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The same relationship also makes it possible to deduce a mapping formula 
for any proposed distribution of the chiasmata. The probability of no chiasmata 
occurring in a segment is expressed in terms of a parameter which is related to 
the length of the segment. Both the recombination fraction and the average 
number of chiasmata are expressed in terms of this parameter, which is then 
eliminated from the expressions. If we assume that there is at least one chiasma 
in every chromosome arm, with the remaining chiasmata distributed at ran- 
dom, we obtain a simple mapping formula which gives positive co-incidence 
within the arms and no co-incidence across the centromere. It is also possible 
to derive mapping formulae allowing for chromatid interference. The recombi- 
nation fraction depends simply on the relative excess of pairs of adjacent 
chiasmata that involve all four chromatids over those that involve only two. 

For any given level of chromatid interference the relationship between the 
distribution of the chiasmata along the chromosome and the mapping formula 
is many-one so that the second of my practical questions, that of the goodness 
of fit of the visible ‘chiasmata’ with the expected cross-overs is not so easy to 
answer, although it is the more useful question to pose. 

Age distributions for Markov processes in genetics Ffdv. Appl,Pf&. 

S. TAVARfi, University of Shefield 

There are several situations in which we might want to estimate the age of a 
process. In a genetic context, the usual problem is to find the age of an allele, 
given its current frequency. 

There are essentially two different approaches to this problem. We could 
adopt a statistical approach by forming a likelihood based on our observations, 
and then estimate the age by, for instance, maximum likelihood. For examples 
of this method, see Stigler (1970), Thompson (1976). Alternatively, we can 
define our age in terms of some random variable, and find its distribution. 
Estimation procedures are then based on this distribution. In what follows, we 
discuss only the second method. 

When the underlying process is a diffusion, Watterson (1976), (1977) exp- 
loits the ideas of reversibility to unify some results of Maruyama (1974), Kimura 
and Ohta (1973)’ and Levikson (1977). We consider age distributions for 
Markov chains. Consider a population of fixed size M, in which each individual 
is of type A or type B at a locus. Let X,, be the number of A individuals at 
time n. Suppose that {X,,, n 2 0) is a Markov chain, with transition matrix P, 
state space {0,1; * ,M), and absorbing barriers at 0 and M. Following 
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Levikson (1977), construct from {X,} the return chain {z,} by returning the 
X-process to state 1 whenever it hits 0, or to state M- 1 whenever it hits M. In 
genetic terms, such a construetion might correspond to a (rare) mutation 
reintroducing a particular allele into the population. 

Although Levikson considered such returns to be instantaneous, the return 
chain is most easily described in terms of the original chain if we consider that 
it takes one step for such a return to occur. We can now define the age of the 
X-process by the time since a barrier was last hit. Thus the age at time m, A,, 
is defined by 

- 
{A, = n}= {X,-,, = 0 or M, Xm.+ E (1, - - , M -  l}, OS k < n}. 

Since {x,,} is ergodic, we can define a limiting age, A, given ‘now’ at j ,  by 

P(A = n I j )  = lim P(X,-,  = 0 or M, xm--k E (1, - - , M- 1) for 
- m+- 

0s k < nIxm = j ) .  

For the unconditioned chain, let q ( j )  be the probability of absorption at state 
i, given Xo = j ,  ( i  = 0, M), and let N = ( n i j )  be the mean sojourn time matrix, so 
that 

nii = E(number of visits to j before absorption I Xo = i). 

Proofs, based on elementary Markov chain theory, show that 

and that 

P(A allele is the oldest I now at j )  

- - nM-l.jTM(1) 
mdM- l)n,j+ wM(1)nM-l.j ‘ 

When the return chain (2,) is reversible we can connect the mean age with 
the mean (future) absorption time, and the probability of allele A being the 
oldest with its (future) fixation probability. Conditions for such reversibility 
were given, and the results were illustrated by Moran’s model (Moran (1958)). 
Results and problems that arise in the case of one absorbing barrier were also 
presented. 
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Impossible gene identity states 

E. A. THOMPSON, Uniuersiry of Cambridge 

A genealogical relationship between two individuals may be summarized by 
the nine identity coefficients of Gillois (1965). These coefficients are the 
probabilities, Q, of the nine possible states of identity-by-descent between the 
four genes of the two individuals, at an autosomal locus. Thus the space of 
relationships may be written as 

where we use the ordering of the nine states given (for example) by Jacquard 
(1974). 

In the case of non-inbred individuals only the three last states have non-zero 
probability, and relationships may then be represented in the space 

(2) A* = {(D7, D8, D9); Di 2 0, D7 + D8 + D9 = 1). 

Thompson (1976) has shown that in fact only a fraction, 1/3, of this space can 
actually be attained by the identity state probabilities since 

(3) Dg 2 4D7D9. 

In view of this it is of interest to determine the general space of attainable 
identity coefficients-a subspace of (1). There are several alternative ap- 
proaches. One is to consider what classes of states must be attainable, the 
second is to consider what classes of states cannot be attainable, and the third 
is to parametrize certain classes of relationship, and obtain corresponding 
classes of attainable identity coefficients. 


