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According to Theorem 4 in Schweinsberg (2003), if µ > 1 and

P(X1 > k) ∼ Ck−a, k → ∞ (7.24)

for some finite constants C > 0 and a > 0, then the weak convergence (7.21)
holds with the coalescent limit Rt , depending on the parameter value a:

! If a ≥ 2, the limit Rt is the Kingman coalescent.
! If 1 ≤ a < 2, the limit is the Beta(2 − a, a)-coalescent and, in particular, if

a = 1, it is the Bolthausen–Sznitman coalescent already mentioned. If 1 <

a < 2, the timescale N/σ 2
N is proportional to N a−1, and N/σ 2

N ∼ ln N in the
case a = 1 (see Box 7.1).

! If 0 < a < 1, the limit process belongs to a certain one-parameter class of
coalescent processes with simultaneous multiple mergers.

7.2 Ancestral Inference in Branching Processes
S. Tavaré

7.2.1 Introduction
The topic of inference for branching processes is classic and many articles and
books have been devoted to it. Common themes include estimation of the offspring
mean, the offspring distribution, and the age of the process (cf. Stigler 1970; Gut-
torp 1991, 1995). In this subsection we illustrate some computational approaches
to ancestral inference for branching processes when the effects of mutations among
individuals in the population are taken into account. Our examples are from pop-
ulation genetics (in which the timescale is of the order of thousands of years) and
from cancer biology (in which the timescale is of the order of years). The tech-
niques illustrated here are but the tip of the inferential iceberg, but they serve to
illustrate the crucial interplay between the simulation of a stochastic model and
any inference about its parameters.

7.2.2 Inference in the coalescent
Coalescent trees. In Section 7.1 the coalescent was introduced as a model for
ancestral relationships among a set of chromosomal segments sampled from an
evolving population. In the case of a population that has a constant but large
number N of chromosomal segments, we showed that when time is measured
in units of N generations, the coalescent tree of a sample of n segments can be
described as follows. We begin with n tips and wait for an amount of time Tn that
has an exponential distribution with mean 2/n(n−1) time units before choosing at
random two of the tips to coalesce. The coalescent tree now has n−1 nodes (which
corresponds to n−1 ancestors of the sample), and we then wait a further time Tn−1

that has an exponential distribution with mean 2/(n − 1)(n − 2) time units until,
once again, choosing at random two of the nodes to coalesce. We can continue this
description using mutually independent exponential random variables, the waiting
time while there are j ancestors of the sample having a mean of 2/j ( j − 1)

time units. Eventually, the segments in the sample can be traced back to a common
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Figure 7.2 Coalescent trees for samples of size (a) 6 and (b) 32 from a population of
constant size.

ancestor. Figure 7.2 shows two simulated coalescent trees for samples of size
n = 6 and n = 32.

The height of the coalescent tree, which is the time to the most recent common
ancestor (TMRCA) of the sampled segments, is

Wn = Tn + Tn−1 + · · · + T2 , (7.25)

and the length of the tree is

Ln = nTn + (n − 1)Tn−1 + · · · + 2T2 , (7.26)

the sum of the lengths of all the branches in the tree. The means of Wn and Ln are
given by

E[Wn] = 2
(

1 − 1
n

)
, E[Ln] = 2

n−1∑

j=1

1
j

, (7.27)

these being multiplied by N to convert coalescent time into generations.

Mutation in the coalescent. The variation observed in the chromosomal segments
in the sample is a consequence of mutation in the ancestry of the sample. There are
many models for the effects of such mutations, depending on the type of data under
consideration. In this subsection we use the so-called infinitely-many-sites model,
the simplest description of variation in a set of DNA sequences. We suppose that
mutations occur only at locations in the DNA segment at which mutations have not
occurred before. The sequences in the sample then exhibit a number of segregating
sites, positions in the DNA at which the members of the sample are not identical.
In modern parlance, such locations are called single nucleotide polymorphisms
(SNPs). A consequence of this description is that each mutation which occurs in
the ancestry of the sample results in a SNP.

The rate at which mutations occur in the region is determined by the compound
parameter θ , defined by

θ = 2Nu , (7.28)

where u is the mutation probability in the region per segment per generation. Mu-
tations are superimposed on the coalescent tree of the sample according to Poisson
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processes of rate θ/2, independently in each branch. It follows that the number
Sn of SNPs in the sample has a distribution determined by the length Ln of the
coalescent tree; given Ln = l, Sn has a Poisson distribution with mean

E[Sn | Ln = l] = θ l/2 . (7.29)

Inference about θ and Wn. In this subsection we illustrate a computational tech-
nique to simulate observations from the posterior distribution of (θ, Wn), given
that Sn = k. To do this, set T = (Tn, Tn−1, . . . , T2) and note that

f (θ, T | Sn = k) ∝ P(Sn = k | θ, T )π(θ, T )

= Po(θ Ln/2){k}π(θ, T ) , (7.30)

where we define

Po(λ){k} = e−λ λk

k! (7.31)

with Po(0){0} = 1. In Equation (7.30), π(θ, T ) denotes the prior distribution of
(θ, T ), which is typically the product of the prior π for θ and the “prior” for T ,
determined by the coalescent model. The prior for θ can be used to incorporate
known information about θ . For example, in many problems the size of the mu-
tation rate u in Equation (7.28) is known, at least approximately, as is that of N .
This information can be used to design the prior π . A common alternative is to
use an uninformative prior for θ , in the form of a density uniform over an interval.

In practice, the density implicit in Equation (7.30) is hard to evaluate in a useful
form and it is much simpler to simulate observations from the distribution instead.
This is achieved readily by the rejection algorithm:

! A1. Simulate θ from π(θ) and t = (tn, . . . , t2) from the coalescent model, and
calculate l = ntn + · · · + 2t2;

! A2. Accept (θ, t) with probability

h = Po(θ l/2){k} , (7.32)

and return to A1.

Accepted observations clearly have the required density, as can be seen by simple
calculation. We make three observations about this approach.

First, it is more efficient to replace h in A2 by h/c where

c = max
θ,l

Po(θ l/2){k} = Po(k){k} , (7.33)

which can result in considerable gains of speed.
Second, it is not necessary to compute the probability h in A2. Instead, the

number of mutations k ′ on the tree of length l can be simulated, and A2 replaced
with

! A2′. Accept (θ, t) if k ′ = k.

In this example, h can be computed easily so this simulation-based approach is
not necessary. However, the alternative approach is far more general than the first
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Table 7.1 Inference about θ and W for Yakima data based on 5000
simulated values.

TMRCAW Mutation rate θ

First quartile 1.05 0.019
Mean 1.68 0.024
Median 1.46 0.023
Third quartile 2.07 0.029

because the likelihood h does not need to be known (in theory or computationally)
to use the method. Note, though, that the gains in speed mentioned in the first
observation do not seem to be available in this approach.

Third, there is no need to restrict the algorithm to a coalescent with constant
size. All that is required to handle the case of deterministic fluctuations in pop-
ulation size is to simulate from the appropriate coalescent distribution for T . In
a similar way, we can simulate observations from the posterior distribution of the
coalescent topology (and not just the branch lengths); all that is required is to sim-
ulate a coalescent tree and proceed as before. Many other applications of these and
related algorithms can be found in Tavaré et al. (1997).

Example 7.2 To illustrate these ideas, we use some molecular data obtained as part of a
larger study on mitochondrial variation observed in Amerindian populations in the USA
(Ward et al. 1991; Shields et al. 1993). Among the aims of this study was the development
of methods to infer population history from DNA sequence variation, and in particular to
gain an understanding of the way in which the Americas were settled. A convenient place
to read more about this field of research is the 2 March 2001 issue of Science.

The particular data we use for illustration here comprise a set of n = 42 Yakima mito-
chondrial DNA sequences, each of length 360 base pairs, given in Shields et al. (1993; see
also Markovtsova et al. 2000a, p. 404). The observed base frequencies in the sequences are

(πA,πG, πC , πT ) = (0.328, 0.113, 0.342, 0.217) , (7.34)

and there are 20 distinct sequences and 31 SNPs in the sample.
In the absence of other information, we chose a wide uniform prior for θ , and used a

constant population size coalescent to model T . The results of 5000 accepted runs of the
algorithm are given in Table 7.1 and Figure 7.3. The posterior distribution of W does not
differ enormously from its prior determined by the coalescent model. The parameter N is
approximately 600, so if we assume a generation time of 20 years, the mean height of the
coalescent tree is about 20 000 years.

♦ ♦ ♦

7.2.3 Approximate Bayesian computation
The Yakima data used in Example 7.2 have been discussed in a coalescent frame-
work by Markovtsova et al. (2000a, 2000b), where the posterior distributions of
θ and Wn were found by Markov chain Monte Carlo methods using the full se-
quence data rather than the summary statistic Sn = 31. One reason for basing our
inference on statistics such as Sn , rather than the full data, is a practical one: we
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Figure 7.3 Posterior density of θ (a) and Wn (b). Dotted lines show prior density.

hope to generate observations much more quickly than when using other stochastic
computation methods. In exchange, we are left with observations from the density
f (θ, W | Sn = k) as opposed to the full density f (θ, Wn | D), where D denotes
the complete sequence data. Approaches that use summary statistics for inference
are called approximate Bayesian computation (ABC). The consequences of such
reductions can be complicated and unexpected; see Beaumont et al. (2002) for a
number of related examples and other approaches, as well as historical references
on ABC.

7.2.4 Inference for tumor histories
In the next example we adapt the same type of approach to a discrete setting that
involves inferences about the history of a tumor.

The data and the problem. It is difficult to infer tumor histories by using direct
observation of a patient. Adenomas, thought to be precursors of cancer, are re-
moved if they are detected, and the amount of time required to observe the entire
progression of a cancer may be many decades. To overcome the limitations of
direct observation it is possible to exploit the pattern of mutations observed in an
adenoma or a cancer (Tsao et al. 2000). These mutations can be used to estimate
the age of the adenoma or cancer, in much the same way as we used variation in mi-
tochondrial sequences to infer aspects of the history of the Yakima. The timescale
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of the cancer example is of the order of years, in contrast to the Yakima example,
which is of the order of tens of thousands of years.

In this example, we study a class of colon cancers known as mutator phenotype
cancers. These colorectal cancers have lost DNA mismatch repair (MMR), so they
are less able to repair errors during DNA replication. These cancers also have
greatly elevated mutation rates. The consequences can be observed most easily in
microsatellite (MS) loci. These loci, which may be thought of as runs of a short
motif such as C A, show dramatic expansions and contractions in size over small
numbers of cell divisions.

It is these mutations that we use to track the history of a cancer. We are able
to measure the length variation in a series of such MS loci sampled from cells in
a tumor (Tsao et al. 2000). The problem is to estimate the time since MMR was
knocked out; that is, to estimate the age of the tumor.

Once MMR is lost in a parent cell, the descendant cells derived from it by
mitotic division eventually form a final clonal expansion that originates from a
single cell and results in a detectable tumor (which we assume has an average
size of about 1 cm3, or about 109 cells). Using the MS variation, we estimate the
number of divisions Y0 between loss of MMR and the initiation of the final clonal
expansion, and the number of generations Y1 from that event until the tumor is
observed at biopsy.

Once more, this is an “ancestral inference” problem, in which the desired pos-
terior is f (Y0, Y1 | D). The data D come from L MS loci, the first of which
is measured in n1 tumor chromosomes, the second from n2 tumor chromosomes,
. . . , and the Lth from nL chromosomes. The total number of chromosomes used
is then

n = n1 + · · · + nL . (7.35)

In the studies reported below, we sampled X chromosome MS loci from male
patients. As males have a single copy of their X chromosome, we can identify each
sampled X chromosome with a single cell. This simplifies the required analysis.

We know the somatic size of each locus (i.e., the number of repeats at each
locus prior to loss of MMR). All repeat lengths are measured relative to this base-
line size. For each MS locus, we are able to estimate the mean MS lengths,
m1, m2, . . . , mL , and the variances of these lengths, s2

1 , s2
2 , . . . , s2

L . These data
are, in turn, summarized by the two statistics

S2
alleles = average of s2

1 , . . . , s2
L ;

S2
loci = variance of m1, . . . , mL . (7.36)

A model for tumor evolution. One question that has to be addressed is the model
used to describe the evolution of the tumor from loss of MMR until detection. The
relative sizes of S2

alleles and S2
loci give a hint.

In Figure 7.4, taken from Figure 1 in Tsao et al. (2000), the results of 1000
simulations of L = 20 MS loci measured in ni = 25 chromosomes are summa-
rized (the method used to perform the simulations is given in Section 7.2.5). The
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Figure 7.4 Simulations of MS mutation. Different patterns of MS mutations are summa-
rized by the values of S2

alleles and S2
loci. All simulations use 2000 divisions, but different

tumor histories. Further details are given in the text. Modified from Tsao et al. (2000).

simulations assume a symmetric stepwise mutation model with the chance of the
addition and of the loss of one repeat being 0.0025, to give a total mutation rate of
0.005 per division. In each scenario a total of 2000 divisions is assumed, and the
final tumor size is, on average, one billion cells.

The results show that it is possible to infer, in broad terms, the form of the
tumor history by measuring its MS alleles and estimating S2

alleles and S2
loci. In the

analysis that follows, we use the model that corresponds to scenarios (d) and (e)
in Figure 7.4: a single progenitor cell lineage that lasts for Y0 divisions, and a
terminal expansion described by symmetric binary splitting for Y1 generations with
parameters chosen to make the average size of the tumor a billion cells. Some
experimental justification for this model is given in Figure 2 of Tsao et al. (2000).

The genealogy of a sample from a branching process. The data we collect come
from a few hundred cells sampled from a tumor that contains about a billion cells.
To simulate observations on the MS loci observed in the tumors we could simulate
the entire tumor history and then subsample these cells, or we could generate the
history of the sample only. The latter approach is the one we used to describe the
coalescent: we generate the genealogical history of the cells in the sample, then
simulate the effects of mutations at the MS loci in this shared ancestry. This results
in a sample of MS loci in the cells in the sample.

Methods to generate the genealogical history of a sample from a branching
process are described in Weiss and von Haeseler (1997) in the context of the
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polymerase chain reaction (PCR), and in Tsao et al. (2000) in the present context.
Suppose we want to simulate the history of a sample taken after g generations,
going back to time 0. The basic idea is to use three passes to generate the MS
sample: in the first phase, the numbers of cells that have 0, 1, and 2 descendant
cells in generation 1, generation 2, . . . , generation g are simulated. This results in
a collection of family-size statistics (Mj0, Mj1, Mj2), j = 0, 1, . . . , g − 1, where
Mjl is the number of families of size l born to cells in generation j . In a given
generation, j + 1 say, there are Mj+1 = Mj1 + 2Mj2 cells. To generate Mjl re-
quires knowledge of the offspring distribution in each generation (which may differ
across generations). The branching property means that if the total number of cells
in generation j is Mj , the number of cells that have 0, 1, and 2 descendants in the
next generation is multinomially distributed with parameters Mj and p0, p1, p2,
these being the probabilities of 0, 1, or 2 descendants, respectively, from a given
cell in generation j .

The second stage reconstructs the genealogy of the sample taken from genera-
tion g using the family sizes (Mj0, Mj1, Mj2) in the order j = g −1, g −2, . . . , 0.
If the sample has n cells at time g, we assign the n cells at random to ancestors
in generation g − 1, in accordance with the numbers Mg−1,1 and Mg−1,2. Using
a “balls in urns” analogy, this is equivalent to choosing without replacement n
balls from Mg−1,1 + Mg−1,2 urns, Mg−1,1 of which contain one ball, and Mg−1,2

of which contain two balls. This done, we count the number ng−1 of distinct an-
cestors (i.e., the number of different urns sampled) in generation g − 1, and repeat
the assignment of these cells to their parental cells using the counts Mg−2,1 and
Mg−2,2. Continuing back in this way to time 1 produces a genealogical tree of the
sample.

The third stage starts from the top of this genealogical tree by assigning MS
lengths to each of the ancestral cells at time 0, and then runs the mutation process
down the branches of the tree until arriving at the n cells in the sample at time g.
The mutation mechanism we use here is the simplest of a large number of models
that have been used in the literature: a MS locus inherits the same length as its
parent, plus the addition or deletion of a single motif caused by errors in MMR.

Before exploiting this approach to infer the age of a tumor, we note that the
algorithm used to generate the history of a sample of cells can be adapted to ar-
bitrary branching processes. The branching property is the only key assumption:
given the history of the process up to time j , the individuals in generation j pro-
duce offspring independently and with identical distributions (which may depend
on the history up to time j). In particular, the resultant branching process need not
even be Markovian. This provides plenty of flexibility to analyze samples from
extraordinarily complicated processes about which theoretical results are few and
far between. The approach can also be modified to generate genealogical histories
of samples from multi-type branching processes.
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7.2.5 Example

This example comes from data at 23 loci measured in an adenoma. The sample
sizes at each locus varied between 10 and 33, and the observed summary statistics
were S2

alleles, obs = 0.828, S2
loci, obs = 6.229.

As described above, we assumed a simple symmetric step-wise mutation model
for each MS, with an overall mutation rate of 0.005 per replication. We used
uniform priors for Y0 and Y1, with ranges (100, 2100) and (25, 400), respectively.

For the ABC approach we simulated observations from the priors for Y0 and
Y1, and then simulated the history of the n cells that were sampled. Given this
genealogy we simulated L MS loci using the given mutation model, and calculated
the simulated values S2

alleles, sim and S2
loci, sim of the statistics in Equation (7.36). The

values of Y0 and Y1 were accepted if

∣∣∣∣∣
S2

loci, sim

S2
loci, obs

− 1

∣∣∣∣∣ +
∣∣∣∣∣
S2

alleles, sim

S2
alleles, obs

− 1

∣∣∣∣∣ < ε , (7.37)

where ε is a tuning parameter. Large values of ε accept most values and so recon-
struct the prior, whereas as ε → 0 only those values of Y0 and Y1 that reproduce
the data S2

alleles and S2
loci exactly are accepted. The trade-off is in picking values of

ε that lead to a reasonable number of accepted values in a given time, as well as a
reasonable approximation to the required posterior. In the example below ε is set
to 0.1, which corresponds to an acceptance rate of about 0.6%.

In Table 7.2 summary statistics for the posterior distributions of Y0, Y1, and the
age Y = Y0 + Y1 of the tumor are given. The corresponding posterior densities,
based on 1000 simulated observations, are given in Figure 7.5. The posterior den-
sity of Y is shown in Figure 7.6. A 95% credible interval for Y is (895, 2197)
divisions. Assuming one division per day, this translates into an interval of (2.5,
6.0) years, and a mean posterior age of 4.2 years.

In Tsao et al. (2000) a different statistical approach was used to assess variabil-
ity in the estimate of Y . Using data combined from two regions of the adenoma,
they found an estimated age of 1300 divisions (3.6 years), with an estimated 95%
confidence interval of (1.3, 5.2) years. Despite the different statistical approaches
these results are consistent with each other.

We remark that the approach outlined here can also be used to investigate the
robustness of the modeling assumptions. All that needs to be changed are the
details of the branching process being used and the mutation model; some of this
is described in Tsao et al. (2000). Different statistical approaches can also be
explored in this way, such as by using different metrics in Equation (7.37) and
different summaries of the data.
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Table 7.2 Inference about Y0 and Y1 for adenoma data based on 1000 accepted values.
Y = Y0 + Y1 is the age of the tumor.

Y0 Y1 Y

First quartile 1077.0 170.0 1255.0
Mean 1343.9 186.0 1529.8
Median 1325.0 184.0 1514.0
Third quartile 1614.3 200.0 1790.0

Figure 7.5 Posterior density of Y0 (a) and Y1 (b). Dotted lines show prior density.

Figure 7.6 Posterior density at age Y of the tumor.
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