at
the B locus from the other.

In this model recombination is possible only between the two loci. If we focus
on either of the two loci alone, we are watching a Wright-Fisher process evolve.
It follows that the genealogical tree of a sample from one of the loci is described
by the coalescent. There is thus a genealogical tree for each of the two loci. The
effect of recombination is to make these two trees correlated. If r = 0, the loci
are completely linked and the trees at each locus are identical. Early results
for this model were obtained by Strobeck and Morgan (1978) and Griffiths
(1981).

We consider the case in which N is large and r is of order N~!; this
balances the effects of drift and recombination. We define the (scaled) recom-
bination rate p by

p= lim 2Nr (10.1.1)

N—o0

The ancestral process

Just as in the earlier model, we can calculate the chance that if there are
currently k£ ancestors of the sample then in the previous generation there are
also k. To the order of approximation we need, this occurs only if there are
no recombination events in the k ancestors as they choose their parents, and
the k£ also chose distinct parents. This event has probability
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(1—r)k (1—%)-~-(1—k—&1>,

which, in the light of (10.1.1) is just

kp  k(k—1) 9
1—————~+0O(N*).
2N 2N ( )
In a similar way, we can compute the probability that the number of distinct
parents chosen in the previous generation increases from k to k + 1. To the
order we need, this occurs if precisely one recombination event occurs and the
other k — 1 ancestors choose distinct parents. A straightforward calculation
shows that this probability is
kp
L 4 O(N72).
Finally we can compute the chance that the number of ancestors goes down
by 1, from k to k — 1. The same sort of calculation shows this is

k(k — 1)

-2
OV,

All other possibilities have smaller order. Thus we conclude that the number
AN(Nt) behaves in the limit as N — oo like continuous time birth and death
process in which the transition rates are

k—k+1  atrate kp/2
k—k—1 atrate k(k—1)/2

starting from state n. Because of the quadratic death rate compared to the
linear growth rate, it is clear that the process will visit the value 1 infinitely
often. The first occurrence of 1 corresponds to an MRCA.

A number of properties of the ancestral process A% (-) can be found simply.
Let M, denote the maximum number of ancestors of the sample before it
reaches its MRCA, and let 7,, denote the time to this MRCA. Griffiths (1991)
proved:

Lemma 10.1 The expected TMRCA is given by

2 1 1— n—1
Er, = _/ (L> ("= — 1)d, (10.1.2)
0

p 1—w

and the distribution of M, is given by

AN 1P )
P(M, < k) = Ljmnadte”

= - k=>n (10.1.3)
S il
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Proof. The expected height follows from standard results for birth-and-death

processes. Define

/.142 PN 'ull-71
Ao N

For the ancestral process, it can be checked that p; = 2p*~2/il. The waiting

time to reach 1 has mean given by

n—1 r e
S (i1%) 5

Jj=r+1

pi =

where empty products have value 1 by convention. In our setting, this reduces
to

m — 2 (m + 2)
Er, = 2 l
T 77122; (I +m)!(m+1)!

n—1
g/ <11L> (e”1=") — 1)dv.
pPJo -

To find the distribution of M, define p, (k) = P(M,, < k), with p;(k) =
1,k > 1 and p,(k) = 0 if n > k. By considering whether a coalescence or a
recombination occurs first in the ancestry of the sample, we see that

n—1
P (k) + —2

R ——Pnt1(k),
p+n—1 p+n—1p +1(k)

pn(k) =

and it may readily be checked by induction that the solution is given by
(10.1.3). O
As p | 0, we see from (10.1.2) that Er,, — 2 fol(l — o dv = 2(1—1/n),

as expected from our study of the coalescent. As p — oo, E7,, — oo also.

When n = 2, we have
Em =2p7%(e” —1-p),
and as n — oo,
2 1
Eree = —/ v (e — 1)dv.
P Jo

This last can be interpreted as the time taken for the whole population to be
traced back to its common ancestor.

It follows from (10.1.3) that M, /n — 1 in probability as n — oo, showing
that the width of the graph does not exceed n by very much.

The ancestral recombination graph

We have seen that the ancestral process starts from A?(0) = n, and has the
property that if there are currently k ancestors then
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(i) Any particular pair of branches coalesce at rate 1.
(ii) Any given branch splits into two at rate p/2.

The ancestral process A% (-) is of limited use on its own; just as in the coa-
lescent setting it is the way these individuals are related that matters. This
leads to the idea of the ancestral recombination graph (or ARG). We construct
such an ancestral recombination graph in such a way that when two edges are
added at a recombination event, the genes represented by the left branch cor-
respond to the A locus, and the right edges correspond to the B locus. In this
way the ancestry of the A locus may be traced by following the left branch
at each split, and the ancestry of the B locus by following the right branch.
The ancestry of the A locus is a coalescent tree T4, and the ancestry of the
B locus is a coalescent tree Tp. These trees are dependent. Each tree has its
own MRCA (which might be the same). An example of the ancestral graph,
together with the two subtrees T4 and T is given in Figure 10.1. The MRCA
at each locus marginally is denoted by a e.

Fig. 10.1. Two locus ancestral recombination graph

i

]

Ancestral tree Ancestral tree Ancestral graph

Note that 7, may now be interpreted as the height of the ARG, and M,
may be interpreted as its width. Of course, 7, is at least as great as the time
taken to find the MRCA at the A locus and at the B locus.

The structure of the ARG

In this section, we study the structure of the genealogical graph G in more
detail. The graph includes the coalescent tree T4 of the A locus and the
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coalescent tree Tp of the B locus. Denote the edge set of a graph by £(-). It
is useful to partition the edges £(9G) into four disjoint sets:

A =E(Ta)NETB)%
B=E(Ta)NETB);
C=E,(Ta)NETB);
D=EG)NETA)NETE)

Those edges in A represent ancestors who contribute to the genetic mate-
rial of the sample at the A locus only, and similarly for B and the B locus.
Edges in € correspond to ancestors that contribute genetic material at both
loci, and those in D contribute no genetic material to the sample.

At any given time ¢, the ancestors of the sample (i.e. the edges £(G;) of
the ancestral graph G; of a cross section of G taken at time ¢) can be divided
into these four types. Define

where | - | denotes the number of elements in a set. Clearly
na(t) + ns(t) + ne(t) + no(t) = [E(S:)] = Af (1),
where AP (t) is the ancestral process of the ARG. Furthermore,
na(t) +ne(t) =1E(Ta(t) = An(?), (10.1.4)

and
ng(t) + ne(t) = €T (1)) = Ba(t), (10.1.5)

where A, (-) and B, (-) are the marginal ancestral processes for the A and B
loci respectively.
Of interest is the evolution of the process

m(t) = (na(t),ns(t), ne(t), no(t), t>0.

One way to think of the process m is to label edges as (1,0), (0,1), (1,1), or
(0,0) according as the edge is in A, B, €, or D respectively. When a coalescence
occurs to two edges of type (a, 8) and (7, ) the resultant ancestor is of type
(max(a,v), max(f3,9)), and if a recombination occurs to an edge of type (a, 3),
the two new edges are of type («,0) and (0, 3).

Ethier and Griffiths (1990a) show that the process is Markovian. If the
current state is (a,b, ¢, d), the next state and its transition rate are given by
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(a+1,b+1,¢—1,d) cp/2
(a—1,b—1,c+1,d) ab

(a—1,b,¢,d) ac+ala—1)/2
(a,b—1,¢,d) at rate be+b(b—1)/2
(a,b,c—1,d) c(e—1)/2

(a,b,c,d+ 1) (a+b+d)p/2
(a,b,c,d—1) dla+b+c)+d(d—1)/2.

To see this, consider first the transition (a,b,¢,d) — (a+1,b+1,¢—1,d): this
occurs if a recombination event occurs on an edge of type (1,1). This results in
loss of a (1,1) edge, and the addition of one (1,0) edge and one (0,1) edge. The
rate of such changes is ¢p/2. Considering the change (a, b, ¢,d) — (a—1,b,¢,d)
for example, we see that this results from a coalescence of a (1,0) edge and a
(1,1) edge, or the coalescence of two (1,0) edges. Both possibilities result in
the net loss of a (1,0) edge. The first type of change occurs at rate ac and the
second sort at rate a(a—1)/2. In a similar way the other transitions and their
rates may be verified. The overall transition rate is the sum of these rates; if
a+ b+ c+ d = n, this rate is given by d,, = cp/2 + n(n —1)/2.

There is a reduced version of the Markov chain m(-) that records only the
first three coordinates:

n(t) = (na(t),ns(t),ne(t)), t>0.

Examining the transition rates of m(-) given above shows that n(-) is also
Markovian, and from a state of the form (a, b, ¢) its transitions are to

(a+1,b+1,c—1) ry=cp/2
(a—1,b—1,¢+1) ro = ab

(a1,b1,¢1) =1 (a— 1bc) at rate r3 =ac+ala—1)/2 (10.1.6)
(a,b—1,¢) rg =bc+b(b—1)/2
(a,b,c—1) rs =c(c—1)/2

Note that recombination takes place only on the edges in C. The rate of change
from a state (a,b,c) with n = a + b+ c is given by

n(n—l).

dp 5

& (10.1.7)
2

Since the values of both n4(t) + ne(t) and ng(t) + ne(t) cannot increase as t
increases, and eventually both must have the value 1, we see that the reduced
process has absorbing states at (1,0,0), (0,1,0) and {(1,1,0),(0,0,1)}. Tt
starts from n(0) = (0,0,n). We might also consider the case in which only
some of the genes, say ¢ < n, are typed at both loci, while a are typed only
at the A locus and the remaining b = n — a — ¢ are typed only at the B locus.
In this case, n(0) = (a, b, ¢).
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10.2 The correlation between tree lengths

In this section, we derive a recursion satisfied by the covariance of the tree
lengths L# and L? of the marginal trees T4 and Tp respectively. The devel-
opment here follows that of Pluzhnikov (1997).

For an initial configuration n(0) = (a,b,c) define F(a,b,c;p) to be the
covariance between L4 and LZ. Thus F(0,0,n;p) is the covariance of the
marginal tree lengths for a sample of size n typed at both loci. We watch the
Markov chain n(-) only at the points it changes state. The resulting jump
chain is denoted by N (-). Let Z be a random variable that gives the outcome
of a one-step jump of the chain N (-) starting from (a,b,c), and let Z = z;
correspond to the move to (a+1,b+1,¢—1), Z = z3 correspond to the move
to (a —1,b—1,c+ 1) and so on, in the order given in (10.1.6). The jump
probabilities are

pi=P(Z=2)=ri/dn, i=1,...,5. (10.2.1)

Pluzhnikov (1997) established the following representation, which follows im-
mediately from the properties of the coalescent trees T4 and Tp and the
ARG.

Lemma 10.2 Conditional on Z = (a1, b1,c1), we have
LA = XA+ Ty (10.2.2)

where

(i) Xa ~ Lay4¢,, where Ly, denotes the length of an m-coalescent tree;
(ii) Ta ~niT, where T is exponential(dy) and ny = a + ¢;
(ii) Xa and T are independent.

Furthermore, a similar representation holds for L® given Z:
LB = Xp+Tp ~ Ly, e, + 12T, (10.2.3)

where ny = b+ c. In addition, X and T4 are independent, as are X and
Tg.

This leads to the main result of this section, derived originally in somewhat
different form by Kaplan and Hudson (1985).

Theorem 10.3 For any p € [0,00), the covariance Cov(LA, LB) := F(a,b, s; p)
satisfies the linear system

dnF(a,b,c;p) =mF(a+1,b+1,¢c—1;p)+m9F(a—1,b—1,¢+ 1;p)
+r3F(a—1,b,¢;p) + 14F(a,b—1,¢;p) (10.2.4)
+rsF(a,b,c—1;p) + Ry,
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wheren=a+b+c,n =a+c,ne =b+c,d, = (n(n—1)4c¢p)/2, the r; are
given in (10.1.6), and R, = 2¢(c—1)/((n1 —1)(n2 —1)). The system (10.2.4)
has a unique solution satisfying the boundary conditions

F(a,b,c;p) =0 whenever ny <2, orng <2, ora<0, orb<0, orec<0.
(10.2.5)

Proof. The proof uses the formula for conditional covariances, namely
Cov(X,Y)=E(Cov(X,Y | Z)) + Cov(E(X | Z2),E(Y | Z)),

with X = LAY = LP and Z as defined above. Clearly,

5
E(Cov(X,Y | Z)) = > piCov(X,Y | Z = z),

i=1
where the p; are defined in (10.2.1). Now

Cov(X,Y | Z=2)=Cov(Xa+Ta,Xp+Tp)
= COV()(A7 XB)+ COV(TA,TB)
=Fla+1,b+1,¢—1,;p)+ ninz2Var(T)
=Fla+1,b+1,c—1,;p) +ninad,?  (10.2.6)

Using similar arguments gives

E(Cov(X,Y | Z2)) =riF(a+1,b4+1,c—1;p)+r2F(a—1,b—1,c+ 1;p)
rsF(a—1,b,¢;p) +raF(a,b—1,¢;p) (10.2.7)
+rsF(a,b,c — 1;p) + ninad;,?.

Next, recall that
Cov(E(Y | 2),E(Y | 2)) = E[(E(X | Z) — E(X))(E(Y | Z2) — E(Y))].
Using basic properties of the regular coalescent, we can derive the distributions
of f(Z)=E(X | Z)—E(X) and g(Z) =E(Y | Z) — E(Y); these are given in
Table 16. Hence we find that
Cov(E(X | 2),E(Y | Z)) = E(f(Z)9(2))
5
> pif(z)g(z)
i=1

g 2¢(c—1)
d% dn(’l’Ll — 1)(?12 — 1)

(10.2.8)

Adding (10.2.7) and (10.2.8) yields (10.2.4).
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Table 16. The probability distribution of f(Z) and g(Z)

Z f(2) 9(Z) P(Z = z)
(a+1,b+1,c—1) ni/dn na/dn p1
(a—1,b—1,c+1) ni/dn n2/dn D2

(a - 17b7 C) nl/dn - 2/(n1 - 1) n2/d” p3
(a,b—1,¢) n1/dn na/dn —2/(n2 — 1) Da

(a,b,e—1) ni/dn —2/(n1 — 1) na/dn — 2/(n2 — 1) D5

The boundary conditions follow from the restriction that the ancestral
process for each locus be considered no further back than its MRCA. O

Equations like (10.2.4) can be solved by observing that if the degree of
F(a,b,c) is defined as a + b + 2¢, then the degree on the right is at most
the degree on the left; knowing lower degree terms allows the higher degree
terms to be found by solving a lower triangular system of equations. Ethier
and Griffiths (1990) developed an efficient computational method for solving
such systems. The solution is known explicitly in very few cases, among them
Griffiths’ (1981) result

4(p+18)
F(0,0,2;p) = 5V———7——. 10.2.9
(a ) 7p) p2+13p+18 ( )
Some other examples
The equation in (10.2.4) can be written in the form
F(a,b,c;p) =LF + g(a,b, c; p) (10.2.10)

where in (10.2.4) we had g(a,b,c;p) = d,;'R,. The same type of equation
arises in studying many properties of the ARG. We mention two of them,
derived by Griffiths (1991).

Define the time W,, = max(Ta,Tg) by which the sample of size n has a
common ancestor at both the A and B loci. This is the time taken to reach the
states {(1,1,0),(0,0,1)} starting from (0,0, n). Starting from a configuration
of (a,b,c) with a + b+ ¢ = n, the expected waiting time f(a,b, ¢; p) satisfies
(10.2.10) with

gla,b,c;p) = d*,

and boundary conditions
f(1,0,0;p) =0, f(0,1,0;p) =0, f(1,1,0;p) =0, £(0,0,1;p) =0. (10.2.11)

We are interested in EW,, = f(0,0,n; p). When n = 50, representative times
are EWso = 1.96 (p = 0), = 2.14(p = 0.5), = 2.36(p = 2.0), = 2.50 (p =
10), =2.52(p = o00).
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Hudson and Kaplan (1985) studied the number of recombination events
RY that occur in the history of the sample up to time W,, to ancestors of the
sample having material belonging to both marginal trees. Define f%(a, b, cp)
to be the expected number of transitions of the form (a’,b’,¢') — (o’ + 1,0 +
1,¢" — 1) until reaching the state {(1,1,0), (0,0,1)}, starting from (a, b, c). By
considering the type of the first transition, we see that f° satisfies an equation
of the form (10.2.10), with

cp

glasb,eip) = n(n—1)+cp’
and boundary conditions (10.2.11). The quantity we want is ERY = £°(0,0, n; p).
When n = 50, representative values are ERY, = 0.00 (p = 0), = 2.13(p =
0.5), =7.51(p=2.0), =25.6(p=10).

In contrast, the expected number of recombination events ER,, in the
entire history back to the grand MRCA can be found from the random walk
which makes transitions according to

m—m-+1 with probability p/(p+m —1), m >0
m — m — 1 with probability (m —1)/(p+m —1), m > 1.

R,, is the number of times the random walk makes a move of the form m’ —
m’ + 1 before reaching value 1. Standard random walk theory shows that

1 n—1
1-(1-
ER, = p/ L= A =0" gy, (10.2.12)
0 v

When n = 50, representative times are ER59 = 0.00 (p = 0), = 2.52(p =
0.5), =16.2(p=2.0), =24,900(p = 10). A comparison with the values of
ER? shows that ER,, and ER? may differ dramatically.

10.3 The continuous recombination model

We now consider a more general class of model in which each chromosome is
represented by the unit interval [0,1]. This (and the figures in this section)
comes from Griffiths and Marjoram (1997). If a recombination occurs, a posi-
tion Z for the break point is chosen (independently from other break points)
according to a given distribution, and the recombined chromosome is formed
from the lengths [0, Z] and [Z,1] from the first and second parental chromo-
somes. Other details are as for the 2-locus model. There are several interesting
potential choices for the break point distribution Z: Z is constant at 0.5, giv-
ing rise to the two-locus model studied earlier; Z is discrete, taking values
%, ..., ™= giving rise to a m-locus model; and Z has a continuous distri-
bution on [0, 1], where breaks are possible at any point in [0, 1]; a particular
choice might be the uniform distribution on [0, 1].

As for the 2-locus model we are lead to the concept of ancestral graphs, but
now the position at which a recombination occurs is also relevent. Figure 10.2
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illustrates an ancestral graph for a sample of n = 4 individuals. Positions
Z1, 23, ... where recombination breaks occur are labeled on the graph. The
process Af (t) which records the number of ancestors of a sample of size n has
identical transition rates as the corresponding process for the 2-locus model.

Fig. 10.2. Ancestral recombination graph.

Whereas in the 2-locus model there were two ancestral trees corresponding
to the ancestral graph, one for each locus, we now find that each point z € [0, 1]
has an ancestral tree T(x) associated with it, and marginally each of these
trees is described by the coalescent. To obtain T(z) we trace from the leaves
of the ARG upward toward the MRCA. If there is a recombination vertex
with label z, we take the left path if < z, or right path if z > 2. The MRCA
in T(x) may occur in the graph before the grand MRCA. Figure 10.2 shows
an example of T(x) when x > b and z < ¢, d.

Since there are a finite number of recombination events in the graph, there
are only a finite number of trees in {J(z); x € [0, 1]}. There are potentially 2%
if R recombination events have occurred, but some trees may be identical, or
may not exist, depending on the ordering of the recombination break points.
Of course (just as before) different trees share edges in the graph, and so are
not independently distributed.

Figure 10.4 shows all possible trees corresponding to the ancestral graph
in Figure 10.2. Trees 1 and 9 are identical; the other trees are all distinct. If
b > a then all trees exist as marginal trees in the graph, otherwise if b < a
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Fig. 10.3. Marginal tree T(z), when z > b and = < ¢, d.

[

trees in Figure 10.4 with the right edge at vertex a do not exist as marginal
trees.

Just as for the two-locus ARG, ancestor individuals may now only have
part of their gametic material in common with the sample. It is also possible
that some ancestors in the graph contain no material in common. A point x
on an ancestor represented by an edge e in the graph has ancestral material in
common with the sample if and only if e is included in T(z). Thus the subset
of [0,1] over which that ancestor has ancestral material in common with the
sample is P, = {z;T(z) > e,z € [0,1]}. P, is a union of a finite number of
intervals, whose endpoints are a subset of the positions where recombination
breaks have occurred. If e and f are two edges, and e V f denotes a coalesced
edge from e and f, then Poyy = P |JPy. If a recombination break occurs at
z, to an edge e, then the left and right hand edges from e in the graph are
P N0, z] and P. [z, 1].

In the ancestral graph each ancestor can be labeled by which sample
genes, and subsets of material it is ancestral to. The sample is represented
as @ _;(i,[0,1]) and at any given time the ancestors of the sample can be
thought of as a partition of this set. An illustration of this is given in Fig-
ure 10.5, adapted from Nordborg and Tavaré (2002). The figure shows the
regions of various ancestral segments that are ancestral to the members of the
sample.
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Fig. 10.4. All possible marginal trees for the graph in Figure 10.2.
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10.4 Mutation in the ARG

Mutation is superimposed on the ARG just as it was in the single locus case:
Mutations arise at rate 6/2 independently on different branches of the tree,
and their effects are modeled by the mutation operator I'. In the coalescent
model with recombination, it often makes no sense to consider mutations that
arise on lineages that are lost in the history of the sample due to recombi-
nation. Instead, we consider just those mutations which occurred on lineages
having meterial in common with the sample. In the m-locus model, there are
now m marginal trees, denoted by 71, ..., T,,. In we denote by Mr(f) the num-
ber of mutations occurring on the ith subtree back to its common ancestor,
then the total number of mutations is

M, =Y M. (10.4.1)

If the mutation rate at each locus is the same, then the overall mutation rate
is @ = m#, so that

m n—1
; 1
EM, =Y EM{ =0 - 10.4.2
2 > ( )
Furthermore

Var(M, ZVar M“Mzz Z Cov(M, M.

1=1 k=i+1
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Fig. 10.5. The history of segments in an ancestral recombination graph
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To evaluate the second term X5, note that conditional on the two marginal
subtrees, the mutation processes on those trees are independent. Denoting the

tree length at the ¢th locus by Lgf), this leads to Hudson’s (1983) observation
that

Cov(M, MP)Y) = Cov( 0 LK),

In Theorem 10.3 we found the covariance F,(p) = F(0,0,n; p) of the tree
lengths in a two locus model with recombination parameter p. We can use
this to find the covariances in the m-locus model in which the recombination
rate p between any two adjacent loci is assumed to be the same. The overall
recombination rate is R = (m — 1)p, and for 1 < i < k < m, the covariance

between L and LY is given by F, ((k —i)p). Hence
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02 m—1 m 02 m—1
Ty=5 . D Fallk—i)p) = 5 > (m—k)Fu(kp).
1=1 k=i+1 k=1

n—1 n—1 m—1
1 e 1 62 k kR
=6) Sto 2 7 o, (1_E)Fn(ﬁ>‘

Hudson considered the limiting case in which m — oo while ©® and R are
held fixed. This results in

n—1
1 2 1
Var(M,) =0 ) =+ e (1 — w)F, (Rw)dw (10.4.3)
= 2 Jo
n—1
1 102 (R
=0) -+ 5ﬁ/o (R — w)F, (w)dw

10.5 Simulating samples

We consider first the two-locus case. Suppose that there is an overall mutation
rate of 84 at the A locus, and 6 at the B locus, and let § = 04 + 0. We
begin by describing the sequence of mutation, recombination, and coalescence
events that occur in the history of the sample back to the MRCA.

Since mutations occur according to independent Poisson processes of rate
0/2 along each lineage, we see that if there are currently m edges in the
ancestral graph then the next event on the way back to the MRCA will be a
mutation with probability mé/(m(m — 1) +mf +mp) =0/(m — 1+ p+0),
a recombination with probability p/(m — 1+ 6 + p), and a coalescence with
probability (m — 1)/(m — 1 + p + 6). With these events, we may associate a
random walk {7}, k > 0} which makes transitions according to

m — m + 1 with probability p/(6 +p+m — 1),
m—m with probability /(0 + p+m — 1),
m — m — 1 with probability (m —1)/(0 +p+m — 1),

for m > 1. To describe a sample of size n, the process starts from Ty = n, and
ends at the MRCA when T = 1.

The effects of each mutation can be modeled in many different ways, for
example allowing different combinations of infinitely-many-alleles, infinitely-
many-sites, and finitely-many-sites at each locus. In the constant population
size model, we can exploit the Markov chain {Ty,k > 0} to provide an urn
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model that can be used to simulate samples efficiently, particularly when the
recombination rate p is not too large. First we have to generate the sequence of
mutation, recombination, and coalescence events back to the MRCA, starting
at the sample, and then superimpose the effects of each type of event starting
at the MRCA and going down to the sample. Here is how this works.

Algorithm 10.1 To simulate from two-locus model.

(i) Simulate the random walk T}, starting from n until it reaches 1 at step 7.
Fork=1,... 7, write Uy, = Ty 41 — Tr—k.

(ii) Start by generating the type of the MRCA. For example, for a station-
ary sample choose the type of this individual according to the stationary
distribution of the mutation process. If mutation is independent at each
locus this is the product of the stationary distributions of each mutation
process.

(ili) We now use the sequence Uy, Us,...U; (in that order) to generate the
sample. For k =1,2,...,7:

e If U, = —1 then a recombination event has occurred. Choose two indi-
viduals at random without replacement from the current individuals,
and recombine them. The first individual chosen contributes the A
locus allele, the second the B locus allele.

e If Uy = 0, a mutation has occurred. Choose an individual at random
and generate a mutation. With probability 64 /6 the mutation occurs
at the A locus, in which case a transition is made according to the
mutation distribution I (z, -) if the type is currently x, and similarly
for the B locus.

o If Uy = 1, then a coalescence has occurred. Choose an individual at
random and duplicate its type.

(iv) After 7 steps of the process, the sample has size n and the distribution of
the sample is just what we wanted.

It can be seen that the efficiency of this algorithm depends on the expected
value of 7. When either p or 6 is large, ET can be very large, making the
simulation quite slow.

This method extends directly to simulations of samples from the general
ARG. Once the locations of the recombination events have been simulated
according to Algorithm 10.1, we can choose recombination break points ac-
cording to any prescribed distribution on [0,1]. Essentially any mutation mech-
anism can be modeled too. For example, for the infinitely-many-sites model we
can suppose that mutations occur according to a continuous distribution on
(0,1), and that the label of a mutation is just the position at which it occurs.
In the case of variable population size this method does not work, and the
ancestral recombination graph needs to be simulated first, and then mutations
are superimposed from the MRCAs. Hudson (1991) is a useful reference.
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10.6 Linkage disequilibrium and haplotype sharing

Because the genealogical trees at different linked positions in a segment are
not independent of one another, neither will be the allelic states of these loci —
there will be linkage disequilibrium (LD) between the loci. LD is usually quan-
tified by using various measures of association between pairs of loci. Consider
two such loci, each of which has two possible alleles, and denote the relative
frequency of the A;B; haplotype by p(A,, B;), and let p(A;), p(B;) denote the
relative frequency of each allele. Among the pairwise measures of LD are

e D’ the value of D = p(A1, B1) — p(A41)p(B1), normalized to have values
between -1 and 1 regardless of allele frequencies;

e 12 the correlation in allelic state between the two loci as they occur in
haplotypes;

o d° = (p(B1|A2) — p(Bi1] A1))?, which measures the association between
the alleles at (marker) locus B and the alleles at (disease) locus A.

These and other measures of LD are discussed further in Guo (1997), Hudson
(2001) and Pritchard and Przeworski (2001).

Because of the history of recombination and mutation in a sample, pair-
wise LD is expected to be extremely variable. This is illustrated in Figure 10.6,
adapted from Nordborg and Tavaré (2002). The horizontal axis, which rep-
resents chromosomal position, corresponds to roughly 100 kb. The plots il-
lustrate the haplotype sharing and LD with respect to particular focal mu-
tations. In the left column, a relatively low-frequency mutation (5/50=10%)
was chosen as focus, and in the right column, a relatively high-frequency one
(22/50=44%). The chromosomal position of these mutations are indicated by
the vertical lines. The top row of plots shows the extent of haplotype sharing
with respect to the MRCA of the focal mutation among the 50 haplotypes.
The horizontal lines indicate segments that descend from the MRCA of the
focal mutation. Light lines indicates that the current haplotype also carries
the focal mutation, dark lines that it does not. Note that the light segments
necessarily overlap the position of the focal mutation. For clarity, segments
that do not descend from the MRCA of the focal mutation are not shown at
all, and haplotypes that do not carry segments descended from the MRCA of
the focal mutation are therefore invisible. The second row of plots shows the
behavior of LD as measured by d? for different choices of markers. In each plot,
the horizontal position of a dot represents the chromosomal position of the
marker, and the vertical position the value of the measure (on a zero-to-one
scale).

Because of interest in mapping disease susceptibility genes, the extent of
LD across the human genome has been much debated. What is clear is that
while there is a relationship between LD measures and distance, the inherent
variability in LD makes this relationship hard to infer. In particular, it is
difficult to compare studies that use different measures of pairwise LD as
these measures can differ dramatically in their estimates of the range of LD.
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For reviews of these issues in relation to mapping, see for example Clayton
(2000), Weiss and Clark (2002), Nordborg and Tavaré (2002) and Ardlie et
al. (2002).

Estimating the recombination fraction

There is a sizable literature on estimation of the scaled recombination rate
p, among them methods that use summary statistics of the data such as
Hudson (1987), Hey and Wakeley (1997), and Wakeley (1997). Griffiths and
Marjoram (1996) and Fearnhead and Donnelly (2001) exploit the importance
sampling approach developed in Section 6 for the infinitely-many-sites model,
while Nielsen (2000) and Kuhner et al. (2000) use MCMC methods, the latter
specifically for DNA sequence data. Wall (2000) has performed an extensive
comparison of these approaches. One conclusion is that (reliable) estimation
of pairwise recombination fractions is extremely difficult. See Fearnhead and
Donnelly (2002) for another approach, and Morris et al. (2002) and the ref-
erences contained therein for approaches to mapping disease genes using the
coalescent.
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11 ABC: Approximate Bayesian Computation

Several of the previous sections have described methods for simulating obser-
vations from a posterior distribution. One key ingredient in these methods is
the likelihood function; we have until now assumed this could be computed
numerically, for example using the peeling algorithm described in Section 9.4.
In this section we describe some methods that can be used when likelihoods
are hard or impossible to compute.

In this section, data D are generated from a model M determined by
parameters §. We denote the prior for 6 by w(#). The posterior distribution
of interest is f(0 | D) given by

[0 D) =PB(D |0)x(6)/B(D),

where P(D) = [P(D | §)7() df is the normalizing constant.

11.1 Rejection methods

We have already seen examples of the rejection method for discrete data:

Algorithm 11.1

1. Generate 6 from 7()
2. Accept 6 with probability h =P(D | 6), and return to 1.

It is easy to see that accepted observations have distribution f(¢ | D), as
shown for example in Ripley (1987). As we saw in Section 7.3, the computa-
tions can often be speeded up if there is constant ¢ such that P(D | 6) < ¢ for
all 6. h can then then be replaced by h/c.

There are many variations on this theme. Of particular relevance here is
the case in which the likelihood P(D | §) cannot be computed explicitly. One
approach is then the following:

Algorithm 11.2

1. Generate 6 from 7(+)
2. Simulate D’ from model M with parameter 6
3. Accept 0 if D’ = D, and return to 1.

The success of this approach depends on the fact that the underlying
stochastic process M is easy to simulate for a given set of parameters. We
note also that this approach can be useful when explicit computation of the
likelihood is possible but time consuming.

The practicality of algorithms like these depends crucially on the size of
P(D), because the probability of accepting an observation is proportional to
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P(D). In cases where the acceptance rate is too small, one might resort to
approximate methods such as the following;:

Algorithm 11.3

. Generate 6 from 7(-)

. Simulate D’ from model M with parameter

. Calculate a measure of distance p(D, D’) between D’ and D
. Accept 6 if p < ¢, and return to 1.

NN NI

This approach requires selection of a suitable metric p as well as a choice
of €. As € — o0, it generates observations from the prior, and as ¢ — 0,
it generates observations from the required density f(6 | D). The choice of
€ reflects the interplay between computability and accuracy. For a given p
and e accepted observations are independent and identically distributed from

f(@1p(D, D) <e).

11.2 Inference in the fossil record

In this section, we give an application of Algorithm 11.3 to a problem concern-
ing estimation of the time to the most recent common ancestor of primates.
Our inference is based not on molecular data but on a sampling of the fossil
record itself.

The problem

In Table 17 the number of primate species found as fossils in a series of strati-
graphic intervals is given. Tavaré et al. (2002) developed a statistical method
for estimating the temporal gap between the base of the stratigraphic interval
in which the oldest fossil was found and the initial point of divergence of the
species in the sample. The bias in the estimators and approximate confidence
intervals for the parameters were found by using a parametric bootstrap ap-
proach. Estimates of the divergence time of primates (more accurately, the
time of the haplorhine-strepsirrhine split) based on molecular sequence data
give a time of about 90 million years. A literal interpretation of the fossil
record suggests a divergence time of about 60 million years. One reason for
the present studies is to reconcile these two estimates. A more detailed account
of the problem is given in Soligo et al. (2002).

A model for speciation and sampling

We adopt the same framework as in Tavaré et al. (2002). We model speciation
with a non-homogeneous Markov birth-and-death process. To model evolution
from the last common ancestor of all living and fossil species included in the



Ancestral Inference in Population Genetics 171

Table 17. Data for the primate fossil record. References can be found in the sup-
plemental material in Tavaré et al. (2002).

Observed
Epoch k| Tk | number of
species (Dy)
Late Pleistocene 11]0.15 19
Middle Pleistocene| 2 | 0.9 28
Early Pleistocene |3 | 1.8 22
Late Pliocene 413.6 47
Early Pliocene 515.3 11
Late Miocene 6 (11.2 38
Middle Miocene 7116.4 46
Early Miocene 8123.8 36
Late Oligocene 9128.5 4
Early Oligocene |10(33.7 20
Late Eocene 11(37.0 32
Middle Eocene 12]49.0 103
Early Eocene 13(54.8 68
Pre-Eocene 14 0

analysis, we start with two species at time 0. Species go extinct at rate A\, and
so have exponential lifetimes with mean 1/, time being measured in millions
of years. A species that goes extinct at time wu is replaced by an average of
m(u) new species. We denote by Z; the number of species alive at time ¢. The
expected number of species extant at time ¢ is given by

EZ; = 2exp {)\/Ot(m(u) - 1)du}; (11.2.1)

cf. Harris (1963), Chapter 5. Furthermore, if B(s,t] denotes the number of
species born in the interval (s, t], then

t
EBls,t) = )\/ m(u)EZ, du, s <t. (11.2.2)

We divide time into k stratigraphic intervals, following this sequence (see
Table 17 and Figure 11.1). The base of the first (youngest) stratigraphic inter-
val is at T} mya and the base of the k'! is at T} million years ago (mya). The
earliest known fossil is found in this interval. The founding species originate
at time T := Ty + 7 mya, and we define a (k + 1) stratigraphic interval that
has its base at Ti4+1 := T mya and ends T} mya. Note that no fossils have
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Fig. 11.1. An illustration of the stochastic model of fossil finds. Bases of 5 strati-
graphic intervals at T1,,...,Ts mya are shown along the x-axis. The temporal gap
between the base of the final interval and the point at which the two founding species
originate is denoted by 7. Thick lines indicate species found in the fossil record. Time
0 is the present day.
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been found in this interval. We wish to approximate the posterior distribution
of the time 7 and other parameters of the model, using as data the number of
different species found in the fossil record in the first, second, ..., k" inter-
vals. We model the number of species alive © mya by the value Zp_, of the
Markov branching process described earlier.

The number N; of distinct species living in the jth stratigraphic interval
having base T; mya is the sum of those that were extant at the beginning of the
interval, Zr _7;, plus those that originated in the interval, B[T'—T;,T —Tj_1).
It follows from (11.2.1) and (11.2.2) that the expected number of distinct
species that can be sampled in the jth stratigraphic interval is

T*ijl
JEszEZT_Tj,lJrA/ EZ,du, j=1,...,k+1. (11.2.3)
T-T;

We assume that, conditional on the number of distinct species N; that lived
in the jth stratigraphic interval, the number of species D; actually found in
the fossil record in this interval is a binomial random variable with parameters
Nj and «j, j = 1,2,...,k. Furthermore, the D; are assumed to be condi-
tionally independent given the N;. The parameter a; gives the probability of
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sampling a species in the jth stratigraphic interval. A typical data set is given
in Table 17.

A Bayesian approach

We write D = (D1, ..., Di11) for the counts observed in the k+1 stratigraphic
intervals, and we write 6 for the vector of parameters of the process, one of
which is 7, the temporal gap. The likelihood can be written in the form

P(D | 6) kﬁl( ) T(1 —ay)Ni=Pi, (11.2.4)

where the expectation is over trajectories of the speciation process Z that run
for time T" with parameter 8, and such that both initial branches have offspring
species surviving to time 7. By convention the term under the expectation
sign is 0 if any D; > Nj.

While the acceptance probability is difficult to compute, the stochastic
process itself can be simulated easily, and Algorithm 11.3 comes into play.
One crucial aspect of this method is the choice of p in Algorithm 11.3. The
counts Dy, ..., D41 can be represented as the total number of fossils found,

Dy =D1+-+ Dyya,

and a vector of proportions

(D1 Dy 1
iy (B ),

We can therefore measure the distance between D and a simulated data set
D’ by

Dl k-‘rl

p0.0) = | 1]+ 3 32100 (11.25)

The first term measures the relative error in the total number of fossils found
in a simulated data set and the actual number, while the second term is the
total variation distance between the two vectors of proportions.

Results

Tavaré et al. (2002) modelled the mean diversification via the logistic function,
for which
EZ, =2/{y+ (1 —v)e "} (11.2.6)

This form is quite flexible; for example, v = 0 corresponds to exponential
growth. They equated the expected number of species known at the present
time with the observed number, and also specified the time at which the mean
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diversification reached 90% of its current value. These two equations serve to
determine the form of the speciation curve. They also assumed a mean species
lifetime of 2.5 my (although their results were little changed by assuming a 2
my or 3 my lifetime). They modelled the sampling fractions a; in the form

o =apj, j=1,2,... k+1, (11.2.7)

where the p; are known proportions, and « is a scale parameter to be estimated
from the data. The particular values of the p; they used are given in Table 18.
The average value is p = 0.73.

Table 18. Sampling proportions p;

jir 2 3 4 5 6 7 8 9 10 11 12 13 14
pj(1.01.01.01.00.50.51.00.50.10.51.01.01.00.1

Using the data from Table 17, they estimated a temporal gap of 26.7 my
with an approximate 95% confidence interval of 17.2 my to 34.8 my. As the
oldest known fossil primate is 54.8 my old, this is equivalent to an age of 81.5
my for the last common ancestor of living primates. The average sampling
fraction @, defined as

a=ap (11.2.8)

was estimated to be 5.7% with an upper 95% confidence limit of 7.4%.

For comparison with the earlier approach, we treat both p and ~ as fixed
parameters, so that the parameter 6 is given by 6 = (7, a). The prior distri-
butions were chosen as

7~ U(0,100)
a ~U(0,0.3)

the notation Ul(a,b) denotes the uniform density on (a,b). In Tavaré et al.
(2002), we used fixed values of p = 0.2995,y = 0.0085. From 500 accepted ob-
servations with ¢ = 0.1, we obtain the summaries in Figure 11.2 and Table 19.
A median value of 27.6 my for the posterior value of the temporal gap 7 is
very close to that estimated in the previous analysis (Tavaré et al. (2002))
and is equivalent to an age of 82.4 my for the last common ancestor of living
primates. The 2.5% and 97.5% points of the posterior of 7 are estimated to
be 15.4 my and 57.9 my, and the 95% point of the posterior for @ is 10%;
these values are all broadly consistent with the previously published analysis.
The posterior distribution of the number of present-day species serves as a
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Fig. 11.2. Left panel: posterior for 7. Right panel: posterior for a.
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goodness-of-fit assessment. The observed number of extant primates, 235, is
clearly a typical value under the posterior.

The analysis here can be compared to a full MCMC approach. The results
are essentially indistinguishable; see Plagnol and Tavaré (2003) for further de-
tails. One advantage of approximate Bayesian approaches are their flexibility.
A number of other scenarios, such as different species diversity curves and
sampling schemes, can be examined quickly. For further details, see Will et
al. (2003).

11.3 Using summary statistics

In Section 7 we found the posterior distribution conditional on a summary
statistic rather than the full sequence data. The motivating idea behind this
is that if the set of statistics S = (S1,...,Sp) is sufficient for 6, in that
P(D | S,0) is independent of 6, then f(6 | D) =f(6 | S). The normalizing
constant is now P(S) which is typically larger than P(D), resulting in more
ac