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Summary

A simple and intuitive method of deriving some properties of finite homogeneous continuous-

time Markov chains is given. These chains have absorbing barriers, and arise in the study of pop-

" ulation genetics. The method involves the representation of such a process in terms of a discrete

Markov chain, and a series of waiting times, which reconstruct the original time scale. An ex-
ample from population genetics is given.

1. Introduction

Finite, homogeneous, continuous-time Markov chains (for convenience referred to as
FCMC’s) are often used as models for mechanisms arising in physical sciences; such models
arise frequently in population genetics. FCMC’s with absorbing states arise naturally as
models for the evolution of the number of a particular allele at a single locus in a population
of fixed size m, say, at which two allels are possible (¢/. Moran 1962). For such models, the
questions of importance to geneticists include ultimate fixation probabilities, the distribution
and moments of the absorption times, the distribution of sojourn times at particular gene fre-
quencies and, more recently, the age of alleles problem (c¢f. Watterson 1977). Explicit solu-
tions to such problems are often hard to find, and one usually resorts to diffusion approxima-
tions or computes numerical solutions. Computationally convenient formulas for
corresponding discrete-time models are well known (Kemeny and Snell 1960). This note
gives the corresponding results for FCMC’s, and provides simple, intuitively appealing
proofs. The proofs, which are given in the appendix, use the discrete-time results, and the
representation of a FCMC in terms of a related discrete-time Markov chain and a sequence
of waiting times which recreate the original time scale.

The methods given here can be applied to any FCMC with at least one absorbing state,
to the conditioned chains developed for use in genetics by Ewens (1973), and can be modi-
fied to accommodate processes in which the waiting times do not have exponential distribu-
tions (i.e., semi-Markov processes).

2. Notation and Results

For simplicity, suppose that the FCMC {X(¢), t = 0} has state space B= {0, 1, ..., m},
with absorbing barriers at 0 and m. Such a process is uniquely determined by its in-
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finitesimal generator (g,), where g, is the transition rate from state i to state j. The elements
q; satisfy, for each i,

Zq'/=_qu=qn 0$q,<00, (l)
i

For convenience, write the generator in the form

0O 0 0
@)=|9% 0 q. @)

0O O 0
The matrix Q gives transition rates among the transient states 7= {1,2, ..., m — 1}, while g,
= (qij G2 - - - » 9m—1,)" gives the transition rates into absorbing state j. If k € T, then ¢, > 0,

since k is not absorbing, and the waiting time W, in state k has an exponential distribution
with mean ¢,~'. The associated discrete-time jump chain {J,, » = 0} describes the sequence
of states through which X travels on its way to absorption. It has transition matrix P = (p,)
determined by

Po=Pwm=1, pi=0; p,=q4q7" iET, jJEB, j#i. 3)

The behaviour of X is determined by the jump chain with J, = X(0), and the waiting
times {W,, W,, ... ,W,_,}. Starting from X(0) = i the process waits a length of time W, and
then jumps to state j with probability p,. If j € T, the process waits a length of time W, in
state j, and then jumps to state k with probability p,. This is continued until a jump to an
absorbing state is made and the process stops.

For i, j € T, let S, be the time that X spends in state j before absorption occurs, starting
from X(0) = i. Let n, = ES, be the mean of the sojourn time S;, and let N be a square matrix
with elements 7. The time to reach an absorbing state from X(0) = i is denoted by S;; clearly,
S; =Y S,. The mean absorption time ES, is denoted by »n, and the variance by v,. Finally, let
7, be the probability that X reaches absorbing state k, starting from 7, and let 7, be a vector
with elements 7, l <i<m— 1.

We will use the notation (*) to denote the corresponding quantities of the jump chain J =
{J., n = 0}. For example S,* is the time that J spends in state j, given J, = i, before absorp-
tion occurs, and n,* is the mean sojourn time, ES,*. Finally, let ¢, be a vector with a 1 in the
ith place, and 0 elsewhere, and let e be a vector of 1’s.

We now state a theorem which given the continuous-time analogues of some classical re-
sults from the theory of discrete-time Markov chains. The proof, which uses the representa-
tion of X in terms of the waiting times and jump chain J, is given in the appendix.

Theorem. Let i, j € T. Then:

(i) Q is nonsingular, and N = —Q™".
(i) n;=n,*q;”".
(i) P(S;=0)=1—(nn, "), PO < S, <1) = (nyn; [l — exp(—tn; )], 1>0.
@iv) 7. = Nq,, k =0,m.
() Ford,,...,Q8,_, >0, the joint distribution of (S, . .., S..—1) has a Laplace transform
given by
m—1

£{IT ex(=6,5)| = /@ - ©)"Qe
where © = diag {0,,...,0,_}.
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(vi) The Laplace transform of S, is given by Elexp(—0S))] = ¢/(Q — 6I)"'Qe, 8 > 0, and
hence S, has a matrix exponential distribution with density

146 =—e/Qexp(Qie, t=0.

(vii) n, = e/Ne, v, =2¢/N’e — n?, ieT.

3. Comments and Example

Application of the results given here depends crucially on the determination of N. The
formula in (i) is computationally convenient, since Q is usually strongly diagonal, and thus
easy to invert numerically. Part (iii) agrees with the results of Nagylaki (1974), who consid-
ered Markov processes with continuous state-space. The probability mass at the origin ac-
counts for the fact that j may never be visited from i before absorption. Equation (iv) is again
useful computationally. The Laplace tranform in (v) is of limited use in evaluating distribu-
tions, but a useful identity for computing moments. The density given in (vi) was derived by
a different method by Tan (1976) in the special case of birth-death processes. Both these for-
mulas are natural generalizations of the usual exponential distributions.

There are some cases in which N can be determined explicitly. One particular case is the
birth-death process, where we can make use of known formulas for the jumping chain,
which is a random walk (see, e.g., Ewens 1964). A special case is given below.

Example: A genetic model of Moran (1962). (See also Karlin and McGregor 1962 and
Tan 1976.) In this model X(¢) is the number of A4, alleles at time ¢ in a haploid population
with two alleles, 4, and A4,, and fixed population size m. We assume there are no mutation
forces acting. The model is then well known to be a birth-death process, with transition rates
determined by

Giin = i(m —DA,/m and gq,,_, = i(m—i\/m
where A, A, > 0. In the case of no selection, A, = A,. When A, # A,, let y = A\,/A,. Then

~ m Y-Do-1; 1sjsi
MmN D) | - Dy —yy isj=m—l,
and if A\, = A\, = A, then
n,=m-H/Nm—j)), lsj<i;=i/N, isjsm-—1.
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Résume

On donne une méthode simple et intuitive pour déduire certaines propriétés de chaines de
Markov finies homogénes a temps continu. Ces chaines sont a barriéres absorbantes, et apparais-
sent dans L’étude de la génétique des populations. Le méthode consiste a représenter un tel proc-
essus en termes de chaine de Markov discréte et d’une suite de temps d’attente qui reconstruisent
P’échelle de temps originale. On donne un exemple de génétique des populations.
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Appendix
First, let D = diag{q,, . . . , ¢.._1}, and write
1 0 0
P= |p, Q* p.|.
o o0 1

From (2) and (3), p, = D'q, when k = 0 or m, and Q = —D(I — Q*). From Kemeny and Shell (1960,
p. 47), (I — Q*) is nonsingular, and N* = (I — Q*)~". It follows that Q is nonsingular. Next, note that
{X(?)} and {J,} execute the same transitions in the same order. Clearly, we have

s,
S;= X YO, “
=1

where, using the strong Markov property, the {Y/} are i.i.d. with the same distribution as #,. Hence
ES;=n,=ES* EY,? = n,*q ", and (ii) follows. Then N = N*D"' = (I - Q*)"'D~' = [DI — Q*)]""
= —Q™', which completes the proof of (i). To prove (iv), notice that the absorption probabilities of X
and J are identical. Hence 7, = m,* = N*p, = N*D"'q, = Ngq,, kK = 0 or m. To prove (iii), we use a .
results of kemeny and Snell (1960, p. 62). Let |z| < 1. Then they show that

E@Z%7) = (n*/n;)zlny* — (ny* = Dz + 1= (n*/n*) ®)

Hence for § > 0, we have

Blexp(-05,)] =(E cxp(—e ¥y Y}ﬂ)) = E{Elexp(~0S, Y9)S,)

=1

= E[qj/(o + qj)]s')‘ = (nij/nﬂ')[njj_l/(e + njj_l)] +1- (nij/njj)~

The last expression is the Laplace transform of the distribution given (iii).
The proof of (vi) follows essentially the same lines, but the starting point is not (5), but instead uses
the matrix generating from

E(z,50"z,5", | . z,5m ")y = ¢/ (Z7' — Q*)"'(I — Q¥)e,

where Z = diag {z, . z,,—1} . See, for example, Barnett (1964). By conditioning on (S;, ..., Si.—1*)
the result of (v) follows. Point (vi) is an immediate consequence of (v), obtained by setting 8, =6, = - - -
= @,,—; = 0. The last formula follows from (vi) by differentiation with respect to §. Chung (1967) pro-
vides a more general proof of (iii) which does not use the characterization used here.



